Supplementary Data

 Table S1. Number of conserved bases in the *lux* box homologues located upstream of *gtaR* and *orfg1*.

Promoter	<i>lux</i> box homologue	No. of bases conserved	No. of bases conserved	
	location	based on <i>lux</i> box sequence	based <i>lux</i> box consensus	
		proposed by Fuqua	sequence proposed by	
		(Fuqua et al., 1994)	Horng (Horng et al., 2002)	
gtaR	5'-most (in <i>rplQ</i> gene)	10 of 20	4 of 8	
gtaR	3'-most	13 of 20	7 of 8	
orfg1	only one	10 of 20	8 of 8	

 Table S2. Primers used in this study

Primer Name	Sequence 5'-3'	Construct(s)	Restriction
			Enzyme
GTA5	GATGCGGCTGCAGACCGATCC	p601-g65	PstI
GTA2.6	GAACCGGATCCATCGCCAGGG	p601-g65	BamHI
LHR2.2	GTGATCTGTCGGATCCTCGGGATAGG	p601-P2R, p601-	BamHI
		P25, p601-P23	
LHR2	ACACTTGTTGGGATCCGTGTGTATG	p601-P1R	BamHI
KOR1F	CGATGAAGGTCGACACTGACGGTT	p601-P2R, p601-	PstI

		P1R	
LHR5	AGACCACCCTGCAGAAAGCCA	p601-P25	PstI
LHR3	TTTCGAAGCTGCAGACGAATAAGC	p601-P23	PstI
PR28n	CTGTCTAAAAACATATGTCCATACACAC	pET28R	NdeI
PR28c	CGCTGCGGGATCCTACAG	pET28R	BamHI
gtaR_comp_up	GTATCGGTACCAGCAAAACGACCTTAGGA	pIND4R	KpnI
gtaR_comp_down	GTACAGGATCCGAAAGTGTGGTGGTCTGC	pIND4R	BamHI
	АТ		
Primer Name	Sequence 5'-3'	Intergenic	Restriction
		Region	Enzyme
rplQ-gtaR_up	CGACGTTTCGGCGAAGGGCG	rplq-gtaR	n/a
rplQ-gtaR_down	CCGCAGACACTTGTTGAT	rplq-gtaR	n/a
gtaR-gtaI_up	GCTGCGAAGCTTGGCATCA	gtaR-gtaI	n/a
gtaR-gtaI_down	AATGATGAAACTTTGCCGCC	gtaR-gtaI	n/a
gtaI-rcc00330_up	GCTGGTATCGCCGCTGC	gtaI-rcc00330	n/a
gtaI-	CCTCGGACAGATGCTGCG	gtaI-rcc00330	n/a
rcc00330_down			
Primer Name	Sequence 5'-3'	EMSA	Restriction
		Fragment(s)	Enzyme
LHR2.2	GTGATCTGTCGGATCCTCGGGATAGG	DR9, DR7, DR5,	BamHI
		DR3, DR1, P23	
LHR3	TTTCGAAGCTGCAGACGAATAAGC	P23, DRR	PstI

LHR3	TTTCGAAGCTGCAGACGAATAAGC	345 bp	PstI
KOR1F	CGATGAAGGTCGACACTGACGGTT	800 bp	PstI
LF9	AGGCAATTCCCGGTTGATCTT	DR9	n/a
LF7	TGGCACCTGTCTAAAAAGACATGTCCA	DR7	n/a
LF5	GTCTAAAAAGACATGTCCATACACACCG	DR5	n/a
LF3	ACATGTCCATACACCCGAAATCAA	DR3	n/a
LF1	CCGAAATCAACAAGTGTCTGCG	DR1	n/a
LHRrf	GAAAAGATCAACCGGGAATTG	DRR	n/a
3RPL	GCTTATTCGTCTGCAGCTTCGAAA	R23	n/a
M200R	GCGCAACGCATTTAATG	M1	n/a
Lux-upstream-F	AGACCCATGCGTCACG	<i>gtaR</i> 681 bp	n/a
Lux-downstream-	CCGATGAAATAGCCATCC	<i>gtaR</i> 681 bp	n/a
R			

Supplementary material figure legends.

Figure S1. The *gtaR* gene, surrounding orfs, and the sequence of the *ctrA* 5' regulatory region. **A**, Representation of *gtaR* and flanking genes. Annotations are according to Genbank accession # CP001312. From left to right: *rpoA* is annotated as a DNA-directed RNA polymerase subunit alpha; *rplQ* is annotated as the 50S ribosomal protein L17; *gtaR* encodes the GtaR response regulator; *gtaI* encodes a homoserine lactone synthase; and rcc00327 is a predicted protein of unknown function. **B**, DNA sequence of the *gtaR* 5' region, showing key features. Bent arrows show the rplQ and gtaR start codons. Green boxes indicate the -35 and -10 sites predicted by the Softberry program BPROM (http://linux1.softberry.com/berry.phtml). Red boxes are the stop codons for rpoA and rplQ. The black horizontal bars indicate predicted *lux* boxes. An alternative predicted *gtaR* start codon is indicated by a yellow box. The vertical arrow labeled "2.2" indicates the 3' juncture of all *gtaR::lacZ* fusions except p601-P1R, which has a 3' juncture indicated by the vertical arrow labeled "2.1". The vertical arrows labeled with odd numbers and "R" indicate the 5' end of *gtaR* promoter region deletions. Each arrow is identified with a label that corresponds to the plasmid name (*i.e.*, the arrow labeled "5" corresponds to plasmid p601-P25). Numbers on the right indicate the number of bases before or after the *ctrA* start codon.

Figure S2. The GtaR-6xHis protein does not bind to the RcGTA promoter region. **A**, Representation of RcGTA *orfg1* and 5' sequences. The black boxes represent predicted -10 and -35 sites and the empty box is a predicted *lux* box. The bracket indicates the 650 bp DNA fragment used for EMSAs. **B**, EMSA using the GtaR-6xHis protein and the 650 bp DNA fragment. O indicates the origin of eletrophoresis.

Figure S3. Comparison of RcGTA gene expression in the *R. capsulatus gtaRI* mutant in the absence and presence of exogenous acyl-HSLs. **A**, western blots of cells probed with RcGTA capsid protein antiserum; **B**, frequency of RcGTA-mediated gene transfer of *gtaRI* knockout (*AgtaRI*) with no addition of acyl-HSL and the addition of C12-, C16- and C18-HSL (C12, C16 and C18). Error bars represent the standard deviation of the mean between samples (n=3), except that * indicates the range between samples (n=2).

Figure S4. An unrooted phylogenetic tree of LuxR homologs in gram-negative bacteria. The branch containing GtaR is encircled with a dashed line, and GtaR is marked with two asterisks. The two additional *R. capsulatus* ORFs with homology to LuxR-type transcriptional regulators are marked with a single asterisk. Members of the previously identified EsaR clade are enclosed within a solid line. Names of α -proteobacteria are in green, β -proteobacteria in blue, and γ -proteobacteria in red. Support values were based on 1000 replicates and the scale bar represents the number of substitutions per site.

В

CGGAATCGGC CTCGAAGACC GATGCCGACG ACGGGCTCGA GTTCAACCCG CTGCTGCTGA -900 AGAAAGTGGA CGAGCTGGAA CTGTCGGTCC .. (N190).. TCTGGCCAAG CGCTTCGAAG -840 rpoA ACCAGTTOTG AAAACGTCCG GGGGGTGGGT GACCGCCCCC CGAAAATGCC CGGACTTCCG -780 GGGAACCCTG GGCATGATGC CCCAACGAAG CCCCCGCAC GCACGGGGCG CAACACAAAG -720 rplQ CAAAACGACC TTAGGAGAGA CCCATGCGTC ACGCCCGCGG CTACCGCCGT CTGAACCGTA -660 CCCACGAACA CCGCAAGGCG CTGTTCGCCA ACATGTGCGG CTCGCTCATC GAACACGAAC -600 AGATCAAGAC CACCCTGCCG AAAGCCAAGG AACTGCGTCC GATCATCGAA AAGCTGATCA -540 5**T** -35 CGCTGGCCAA GCGCGGCGAC CTGCATGCCC GTTGTCAGGC GGCGGCGATG CTTGAAGCAG -480 -10 GACAAGGACG TGGCCAAGCT TTTCGACGTG CTCGGGCCCC GCTACAAGGA CCGTCAGGGC -420 GGCTACACCC GCGTCCTGAA AGCCGGTTTC CGCTATGGCG ACATGGCGCC GATGGCCTTC -360 ATCGAATTCG TCGAGCGCGA CGTTTCGGCG AAGGGCGCGG CTGACAAGGC CCGTGAAGCG -300 rplQ GCTTTCGAAG CGGCCGACGA ATAAGCTTTC CGCAAGGGAA GCCGGAAGCC CGCCCTCGG -240 -35 -10GGCGGGTTTT CGTTTTTGCG GGCGCGCAA CCGCAGGGCG AGACTTGGCG GCAATCTGCC -180 -35 CGTAATGGCG CCGATTTCAG CAAAAACCAC CCCGCCGGAG GCAATTCCCG GTTGATCTTT -120 -10TCCGGTGGCA CCT<mark>GTCTAAA AA</mark>GAC<mark>ATG</mark>TC CATACACACC GAAATCAACA AGTGTCTGCG -60 GGAAATCGGT CGCGTCGCGA CGGATGGCTA TTTCATCGGC CTGCATATCC GTTTCGCCGC -10 **T**2.1 gtaR CCCGATCATG CAATTCCAGA CCTATCCCGA GGCGTGGACA GATCACTACA CCCGGCAGGC 50 **1**2 2

Fig S1

Fig S2

Fig S3

