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1 Data and data representation

1.1 Network properties

Figure 1 displays some characteristics of the aggregated network of contacts
between individuals as gathered by the SocioPatterns infrastructure. The
degree of an individual in the aggregated network gives the number of distinct
individuals with whom she has been in contact with at least once. The
strength of a node is the sum of the durations of all the contacts that node had
with other individuals. The detailed properties of the network are reported
in Ref. [1].

1.2 Fitting the weight distributions for each role pair

As discussed in the main text, for each pair (X, Y ) of role classes we con-
sider the empirical cumulated duration of the contacts between all pairs of
individuals x of class X and y of class Y . We used the fitdistr func-
tion of the R package MASS (http://www.stats.ox.ac.uk/pub/MASS4),
which implements maximum-likelihood fitting of univariate distributions, to
fit each empirical distribution with a negative binomial with parameters m
and r, where m is the average of the fitted distribution and its variance is
s = m+m ∗m/r.
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Figure 1: Left: Average degree (red dots, the red lines show the standard
deviation) and actual degrees of each individual (empty squares) for each
role. Right: Same for the strength, in minutes/day.

The fitting parameters are given in the main text. Figure 2 shows the
comparison between the empirical and the fitted distributions.

1.3 An intermediate data representation

In the main text we described several data representations, which range from
a very detailed record of the temporally-resolved contacts (DYN) to a much
coarser representation in terms of a contact matrix (CM) that contains the av-
erage time spent in contact by members of given classes. The CMD (Contact
Matrix of Distributions) representation takes into account the heterogeneity
of contact durations between pairs of individuals who belong to a given class
pair, as it is constructed by fitting the entire distribution of these durations.

Here we consider an intermediate representation between the CM and
CMD ones. For each pair of roles (X, Y ) we describe the distribution of
weights using a bimodal distribution (instead of the negative binomial used
for CMD), where values are either 0 (corresponding to an absence of link)
or the average of all actual weights between individuals of roles X and Y .
More in detail, let NX and NY be the numbers of individuals in classes X
and Y respectively, EXY the number of links empirically observed between
individuals of classes X and Y , and WXY the the total time spent in contact
by any individual of class X with any individual of class Y . Then, for each
pair of individuals (x, y) with x in class X and y in class Y , x is in contact
with y with probability EXY /(NXNY ), and the weight of the corresponding
edge is WXY /EXY . With probability 1− EXY /(NXNY ), x and y are not in
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Figure 2: Weight distributions for each role pair (red dots) and negative
binomial fits obtained by maximum-likelihood fitting (fitdistr function of
R’s MASS package). The abscissa is the weight of a link in units of 20-
second intervals. 3



contact and the associated weight is taken as zero. Notice that for X = Y ,
NXNY is replaced by NX(NX−1)/2, the correct number of within-class links.
The above representation, which we call CMB (Contact Matrix of Bimodal
distributions), takes into account the fact that not all pairs of individuals
have been in contact, in contrast with the customary CM representation.

1.4 Properties of the different data representations

Tables 1 and 2 report some properties of the weights and topology of the
observed contact patterns according to the various data representations we
consider. The CMB, CMD and HOM representations all capture the main
topological properties of the HET network, as well as the average link weight,
while the CMD representation is the only one that accounts for the large
dispersion in the cumulated durations of the contacts.

Data representation 〈w〉 (×10−4) σw (×10−5) W wmax (×10−4)
Fully connected 1.59 0.00 1.12 1.6
CM 1.59 0.01 1.12 34.8
CMB 9.11 0.49 1.12 99.8
CMD 9.01 3.75 1.11 1348.9
HOM 9.11 0.00 1.12 9.1
HET 9.11 3.47 1.12 1710.3

Table 1: Average weight 〈w〉, weight variance σw, sum of the weights W and
maximum weight wmax of the weight distributions. The average and variance
are computed on the non-zero weights only.

Data representation N0 〈d〉 σd 〈C〉
Fully connected 0 118.0 0.0 1.00
CM 0 118.0 0.0 1.00
CMB 5794 20.6 176.4 0.34
CMD 5789 20.7 178.2 0.35
HOM 5794 20.6 267.1 0.53
HET 5794 20.6 267.1 0.53

Table 2: Number N0 of zero-weight links, average degree 〈d〉, degree variance
σd, and average clustering coefficient 〈C〉 of each network representation.
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1.5 Rescaling the rate of infection to compare the spread

over different data representations

As the probability of disease transmission between an infectious and a sus-
ceptible individual depends on the time spent in contact, in order to mean-
ingfully compare the evolution of spreading processes over dynamical and
static networks, it is necessary to rescale adequately the rate of infection β
(see also the discussion in Ref. [2]). Let us consider the contact between an
infectious individual A and a susceptible individual B: the probability that
the infection is transmitted from A to B during a time interval dt is βdt. On
representing contact patterns by means of a static weighted network (e.g.,
the HOM/HET cases) in which the weight WAB of the link between A and B
represents the total duration of the contacts between those nodes, the infec-
tion probability over the interval dt needs to be set as βWABdt/∆T , where
∆T is the total temporal span of the data set, so that we obtain the same
average infection probability in all networks.

2 Simulation of epidemic spread

2.1 Additional measures

In the main text we focused on the probability of extinction and on the at-
tack rate, as these quantities are the most important to quantify the impact
of a disease and to assess the effectiveness of interventions. Other proper-
ties can also be measured and can help to assess the differences among the
simulated epidemic dynamics based on the different data representations. In
particular, here we consider the peak time of the epidemic, the duration of
the epidemic, and the respective distributions of these quantities over an
ensemble of stochastic realizations of the spreading dynamics.

We also consider the issue of the reproductive number R0, defined as the
expected number of secondary infections from an initial infected individual
in a completely susceptible host population [3]. Several methods can be used
to compute this quantity [4, 5] (40, 41), possibly yielding different estimates
[6] for the same epidemiological parameters.

Similarly to other works [7, 8], we compute here the number of secondary
cases from each single initial randomly chosen infectious individual, and
obtain the distribution of these numbers S over an ensemble of stochastic
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realizations of the dynamics. The basic reproductive number is then ap-
proximated by the average 〈S〉 of the number of secondary cases over this
distribution.

2.2 Simulated spread on the fully connected network

and on the CMB data representation

Figure 3 shows the distributions of the fraction of the final number of cases for
various contact pattern representations, for the same spreading parameters
used in the main text. The HET, CM and CMD cases are the same as in
Figure 2A of the main text. The fully connected case yields a very strong
overestimation of the final number of cases and a very small probability
of having a final attack rate lower than 10%. The CMB representation, as
expected, yields an intermediate result between CMD and CM, which remains
very different from the result of a epidemic spread on the HET network.
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Figure 3: Distribution of the fraction of the final number of cases for various
contact pattern representations for β = 2.8 × 10−3s−1, 1/σ = 0.5 days,
1/ν = 1day.

2.3 Reproductive number and epidemic peak and end-

ing times

Figure 4 reports the distributions of the number of secondary cases from
the initial seed, averaged over the initial seed of the epidemic and over the
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Data representation 〈S〉
DYN 1.06
HET 1.66
HOM 3.71
CM 3.87
CMD 1.67

Table 3: Average number 〈S〉 of secondary infections from an initial infected
individual in a completely susceptible host population. The values of 〈S〉 are
computed as averages of the distributions shown in Figure 4.

stochastic realizations of epidemic spread, for various contact pattern repre-
sentations. The most probable number of secondary cases is zero in all cases,
and the distribution has a typical exponential shape, ranging up to values of
20− 30 individuals. The distributions are slightly broader for the HOM and
CM representations.
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Figure 4: Distribution of the number of secondary cases from each single
initial randomly chosen infectious individual, for the different contact pattern
representations, with parameters β = 2.8 × 10−3s−1, 1/σ = 0.5 days, 1/ν =
1day.

Table 3 gives the value of the average number of secondary cases 〈S〉 for
each case. We notice that while Ref. [2] reported similar average values for the
DYN and HET cases for the case of a spread in an unstructured population,
here we observe a smaller value for the DYN network. For the first set of

7



parameters of the SEIR model, corresponding to slower disease propagation,
the difference between the values for DYN and HET (not shown) is smaller.
It is important to notice that for both parameter sets, the HET and CMD
representations yield very close values of 〈S〉, while the HOM and CM cases
both yield higher values. This is remarkable because the contact matrix of
distributions (CMD) is a compact representation that is not individual-based
and does not preserve the topology of the empirical contact network, which
is instead preserved by the finer-grained HET contact network.

Finally, Figure 5 shows the distributions of the peak and end times of the
epidemic. Although the distribution is slightly more peaked at earlier times
for the HOM case, no strong differences are observed between the different
cases. Each representation is thus able to yield a good estimation of the
epidemic timing.
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Figure 5: Distributions of the peak times (left) and end times (right) of the
simulated epidemic, for each representation, and restricted to the runs with
an attack rate higher than 10%. Parameters values are β = 2.8 × 10−3s−1,
1/σ = 0.5 days, and 1/ν = 1day.

3 Results of the spreading simulations for the

second set of parameters of the SEIR model

In order to assess the robustness of our results we have considered, as men-
tioned in the main text, two different sets of parameters for the SEIR model.
Here we report the results of spreading simulations with β = 6.9× 10−4s−1,
1/σ = 1 day, and 1/ν = 2days on the different representations of contact
patterns. This set of parameters corresponds to a slower propagation with
respect to the one discussed in the main text.
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Figure 6, similarly to Figure 2A of the main text, reports the global
distribution of the fraction of the final number of cases, averaged over all
possible seeds, for the various contact patterns representations. The results
are very similar to the ones obtained with the other set of parameters, except
that the results of the DYN, HET and CMD are even closer. All the other
representations lead to a clear underestimation of the probability of having
a small final attack rate and, in the case of a large attack rate, to a strong
overestimation of the number of final cases (see Table 4). Table 5 breaks
down these results according to the role class of the initial seed, and Figure 7
shows the distributions of the final attack rates within each class. Once again,
at this very detailed level the similarity between the results for DYN, HET
and CMD is clear, while the CM and HOM representations do not capture
correctly the relative risks of the various classes.

Finally, Table 4 shows that the peak time and end time of the epidemic
are reasonably well approximated even by the coarser representations.
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Figure 6: Distribution of the fraction of the final number of cases for the
various contact pattern representations for β = 6.9× 10−4s−1, 1/σ = 1 day,
1/ν = 2days.
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Figure 7: A)-E) Distributions of the fraction of individuals of each class
reached by the epidemic for various contact patterns. F) Boxplots corre-
sponding to these distributions when the global attack rate is larger than
10%. Here β = 6.9× 10−4s−1, 1/σ = 1day, and 1/ν = 2 days.
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Data representation final size peak time end time
DYN 31(10) 8.4(4.5) 19.7(6.4)
HET 35(10) 8.9(4.6) 20.7(6.2)
HOM 82(7) 9.3(3.1) 22.3(4.7)
CM 86(17) 13.0(5.5) 28.9(7.5)
CMB 50(19) 11.4(6.1) 25.7(8.5)
CMD 35(11) 9.5(5.0) 21.9(7.1)

Table 4: Summary of the average properties of the runs leading to a final
attack rate (AR) higher than 10%, for β = 6.9 × 10−4s−1, 1/σ = 1day, and
1/ν = 2days. The standard deviation is given in parentheses.

DYN HET HOM CM CMB CMD
seed EP AR10 EP AR10 EP AR10 EP AR10 EP AR10 EP AR10
All 0.60 0.86 0.47 0.80 0.41 0.50 0.33 0.48 0.38 0.65 0.50 0.80

A 0.35 0.51 0.21 0.34 0.20 0.27 0.18 0.26 0.18 0.28 0.20 0.33
D 0.71 0.93 0.65 0.87 0.40 0.49 0.56 0.81 0.57 0.84 0.59 0.91
N 0.50 0.70 0.39 0.56 0.19 0.28 0.33 0.48 0.33 0.52 0.36 0.58
P 0.66 0.95 0.51 0.91 0.54 0.64 0.30 0.44 0.40 0.71 0.58 0.92
C 0.59 0.95 0.45 0.91 0.47 0.58 0.27 0.40 0.35 0.68 0.52 0.90

Table 5: Extinction probability (EP) and fraction of runs leading to an attack
rate of at most 10% (AR10), for the various contact pattern representations
and as a function of the role class of the seed. Parameter values are β =
6.9× 10−4s−1, 1/σ = 1day, and 1/ν = 2days.
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4 Daily aggregated networks and contact ma-

trices

As mentioned in the main text, based on the dynamical network that de-
scribes the contact patterns in the ward of an hospital over a 1-week interval,
we have build static networks by aggregating all the interactions that takes
place during the course of the week. Therefore, all of the data representa-
tions we considered assume that all invididuals are present at all times, and
that the contact patterns are the same every day.

In Ref. [2], on the other hand, which focuses on contact patterns during
a 2-day conference, two different daily networks were constructed. In this
case, the epidemic spreading simulations performed over the DYN and HET
networks yielded almost indistinguishable results.

Therefore, here we also consider a set of data representations aggregated
on the daily scale: for each day we aggregate the contacts recorded during
that day and we construct daily HET, HOM, CM, CMD representations.
These representations take into account the fact that not all individuals are
present each day, and that the patterns of contacts may be different from
day to day.

As shown in Figure 8, the SEIR spreading simulations performed on the
various data representations yield results that are only slightly different from
the ones obtained when the dynamical data is aggregated at the weekly
scale. The results obtained for the HET representation become even closer
to the ones of the DYN case, especially for the first set of SEIR parameters, in
agreement with the results of Ref. [2]. In the case of the CMD representation,
the results do not change significantly. Moreover, the results obtained with
the HOM and CM representations are still very far from the ones based on
the DYN, HET and CMD representations, despite the additional information
at the daily scale. Thus, these results highlight the interesting properties
of the CMD representation, which, despite using only very parsimonious
information, yields results that are very close to the case of the full dynamical
representation.
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Figure 8: Distribution of the fraction of final cases for the various data
representations, comparing the cases in which data is aggregated on the whole
week (lines) and the cases in which daily networks or matrices are used
(symbols). Left: β = 2.8 × 10−3s−1, 1/σ = 0.5 days, 1/ν = 1day; Right:
β = p ∗ 6.9× 10−4s−1, 1/σ = 1 day, 1/ν = 2days.

5 Epidemic spreading simulations for fixed

〈S〉

Figure 4 and Table 3 show that the reproductive number R0, approximated
by the average 〈S〉 over different realizations of the number of secondary
cases from one randomly chosen initial infectious individual, is strongly over-
estimated when using the HOM and CM representation of contact patterns.
One could thus ask whether the discrepancies between the results obtained
by spreading simulations on the HOM and CM contact patterns on the one
hand, and on the HET network on the other hand, may be simply due to dif-
ferences in 〈S〉. To check this point, here we study the dynamics of spreading
processes at fixed 〈S〉.

5.1 Procedure

We simulate an SEIR spreading process for the HOM and CM representa-
tions, calibrating the spreading probability with a rescaling factor p, so that
the spreading probability per unit time is pβ. We compute the resulting 〈S〉
as a function of p, as shown in Figure 9. We can thus calibrate the SEIR
parameters by choosing rescaling factors pHOM and pCM that lead to the
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same 〈S〉 measured for the HET network. We call the corresponding cases
HOM(c) and CM(c).
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Figure 9: Average number of secondary cases 〈S〉 for the HOM and CM
contact patterns, for β = p ∗ 6.9 × 10−4s−1, 1/σ = 1 day, 1/ν = 2days. For
p = 0.488, 〈S〉 of the HOM network is equivalent to the 〈S〉 of the HET
network (with p = 1). For CM the corresponding value is p = 0.494.

5.2 Results

Figures 10, 11, 12, and Tables 6 and 7 report the results of the spreading
simulations performed on the HOM and CM contact patterns with calibrated
spreading parameter, so that the resulting value of 〈S〉 is the same as in the
case of the HET network.

In this case, although the results are closer to each other when the cali-
bration (rescaling factor p) is not carried out, the attack rate is still overesti-
mated (in particular for the HOM case) and the relative attack rates within
the various classes are still not correctly accounted for, especially for CM(c).
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