

Investigation of a safety-engineered device to prevent needlestick injury: Why hasn't StatLock stuck? A Pilot Study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002327
Article Type:	Research
Date Submitted by the Author:	09-Nov-2012
Complete List of Authors:	Griswold, Sharon; Drexel University College of Medicine, Emergency Medicine Bonaroti, Alisha; Drexel University College of Medicine, Emergency Medicine Rieder, Christopher; Hahnemann University Hospital, Safety and Security Erbayri, John; Drexel University College of Medicine, Emergency Medicine Parsons, Jessica; Drexel University College of Medicine, Emergency Medicine Nocera, Romy; Drexel University College of Medicine, Emergency Medicine Hamilton, Richard; Drexel University College of Medicine, Emergency Medicine
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Medical education and training, Occupational and environmental medicine, Public health
Keywords:	ACCIDENT & EMERGENCY MEDICINE, Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, MEDICAL EDUCATION & TRAINING, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

BMJ Open

1	
2	
3	Investigation of a safety-engineered device to prevent needlestick injury:
4 5	
6	Why hasn't StatLock stuck?
7	
8	
9	Sharon Griswold ¹ Alisha Bonaroti ¹ Christonhor I. Piodor ² John Erhavri ¹ Jossica
10	Sharon Shawold, Alisha Doharoti, Shiristopher 3. Nieder, John Libayn, Jessica
12	Parsons ¹ , Romy Nocera ¹ , Richard Hamilton ¹
13	· ····································
14	
15	
10	¹ Department of Emergency Medicine, Drexel University College of Medicine, Philadelphia,
18	
19	PA
20	² Department of Security and Safety, Senior Industrial Hygiopist, Habpemann University
21	Department of Security and Safety, Senior industrial Hygienist, Hannemann Oniversity
22 23	Hospital, Philadelphia, PA
24	
25	Corresponding Author:
26	
27	Sharon Griswold, MD, MPH
28 29	Simulation Center Director
30	Drevel Liniversity College of Medicine
31	Diexer Oniversity College of Medicine
32	Department of Emergency Medicine, NCB
33 34	Room 2108, 2nd floor, MS 1011
35	245 North 15th Street
36	
37	Philadelphia, PA 19102
38 39	phone 215-762-2368
40	fax 215-762-1307
41	
42	
43 44	
45	
46	
47	
48	
49 50	
51	
52	
53	
54 55	
ວວ 56	
57	

Article Summary

Article Focus

This article sought to define whether an alternative safety engineered device (SED) could help prevent needlestick injury (NSI) in healthcare workers (HCWs) who place central venous catheters (CVC). To begin to answer these questions the study involved three phases:

- A retrospective analysis of de-identified occupational health records from our tertiary care urban United States (US) hospital to clearly identify how many HCW had NSI while placing CVC.
- 2. Ninety-five residents who frequently place CVC during training were surveyed regarding their knowledge and experience with NSIs and SEDs.
- 3. A random sample of six residents participated in a focus group session discussing barriers to use of the SED.

Key Messages

- A readily available safety-engineered device does exist as an alternative to using three sharps to suture a CVC.
- Sixteen percent (21 of 131) of NSIs occurring in residents and fellows over a 4-year period (July 2007–July 2011) of a single institution occurred during securement of an invasive catheter.
- If safety and efficacy of the device can be proven, 5.25 healthcare worker NSIs per year could be avoided at our institution. This would translate into a direct cost savings of \$19,362 over the 4-year period.

Strength and Limitations

• A notable strength of this work is that it addresses the International Healthcare Worker Safety Center March 2012¹ call to action to address a lack of new progress in NSI rates.

2	
3	The study identifies a new area where significant progress may be made to reduce
4	
5	sharps injuries worldwide.
6	
1	A significant limitation is that the study is surrently limited to a single LIC tertiany area
8 •	A significant infination is that the study is currently infined to a single US tertiary care
9	
10	site.
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
30	
30	
37	
30 20	
39	
יד גע	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
	For your review only. In the Albertien on thesis are faited at any faited with the second test

Keywords: needlestick injury; sharps injury; safety-engineered device; healthcare worker injury; central venous catheter

ABSTRACT

Objective: This article sought to define whether an alternative safety engineered device (SED) could help prevent needlestick injury (NSI) in healthcare workers (HCWs) who place central venous catheters (CVC).

Design: The study involved three phases: 1) A retrospective analysis of de-identified occupational health records from our tertiary care urban US hospital to clearly identify NSI risk and rates to HCW during invasive catheter placement; 2) Ninety-five residents were surveyed regarding their knowledge and experience with NSIs and SEDs. 3) A random sample of six residents participated in a focus group session discussing barriers to use of the SED. Setting: A single urban US tertiary care teaching hospital.

Participants: A retrospective analysis of NSI to HCW in a tertiary care urban US hospital was conducted over a 4-year period (July 2007–July 2011). Ninety-five residents from specialties that often place CVC during training (surgery, surgical subspecialties, internal medicine, anesthesia and emergency medicine) were surveyed regarding their experience with NSIs and SEDs. A random sample of six residents participated in a focus group session discussing barriers to use of the SED.

Results: 314 NSIs were identified via occupational health records. Sixteen percent (21 of 131) of NSIs occurring in residents and fellows occurred during securement of an invasive catheter such as a CVC. If an SED device had been used, these 5.25 NSIs/year could have been avoided. Each NSI occurring in an HCW incurred an estimated average direct cost of \$922. Thus, utilization of the SED could have saved \$19,362 over the 4-year period.

BMJ Open

Conclusion: SEDs are currently available and can be used as an alternative to sharps. If safety and efficacy can be demonstrated, then implementation of such devices can significantly reduce the number of NSIs.

There is no additional data available

INTRODUCTION

Needlestick or sharps injuries (NSIs) among healthcare workers (HCWs) are a common and potentially avoidable injury. An estimated 600,000 to 800,000 percutaneous injuries occur annually among HCWs in the United States². As high as these estimates appear, the literature indicates that sharps injuries are significantly underreported³⁻⁵. These injuries place HCWs at risk for blood-borne infections and result in considerable psychological distress. In addition, the healthcare system incurs substantial costs from the occupational health testing, prophylaxis, and follow-up that must be implemented for each reported NSI.

Safety-engineered devices (SEDs) are promising design innovations intended to prevent hazards and accidents. In medicine, numerous engineering controls have been introduced to decrease the incidence of NSIs among HCWs, including safety-winged steel needles, safety intravenous catheter insertion needles, and many others.

The StatLock device (Bard Access Systems, Salt Lake City, UT) (Figure 1) is an SED designed to prevent NSIs during placement of central venous catheters (CVCs). The StatLock device has been available in all adult triple-lumen CVC kits in our urban tertiary care US institution since July 2009. Despite its availability, the StatLock is not widely used in clinical practice. The

purpose of our study was to perform a needs analysis by retrospectively examining HCW data from our institution to determine whether implementation of the SED would significantly reduce NSIs. We sought to determine whether practitioners did incur NSIs during the securement phase of the CVC procedure, and if this could have been prevented with the use of this SED. We also sought to identify potential barriers to implementation of a new SED in the healthcare environment. The SED device was readily available in the safety triple lumen catheter kits within the institution yet not utilized within the institution.

We hypothesized that a substantial number of NSIs occur during resident placement of CVCs, which might be prevented by use of the StatLock device. However, barriers including staff resistance and training time are likely to impede implementation of safety controls.

METHODS

Institutional review board approval was obtained and all NSI data were de-identified. The study was conducted at Hahnemann University Hospital (HUH), an urban tertiary care hospital in the United States. We analyzed retrospective data on all NSIs reported between July 2007 and July 2011 by HCWs in the adult-care ACGME resident training programs (except neurosurgery). Ninety-five residents from disciplines responsible for CVC placement at our institution were identified and enrolled in a prospective longitudinal study: surgery, emergency medicine, internal medicine, and anesthesia. All participants signed written consent to participate. A plan for compensation was incorporated into the study design to maximize return for 12-month follow-up. Demographic data for each of the residents were collected, including level of training, department, age, sex, race, and handedness. The survey questions were designed to determine residents' prior exposure to NSIs and to evaluate their prior knowledge of and experience with

BMJ Open

the StatLock device. Each resident was randomly assigned to either a simulation curriculum or to a standard curriculum educational program to familiarize them with the SED device application, and all agreed to return in 12 months for a repeat questionnaire. The endpoint for the longitudinal phase of the study was defined as a difference in NSIs between the groups. This portion of the study is still in progress. Finally, a focus group of six randomly selected residents was conducted to assess impressions of the device and potential barriers to its implementation.

Data analysis

De-identified data on all NSIs occurring at our institution were independently reviewed by three study investigators (SG, AB, CR). All reported NSIs were reviewed and characterized according to occupation of the HCW incurring the injury and according to circumstances regarding the injury. Frequency counts of NSIs were tabulated (Figures 2 and 3). Frequency counts of physician NSIs that occurred during a catheter placement such as a CVC, large bore single lumen catheter, dialysis catheter, or arterial catheter line were also reviewed by the same three investigators and compared for agreement in interpretation. Audio-recorded focus group text was transcribed and data were extracted describing both positive and negative observations regarding the StatLock device.

RESULTS

Retrospective institutional data analysis

Analysis of the retrospective NSI data revealed that physicians (residents, fellows, and attendings) accounted for 43% (136 of 314) of the total NSIs occurring between July 2007 and July 2011 (Figure 2). Resident NSIs accounted for 87% (118 of 13) of the total physician NSIs (118 residents, 13 fellows, and 5 attending physicians) occurring during this 4-year period.

Thirty-one percent of the resident/fellow NSIs injuries (40 of 131) occurred during the placement of CVC or catheter lines that require securement to patient skin. Fifty-three percent (21 of 40) of the NSIs that occurred during these procedures occurred while the line was being secured to the patient's skin with a suture needle. This accounted for 16% (21 of 131) of the total number of resident/fellow NSIs over the 4-year period. It is possible that 13 additional NSIs occurred during securement of these catheter lines, but unless our occupational health record specifically documented that the NSI occurred while the worker was securing the line, those data were not included. An additional six NSIs occurred with the larger-bore needle while the worker was attempting to cannulate the vessel.

Cost analysis

Given the numbers of NSIs determined from retrospective analysis, we calculated that use of a needleless device to secure the CVC could have prevented these 21 NSIs, each costing an estimated \$922 (average NSI cost incurred at this institution). Costs associated with an NSI include provider fees for initial and follow-up visits, blood draw and analysis costs, medication costs, and administrative costs. Costs vary from case to case depending on the treatment plan, medication costs, and length of follow-up. Eliminating all 21 NSIs that definitively occurred during securement of the line would have translated into a direct cost savings of \$19,362. If the possible additional 13 NSIs also occurred during the securement phase where three sharps are included in the calculation (hollow-bore needle for repeat anesthesia, suture needle, and scalpel), this would translate to a direct cost savings of \$31,348 over the 4-year period. These cost estimates do not include the indirect cost of time lost from work and other indirect financial and social costs.

Enrollment survey of residents enrolled into the longitudinal study

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

The prospective portion of the study surveyed 95 residents. Only 30% had previous knowledge of the needleless SED that is supplied in all CVC safety kits at our institution. Only 19% had ever had training regarding the use of any SED or used the device in clinical practice. Twenty-five percent of responding residents (24 of 95) answered yes when asked the question, "Have you ever had a needlestick injury associated with patient body fluid exposure?" In a follow-up question, we asked, "Did you report the incident each time?" Twenty-one percent (5 of 24) responded that they did not always report NSI. This finding is consistent with prior data suggesting that HCW NSIs are underreported³⁻⁶. Forty-nine percent of residents surveyed stated that they had had at least one near miss/ close call needlestick incident in the past 2 months (Figure 4).

Focus group data

Focus group discussions were conducted with six randomly selected study participants. Participants were interviewed by a study investigator (SG) individually and each session was audio recorded with the permission of the participant. Focus group sessions lasted an average of 30 minutes to discuss participant use of the StatLock device, their impressions of the SED, and additional thoughts they had on the use of StatLock over traditional sutures when securing central lines. Audio data were extracted and analyzed by two independent study investigators (SG and AB). Focus group data are presented in Table 1.

Responses varied across participants. One surgery resident noted that surgeons especially are more familiar with suturing than with applying StatLock and may be able to secure a CVC faster using sutures. The resident stated, "Time is of the essence. [I] don't want to wait for StatLock to dry when sutures are faster, more efficient, more comfortable." Another resident who is also

comfortable and adept at suturing lines mentioned that she would want more practice with applying the StatLock device before using it in a clinical setting.

One emergency medicine resident described himself as "motivated to use StatLock after witnessing multiple coworkers experience fingersticks." After using the StatLock device just one time, he found the placement of the StatLock device was guicker than suturing the CVC.

Two of the six residents reported that they valued the StatLock device in certain situations when they were more likely to incur an NSI, such as when the patient is unpredictable or unwilling to lie still. One resident reported that in such cases it is "beneficial to use as few sharps as possible."

Half of the residents were hesitant to use StatLock in certain circumstances because they thought that the nurses and other practitioners lacked knowledge about the device. After securing a CVC using StatLock in the emergency department, one resident reported, "The admitting team was confused, did not know what the device was, and [was] concerned over whether StatLock would stay in place."

One resident pointed out that the StatLock device may be beneficial in certain populations of patients. "[StatLock would be] beneficial cosmetically when placing an upper neck line next to the face, especially for patients who form keloids."

Audio-recorded focus group text was transcribed and data were extracted and categorized as neutral, positive or negative observations regarding the StatLock device.

DISCUSSION

In 2009 we developed a partnership with our institutional industrial hygienist to investigate opportunities to reduce NSIs among resident physicians in our institution. In the fiscal year between 2008 and 2009, nurse NSIs increased 10% and physician NSIs increased 70% at our institution. In 2009 at HUH, 46% of the total reported NSIs involved residents. A 2007 study of 699 surgical residents at 17 US medical centers found that by the 5th year of residency, 99% had had at least one NSI. Moreover, for 53% of respondents, the NSI had involved a high-risk patient with a history of HIV infection, hepatitis B or C virus infection, or injection drug use.² In 2009, our US-based urban hospital reported 27.6 injuries per 100 occupied beds, which is above the EPINet average of 20.1 for teaching hospitals⁷. These data were alarming and required immediate analysis for the potential for intervention.

In medicine, engineering controls that have been introduced to decrease the incidence of NSIs among HCWs include safety-winged steel needles, safety intravenous catheter insertion needles, polyester film–coated capillary tubes, safety-shielded phlebotomy needles, needleless blood transfer devices, safety peripherally inserted central catheter stylets, blood gas needle–holding devices, blunt-tip needles, and shielded hypodermic needles/syringes⁸. Current literature indicates that 29% to 35% of reported occupational NSIs could have been prevented if an SED had been used⁹. Although engineering controls may require capital investment, the cost savings resulting from improved safety may justify the expense. However, devices that depend on user activation generate benefit only when correctly used; thus HCWs must be educated in their use.

The StatLock SED secures CVCs using a locking device attached to the skin using benzoin adhesive instead of the traditional method of using sharps. Traditionally, after a CVC is placed the patient may require additional local anesthesia in a site separate from the insertion site, necessitating the use of a hollow-bore needle. A CVC is secured with the use of a straight suture needle and the suture is cut with a scalpel. Therefore, using the SED minimizes the risk of NSI during securement of CVC by eliminating three steps in which sharps are used. Despite the easy availability of the StatLock device, few resident physicians are aware of it and fewer still have used it in clinical practice. Only 30% in our study had previous knowledge of the needleless SED that is supplied in all CVC safety kits at our institution. Only 19% had ever used the device in clinical practice.

Despite increased awareness of sharps injuries and some attempts at prevention, NSIs continue to be a serious problem. Our study supported earlier research findings that among HCWs, physicians have the highest risk of NSI^{2, 10}, and among physicians, residents have a three times greater risk of blood and body fluids exposure than senior doctors¹¹.

In our institution, physicians have been reluctant to use the StatLock device because they have questions about efficacy and patient safety. Some express concern that the device might not work as well as the traditional method of securing a CVC to patients' skin using sutures. Many reports in the literature have been authored by individuals associated with the manufacturers, raising the question of potential bias. The StatLock device is currently available in every triple-lumen CVC kit in our institution. Therefore, the issue of use of the device does not rest on its availability, but rather on physician awareness, training, and preference.

BMJ Open

Focus group discussions revealed that such factors have indeed presented barriers to implementation of the StatLock device. Residents expressed concern regarding time constraints and familiarity with device. Previous literature has documented similar barriers to implementation. Cost, personnel time, and resistance to change are several of the most commonly documented deterrents. ^{6, 12-16} Surgeons and anesthesiologists have been recognized as the cohorts least likely to use safety devices designed to prevent NSIs, presumably because they are skilled at suturing.¹⁷ Reluctance may also stem from feelings of discomfort and questions of efficacy.¹⁷ Evidence-based reasoning is often absent from the foundation of implementation programs, exacerbating opposition to change.¹⁸ Perpetual access to conventional sharps also hinders implementation of safety devices.¹⁹

Some institutions have recognized that simple logistics can prevent staff from using safetyengineered devices. Contractual purchasing agreements can render devices unavailable and certain devices may not be compatible with existing equipment^{6, 16}. The overabundance of SEDs on the market makes it difficult for institutions to choose¹⁵, yet most devices are not applicable for all situations and technology must become more advanced to meet the remaining demand.^{15,18}

Lastly, HCWs are characterized as being desensitized to disease and consequently possessing a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is coupled with a lack of multidisciplinary support, both "horizontally and vertically," implementation of safety devices becomes extremely difficult.²⁰

CONCLUSIONS

The common incidence of needlestick injuries among healthcare workers clearly indicates a need for further intervention. Engineering controls such as needleless securement devices are currently available and can be used as an alternative to sharps. Retrospective analysis of institutional records demonstrated that over a 4-year period (July 2007–July 2011), 16% of resident/fellow NSIs (21 of 131) could have been avoided with the use of a safety-engineered device such as the Statlock device to secure a CVC. If safety and efficacy of the device can be demonstrated, then implementation of such devices may significantly reduce the number of needlestick injuries among physicians. However, education alone will not be sufficient to overcome barriers to implementation.

Funding

This study was supported by Drexel College of Medicine IBC Simulation Grant Funding. The funding source had no involvement in the study design; collection, analysis or interpretation data; writing of the report; nor the decision to submit the paper for publication.

Contributorship

Dr Griswold-Theodorson had access to and takes responsibility for the integrity of the data and the accuracy of the data analysis. Dr Griswold-Theodorson: contributed to study conception and design, data collection, analysis and interpretation of the data, drafting of the manuscript, and critical revision of the article for important intellectual content.

Ms Bonaroti: contributed to study design, data collection, data analysis and interpretation, reviewing and editing of the manuscript, and critical revision of the article for important intellectual content. Mr Rieder: contributed to study design, data collection and analysis, review and editing of the manuscript.

BMJ Open

3
4
5
5
0
1
8
9
10
11
10
12
13
14
15
16
17
18
10
19
20
21
22
23
24
24
20
26
27
28
29
30
21
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
15
40
46
47
48
49
50
51
50
52
53
54
55
56
57
58
50
59

60

Mr Erbayri: contributed to study design, data collection and analysis, review and editing of the manuscript.

Dr Parsons: contributed to study design, data collection, data analysis and interpretation, reviewing, editing, and section writing of the manuscript.

Dr Nocera: contributed to study design, data collection and data interpretation, reviewing, editing, section writing of the manuscript and critical revision of the article for important intellectual content. Dr Hamilton: contributed to interpretation of the data, reviewing, and editing of the manuscript and critical revision of the article for important intellectual content.

defamatory

Data Sharing

There is no additional unpublished data.

Competing Interests

None

Figure 1. Right infraclavicular subclavian triple-lumen catheter secured with StatLock needleless device (Bard Access Systems, Salt Lake City, UT). The StatLock needleless device replaces the need for suturing with a locking device secured with benzoin and tape.

Figure 2. NSI injury at Hahnemann Hospital by occupation from four year period: July 1, 2007 to June 30, 2011. MD includes residents, attendings, and fellows. Nurse: includes nurses, nurse anesthesia, and nurse practitioners. Others include respiratory therapy, environmental services, laboratory personnel and others not categorized above.

Figure 3. Needlestick injuries while inserting CVC or other invasive catheter requiring sutures at Hahnemann University Hospital for the 4-year period July 1, 2007 to June 30, 2011.

Figure 4. Close calls involving needlestick injuries witnessed in the 2 months preceding survey administration in July 2011.

Table 1 Data extracted from six randomly selected focus group participants

References

1 2

1. Consensus Statement and Call to Action on Sharps Safety released March 2012: International

http://www.healthsystem.virginia.edu/pub/epinet/home.html. Retrieved November 1, 2012.

2. Makary MA, Al-Attar A, Holzmueller CG, et al. Needlestick injuries among surgeons in training. New

3. Elliott SKF, Keeton A, Holt A. Medical students' knowledge of sharps injuries. Journal of Hospital

5. Trim JC, Elliott TSJ. A review of sharps injuries and preventative strategies. Journal of Hospital

6. (OSHA) OSHA. Record Summary of the Request for Information on Occupational Exposure to

7. EPINet. http://healthsystem.virginia.edu/internet/epinet/EPINet-2007-rates.pdf, 2007. Retrieved

8. Dement JM, Epling C, Østbye T, et al. Blood and body fluid exposure risks among health care workers:

9. Elder A, Paterson C. Sharps injuries in UK health care: a review of injury rates, viral transmission and

potential efficacy of safety devices. Occupational Medicine 2006;56(8):566-74.

Results from the Duke Health and Safety Surveillance System. American Journal of Industrial

4. Yamamoto AJ, Solomon JA, Soulen MC, et al. Sutureless Securement Device Reduces Complications of

Peripherally Inserted Central Venous Catheters. Journal of Vascular and Interventional Radiology

Healthcare Worker Safety Center, 2012.

Infection 2005;60(4):374-77.

Infection 2003;53(4):237-42.

Medicine 2004;46(6):637-48.

2002;13(1):77-81.

October 10, 2012.

England Journal of Medicine 2007;356(26):2693-9.

Bloodborne Pathogens. In: Labor USDo, editor, 1999.

3
4
5
6
7
8
٥ ٥
3
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
10
40
4/
48
49
50
51
52
53
54
55
55
30
5/
58
59
60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 10. Wicker S, Jung J, Allwinn R, et al. Prevalence and prevention of needlestick injuries among health care workers in a German university hospital. *International Archives of Occupational and Environmental Health* 2008;81(3):347-54.
 11. Naghavi SHR, Sanati KA. Accidental blood and body fluid exposure among doctors. *Occupational Medicine* 2009;59(2):101-06.
 12. Sharps Injuries Among Medical Trainees. In: Occupational Health Surveillance Program MDoPH, editor. Boston, 2011. http://www.mass.gov/Eeohhs2/docs/dph/occupational_health/injuries_medical_trainees_02_0 9.pdf. Retrieved November 1, 2012.
 - 13. Jagger J, Perry J, Gomaa A, et al. The impact of U.S. policies to protect healthcare workers from bloodborne pathogens: The critical role of safety-engineered devices. *Journal of Infection and Public Health* 2008;1(2):62-71.

14. Vason BJ. The safety needle switchover, part 1 of 2. Nursing Management 2002;33(5):33-6.

- 15. Pegues DAMD. Building Better Programs to Prevent Transmission of Blood-Borne Pathogens to Healthcare Personnel: Progress in the Workplace, But Still No End in Sight •. *Infection Control and Hospital Epidemiology* 2003;24(10):719-21.
- 16. Sohn SMPH, Eagan JRN, Sepkowitz KAMD, et al. Effect of Implementing Safety-Engineered Devices on Percutaneous Injury Epidemiology. *Infection Control and Hospital Epidemiology* 2004;25(7):536-42.
- 17. Guglielmi CL, Spratt DG, Berguer R, et al. A Call to Arms to Prevent Sharps Injuries in Our ORs. Association of Operating Room Nurses. AORN Journal 2010;92(4):387-92.
- 18. Hall J. Worker safety: A road well-traveled, yet so far to go. *Healthcare Purchasing News* 2003;27(8):46-46.

2		
3		
4		
5		
7		
8		
9		
10		
12		
13		
14		
15		
17		
18		
19 20		
21		
22		
23 24		
24 25		
26		
27		
20 29		
30		
31		
32 33		
34		
35		
36 37		
38		
39		
40 41		
42		
43		
44 45		
45 46		
47		
48		
49 50		
51		
52		
53 54		
55		
56		
57 59		
50 59		
60		

- 19. AORN. Seeking solutions to increase sharps safety. Association of Operating Room Nurses Journal 2011;94(6):C1-C1,C8,C9.
- 20. Hagstrom AM. Perceived Barriers to Implementation of a Successful Sharps Safety Program.

Association of Operating Room Nurses. AORN Journal 2006;83(2):391-7.

Figure 1. Right infraclavicular subclavian triple lumen catheter secured with SED needleless device. The device replaces the need for suturing with a locking device secured with benzoin 279x215mm (300 x 300 DPI)

1 2 3 4 5 6 7 8 9	
10 11 12 13 14 15 16 17 18 19 20	100 1
21 22 23 24 25 26 27 28 29 30 31	2011. MD includes residents, attendings, and fellows. Nurse: includes nurses, nurse anesthesia, and nurse practitioners. Others include respiratory therapy, environmental services, laboratory personnel and others
32 33 34 35 36 37 38 39 40 41 42 43	279x215mm (300 x 300 DPI)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

Figure 3. NSI injury while inserting CVC or other invasive catheter requiring sutures from four year period: July 1, 2007 to June 30, 2011. During securement was identified as a NSI during catheter securement; Possible during securement was not identified in the occupational health record whether with large bore needle or during securement with sharps. Using

279x215mm (300 x 300 DPI)

1	
2	
2	
J ⊿	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
⊿∩	
10	
41	
42	
43	
44	
45	
46	
47	
<u>⊿</u> 2	
40	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	

Table 1 Data extracted from six randomly selected focus group participants

Neutral comments	Positive comments	Negative comments
[I] would want more practice	"[I] am motivated to use	"Time is of the essence. [I]
with applying the StatLock	StatLock after witnessing	don't want to wait for StatLock
device before using it in a	multiple coworkers experience	to dry when sutures are faster,
clinical setting.	fingersticks."	more efficient, more
		comfortable."
	After using the StatLock	Some residents were hesitant
	device just one time, one	to use the device because the
	resident found that the	nurses and other practitioners
	placement of the StatLock	lacked knowledge of the
	device was quicker than	device.
	suturing the CVC.	
	Two of the 6 residents	"The admitting team was
	reported that they valued the	confused, did not know what
	StatLock device in certain	device was, and [was]
	situations when they were	concerned over whether
	more likely to incur an NSI.	StatLock would stay in place."
	One stated this was	
	particularly useful when the	
	patient is unpredictable or	
	unwilling to lie still.	
	One stated that the device	Resistance to StatLock due to

	may be useful especially for	familiarity with suturing,
	patients who form keloids.	especially among surgical
		residents

to been terrier only

Investigation of a safety-engineered device to prevent needlestick injury: Why hasn't StatLock stuck?

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002327.R1
Article Type:	Research
Date Submitted by the Author:	12-Mar-2013
Complete List of Authors:	Griswold, Sharon; Drexel University College of Medicine, Emergency Medicine Bonaroti, Alisha; Drexel University College of Medicine, Emergency Medicine Rieder, Christopher; Hahnemann University Hospital, Safety and Security Erbayri, John; Drexel University College of Medicine, Emergency Medicine Parsons, Jessica; Drexel University College of Medicine, Emergency Medicine Nocera, Romy; Drexel University College of Medicine, Emergency Medicine Hamilton, Richard; Drexel University College of Medicine, Emergency Medicine
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Medical education and training, Occupational and environmental medicine, Public health
Keywords:	ACCIDENT & EMERGENCY MEDICINE, Health & safety < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, MEDICAL EDUCATION & TRAINING, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

BMJ Open

1	
2	
4	Investigation of a safety-engineered device to prevent needlestick injury:
5	Why hasn't StatLock stuck?
6 7	• • • • • • • • • • • • • • • • • • •
8	
9	Sharon Griswold ¹ Alisha Bonaroti ¹ Christopher I Rieder ² John Erhavri ¹ Jessica
10	
12	Parsons ¹ , Romy Nocera ¹ , Richard Hamilton ¹
13 14	
15	
16	¹ Department of Emergency Medicine, Drexel University College of Medicine, Philadelphia,
17 18	
19	РА
20	² Department of Security and Safety, Senior Industrial Hygienist, Hahnemann University
21	
23	Hospital, Philadelphia, PA
24 25	Corresponding Author:
26	Corresponding Author.
27	Sharon Griswold, MD, MPH
28 29	Simulation Center Director
30	Drexel University College of Medicine
31 32	Department of Emergency Medicine, NCB
33	Room 2108. 2nd floor. MS 1011
34 35	245 North 15th Street
36 37	Philadelphia. PA 19102
38	phone 215-762-2368
39 40	fax 215-762-1307
41	email sqriswol@drevelmed.edu
42	
43 44	
45	
46 47	
48	
49 50	
50 51	
52	
53 54	
55	
56	
ວ <i>າ</i> 58	

Article Summary

Article Focus

This article sought to determine whether an alternative safety engineered device (SED) could potentially prevent needlestick injury (NSI) in healthcare workers (HCWs) who place central venous catheters (CVC). It also aims to identify potential reasons why an available SED is not utilized by HCW. To begin to answer these questions the study involved three phases:

- 1. A retrospective analysis of de-identified occupational health records from our tertiary care urban United States (US) hospital to clearly identify how many HCW had NSI while placing CVC.
- Ninety-five residents who frequently place CVC during training were surveyed regarding their knowledge and experience with NSIs and SEDs.
- A random sample of six residents participated in a focus group session discussing barriers to use of the SED.

Key Messages

- Sixteen percent (21 of 131) of NSIs occurring in residents and fellows over a 4-year period (July 2007–June 2011) in a single institution occurred during securement of an invasive catheter despite a readily available safety-engineered device that would eliminate the need for sharps during this part of invasive catheter insertion.
- If safety and efficacy of the device can be proven, 5.25 healthcare worker NSIs per year could be avoided at our institution. This would translate into a savings of at least \$57,183 in charges associated with NSIs over the 4-year period.
- Introduction of SED in an hospital should be accompanied by education, detailed information, and training of healthcare workers to encourage utilization of the device.

Strengths and Limitations

- A notable strength of this work is that it addresses the International Healthcare Worker Safety Center March 2012¹ call to action to address a lack of new progress in NSI rates. The study identifies a new area where significant progress may be made to reduce sharps injuries worldwide.
- A significant limitation is that the study is currently limited to a single US tertiary care site.

Keywords: needlestick injury; sharps injury; safety-engineered device; healthcare worker injury; central venous catheter

ABSTRACT

Objective: This article sought to define whether an alternative safety engineered device (SED) could help prevent needlestick injury (NSI) in healthcare workers (HCWs) who place central venous catheters (CVC).

Design: The study involved three phases: 1) A retrospective analysis of de-identified occupational health records from our tertiary care urban US hospital to clearly identify NSI risk and rates to HCW during invasive catheter placement; 2) Ninety-five residents were surveyed regarding their knowledge and experience with NSIs and SEDs. 3) A random sample of six residents participated in a focus group session discussing barriers to use of the SED. Setting: A single urban US tertiary care teaching hospital.

Participants: A retrospective analysis of NSI to HCW in a tertiary care urban US hospital was conducted over a 4-year period (July 2007–June 2011). Ninety-five residents from specialties that often place CVC during training (surgery, surgical subspecialties, internal medicine,

anesthesia and emergency medicine) were surveyed regarding their experience with NSIs and SEDs. A random sample of six residents participated in a focus group session discussing barriers to use of the SED.

Results: 314 NSIs were identified via occupational health records. Sixteen percent (21 of 131) of NSIs occurring in residents and fellows occurred during securement of an invasive catheter such as a CVC. If an SED device had been used, these 5.25 NSIs/year could have been avoided. Each NSI occurring in an HCW incurred at least \$2,723 in charges. Thus, utilization of the SED could have saved a minimum of \$57,183 over the 4-year period. Conclusion: SEDs are currently available and can be used as an alternative to sharps. If safety and efficacy can be demonstrated, then implementation of such devices can significantly reduce the number of NSIs.

There is no additional data available

INTRODUCTION

Needlestick or sharps injuries (NSIs) among healthcare workers (HCWs) are a common and potentially avoidable injury. An estimated 600,000 to 800,000 percutaneous injuries occur annually among HCWs in the United States². As high as these estimates appear, the literature indicates that sharps injuries are significantly underreported³⁻⁵. These injuries place HCWs at risk for blood-borne infections and result in considerable psychological distress. In addition, the healthcare system incurs substantial costs from the occupational health testing, prophylaxis, and follow-up that must be implemented for each reported NSI.

Safety-engineered devices (SEDs) are promising design innovations intended to prevent hazards and accidents. In medicine, numerous engineering controls have been introduced to

BMJ Open

decrease the incidence of NSIs among HCWs, including safety-winged steel needles, safety intravenous catheter insertion needles, and many others.

The StatLock device (Bard Access Systems, Salt Lake City, UT) (Figure 1) is an SED designed to prevent NSIs during placement of central venous catheters (CVCs). It is a locking device that secures CVCs to the skin with benzoin adhesive instead of the traditional method of using sutures to secure CVCs to skin. Traditionally, after a CVC is placed the patient may require additional local anesthesia in a site separate from the insertion site, necessitating the use of a hollow-bore needle for lidocaine injection. Then, a straight suture needle is used to suture the CVC to the patient's skin. After making a knot with the suture, the ends are then cut with a scalpel. Therefore, using the SED minimizes the risk of NSI during securement of CVC by eliminating three steps during which sharps are used. Despite the easy availability of the StatLock device, few resident physicians are aware of it and fewer still have used it in clinical practice.

This SED has been available in all adult triple-lumen CVC kits in our urban tertiary care US institution since July 2009. Despite its availability, the SED is not widely used in clinical practice. The purpose of our study was to perform a needs analysis by retrospectively examining HCW data from our institution to determine whether implementation of the SED would significantly reduce NSIs. We sought to determine whether practitioners did incur NSIs during the securement phase of the CVC procedure, and if this could have been prevented with the use of this SED. Since this SED device has already been readily available in the safety triple lumen catheter kits within the institution, but not yet utilized on a regular basis, we also sought to identify the potential barriers to implementation of a new SED in the healthcare environment.

We hypothesized that a substantial number of NSIs occur during resident placement of CVCs and could potentially be prevented by use of the SED. However, barriers to the utilization of this SED, including lack of training on the use of the device and staff resistance are likely to impede implementation of safety controls.

METHODS

Institutional review board approval was obtained and all NSI data were de-identified. The study was conducted at Hahnemann University Hospital (HUH), an urban tertiary care hospital in the United States. We analyzed retrospective data on all NSIs reported between July 2007 and June 2011 by HCWs in the adult-care ACGME resident training programs (except neurosurgery).

NSI cost was determined by adding the required charges for a "minimal risk" NSI. For the purpose of this study, a minimal risk NSI was defined as an NSI for which the HCW has a low risk for sero-conversion to Hepatitis or HIV viral infection. When this type of NSI occurs, both the HCW and source patient would be tested for HIV and Hepatitis B and C immediately after the NSI. The sum of the charges for the required occupational health appointments and initial lab tests represents the lowest possible cost of a NSI in USD. When the potential risk of transmission of Hepatitis or HIV infection is considered greater, the HCW may be prescribed prophylactic medications and requires repeat tested at regular intervals up to a year after a NSI, significantly increasing the costs associated with NSI.

BMJ Open

Ninety-five residents from surgery, emergency medicine, internal medicine, and anesthesia programs, the disciplines responsible for CVC placement at our institution, were identified and enrolled in the study. All participants signed written consent to participate. Demographic data for each of the residents were collected, including level of training, department, age, sex, race, and handedness. Survey questions were designed to determine residents' prior exposure to NSIs and to evaluate their prior knowledge of and experience with the StatLock device.

Finally, a focus group of six randomly selected residents was conducted to assess impressions of the device and to identify potential barriers to its implementation. Participants were interviewed by a study investigator (SG) individually and each session was audio recorded with the permission of the participant. During the focus group sessions, participants were asked to discuss their impressions of the SED, and additional thoughts they had on the use of this alternative method as compared to traditional sutures when securing central lines. These discussions were recorded so that they could be later analyzed by two independent study investigators (SG and AB).

Data analysis

De-identified data on all NSIs occurring at our institution were independently reviewed by three study investigators (SG, AB, CR). All reported NSIs were reviewed and characterized according to occupation of the HCW incurring the injury (Figure 2) and according to circumstances regarding the injury. Frequency counts of physician NSIs that occurred during a catheter placement such as a CVC, large bore single lumen catheter, dialysis catheter, or arterial catheter line were also reviewed by the same three investigators and compared for agreement in interpretation. After the focus group sessions, two independent study investigators

categorized the residents' statements as neutral, positive, or negative observations regarding the StatLock device.

RESULTS

Retrospective institutional data analysis

Analysis of the retrospective NSI data revealed that physicians (residents, fellows, and attendings) accounted for 43% (136 of 314) of the total NSIs occurring between July 2007 and June 2011 (Figure 2). Resident NSIs accounted for 87% (118 of 136) of the total physician NSIs occurring during this 4-year period. Analysis of the circumstances surrounding each NSI showed that 40 NSIs occurred during the placement of CVCs or other catheter lines that required securement to patient skin. Fifty-three percent (21 of 40) of the NSIs that occurred during these procedures occurred specifically while the line was being secured to the patient's skin with a suture needle. This accounted for 16% (21 of 131) of the total number of resident and fellow NSIs over the 4-year period. It is possible that 13 additional NSIs occurred during securement of these catheter lines, but unless our occupational health record specifically documented that the NSI occurred while the worker was securing the line to the patient's skin, those data were not included. The remaining six NSIs that occurred during placement of a CVC or other invasive catheter occurred with the large-bore needle while the physician was attempting to cannulate the vessel.

Cost analysis

Given the number of NSIs determined from retrospective analysis, we calculated that use of a needleless device to secure the CVC could have prevented 21 NSIs. The cost analysis estimates that each NSI incurs at least \$2,723 USD in charges at this institution. Table 1 lists

BMJ Open

the minimal charges associated with a low risk NSI using data from our institution's Occupational Health Clinic. While the calculations for this study represent the lowest possible cost of a NSI, the actual cost of a NSI varies from case to case depending on the circumstances surrounding the NSI, the treatment plan, medication requirements, and frequency of follow-up visits. If the HCW has a high risk exposure to HIV, prophylactic antiviral medications must be prescribed and the cost of the medications, additional labwork, and frequent follow-up visits increases the cost of the NSI significantly. The cost estimates also do not include the indirect cost of time lost from work and other indirect financial and social costs. Eliminating all 21 NSIs that definitively occurred during securement of a CVC would have translated into a savings of at least \$57,183 in USD charges.. If the additional 13 NSIs that possibly occurred during the securement phase were also prevented, the cost savings would be at least \$92,582 over the 4year period.

Survey of residents

Of the 95 residents surveyed, only 30% had previous knowledge of the needleless SED that is supplied in all CVC safety kits at our institution. Only 19% had ever had training regarding the use of any SED or used the device in clinical practice. Twenty-seven percent of residents surveyed stated that they had had at least one close call needlestick incident in the past 2 months. And 20% of the residents surveyed had at least two near miss/close call needlestick incident in the past 2 months. (Figure 4). Twenty-five percent of responding residents (24 of 95) answered yes when asked the question, "Have you ever had a needlestick injury associated with patient body fluid exposure?" In a follow-up question, we asked, "Did you report the incident each time?" Twenty-one percent (5 of 24) responded that they did not always report NSI. This finding is consistent with prior data suggesting that HCW NSIs are underreported³⁻⁶.
Focus group data

Data from discussions with six randomly selected study participants are presented in Table 2. Statements regarding each residents' experience with Statlock were categorized into positive, negative, or neutral. Opinions of the SED and experiences varied across participants. In general, those residents who were comfortable and adept at suturing, especially surgical residents, seemed to prefer using sutures over the Statlock device. According to the responses, the use of the SED may also be dependent on patient characteristics, situational circumstances, and knowledge or acceptance of the SED by other HCWs. One resident indicated that she would want additional practice with the device before using it in a clinical setting, suggesting that additional training may encourage increased use of the SED.

DISCUSSION

In 2009 we developed a partnership with our institutional industrial hygienist to investigate opportunities to reduce NSIs among resident physicians in our institution. In the fiscal year between 2008 and 2009, nurse NSIs increased 10% and physician NSIs increased 70% at our institution. In 2009 at HUH, 46% of the total reported NSIs involved residents. A 2007 study of 699 surgical residents at 17 US medical centers found that by the 5th year of residency, 99% had had at least one NSI. Moreover, for 53% of respondents, the NSI had involved a high-risk patient with a history of HIV infection, hepatitis B or C virus infection, or injection drug use.² In 2009, our US-based urban hospital reported 27.6 injuries per 100 occupied beds, which is above the EPINet average of 20.1 for teaching hospitals⁷. Despite increased awareness of sharps injuries and some attempts at prevention, NSIs continue to be a serious problem. Our study supported earlier research findings that among HCWs, physicians have the highest risk of NSI^{2.10}, and among physicians, residents have a three times greater risk of blood and body

BMJ Open

fluids exposure than senior doctors¹¹. These data were alarming and required immediate analysis for the potential for intervention.

In medicine, engineering controls that have been introduced to decrease the incidence of NSIs among HCWs include safety-winged steel needles, safety intravenous catheter insertion needles, polyester film–coated capillary tubes, safety-shielded phlebotomy needles, needleless blood transfer devices, safety peripherally inserted central catheter stylets, blood gas needle–holding devices, blunt-tip needles, and shielded hypodermic needles/syringes⁸. Current literature indicates that 29% to 35% of reported occupational NSIs could have been prevented if an SED had been used⁹. Although engineering controls may require capital investment, the cost savings resulting from improved safety may justify the expense. However, devices that depend on user activation generate benefit only when correctly used; thus HCWs must be educated in their use.

For some HCW their lack of training and their unfamiliarity with SEDs is a major barrier to its use. Only 30% in our study had previous knowledge of the needleless SED that is supplied in all CVC safety kits at our institution. Only 19% had ever used the device in clinical practice. Exposure to the SED and effective training may encourage the use of SEDs and subsequently reduce NSI. A prospective cohort study using the same 95 residents who participated in this survey has been designed to determine the best means of educating residents on the use of the Statlock device. Each resident was randomly assigned to either a standard teaching video or a simulation curriculum involving both the video teaching plus hands-on practice in a simulated clinical environment. The endpoint for the longitudinal phase of the study was defined as a difference in NSIs between the groups. Additionally, all participants agreed to return in 12

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

months for a repeat questionnaire on their attitudes and experience with the SED. This portion of the study is still in progress.

In our institution, some residents who are already familiar with Statlock have been reluctant to use it because they have questions about efficacy and patient safety. Some express concern that the device might not work as well as the traditional method of securing a CVC to patients' skin using sutures. Many reports in the literature have been authored by individuals associated with the manufacturers, raising the question of potential bias. The StatLock device is currently available in every triple-lumen CVC kit in our institution. Therefore, the issue of use of the device does not rest on its availability, but rather on physician awareness, training, and preference.

Focus group discussions revealed that such factors have indeed presented barriers to implementation of the SED. Residents expressed concern regarding time constraints and familiarity with device. Previous literature has documented similar barriers to implementation. Cost, personnel time, and resistance to change are several of the most commonly documented deterrents. ^{6, 12-16} Surgeons and anesthesiologists have been recognized as the cohorts least likely to use safety devices designed to prevent NSIs, presumably because they are skilled at suturing.¹⁷ Reluctance may also stem from feelings of discomfort and questions of efficacy.¹⁷ Evidence-based reasoning is often absent from the foundation of implementation programs, exacerbating opposition to change.¹⁸ Perpetual access to conventional sharps also hinders implementation of safety devices.¹⁹

Some institutions have recognized that simple logistics can prevent staff from using safetyengineered devices. Contractual purchasing agreements can render devices unavailable and certain devices may not be compatible with existing equipment^{6, 16}. The overabundance of SEDs

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

on the market makes it difficult for institutions to choose¹⁵, yet most devices are not applicable for all situations and technology must become more advanced to meet the remaining demand.^{15,18}

Lastly, HCWs are characterized as being desensitized to disease and consequently possessing a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is coupled with a lack of multidisciplinary support, both "horizontally and vertically," implementation of safety devices becomes extremely difficult.²⁰

CONCLUSIONS

The common incidence of NSIs among healthcare workers clearly indicates a need for further intervention. Retrospective analysis of institutional records demonstrated that over a 4-year period (July 2007–June 2011), 16% of resident/fellow NSIs (21 of 131) could have been avoided with the use of a needleless securement device such as the Statlock device. While such SEDs are currently available, they are infrequently used by HCWs for various reasons. The implementation of an SED in an institution requires proof of safety and efficacy as well education and training of healthcare workers to encourage the use of the device and reduce the number of NSIs among physicians.

Funding

This study was supported by Drexel College of Medicine IBC Simulation Grant Funding. The funding source had no involvement in the study design; collection, analysis or interpretation data; writing of the report; nor the decision to submit the paper for publication.

Contributorship

Dr Griswold-Theodorson had access to and takes responsibility for the integrity of the data and the accuracy of the data analysis. Dr Griswold-Theodorson: contributed to study conception and design, data collection, analysis and interpretation of the data, drafting of the manuscript, and critical revision of the article for important intellectual content.

Ms Bonaroti: contributed to study design, data collection, data analysis and interpretation, reviewing and editing of the manuscript, and critical revision of the article for important intellectual content. Mr Rieder: contributed to study design, data collection and analysis, review and editing of the manuscript.

Mr Erbayri: contributed to study design, data collection and analysis, review and editing of the manuscript.

Dr Parsons: contributed to study design, data collection, data analysis and interpretation, reviewing, editing, and section writing of the manuscript.

Dr Nocera: contributed to study design, data collection and data interpretation, reviewing, editing, section writing of the manuscript and critical revision of the article for important intellectual content. Dr Hamilton: contributed to interpretation of the data, reviewing, and editing of the manuscript and critical revision of the article for important intellectual content.

Data Sharing

There is no additional unpublished data.

Competing Interests

None

BMJ Open

Figure 1. Right infraclavicular subclavian triple-lumen catheter secured with StatLock needleless device (Bard Access Systems, Salt Lake City, UT). The StatLock needleless device replaces the need for suturing with a locking device secured with benzoin and tape.

Figure 2. NSI injury at Hahnemann Hospital by occupation from four year period: July 1, 2007 to June 30, 2011. MD includes residents, attendings, and fellows. Nurse: includes nurses, nurse anesthesia, and nurse practitioners. Others include respiratory therapy, environmental services, laboratory personnel and others not categorized above.

Figure 3. Close calls involving needlestick injuries witnessed in the 2 months preceding survey administration in July 2011.

Table 1. Minimal charges associated with a low risk needlestick injury at Hahnemann Hospital.

Table 2. Data extracted from discussions with six randomly selected focus group participants.

References

Healthcare Worker Safety Center, 2012.

http://www.healthsystem.virginia.edu/pub/epinet/home.html. Retrieved November 1, 2012.

- 2. Makary MA, Al-Attar A, Holzmueller CG, et al. Needlestick injuries among surgeons in training. *New England Journal of Medicine* 2007;356(26):2693-9.
- 3. Elliott SKF, Keeton A, Holt A. Medical students' knowledge of sharps injuries. *Journal of Hospital Infection* 2005;60(4):374-77.
- Yamamoto AJ, Solomon JA, Soulen MC, et al. Sutureless Securement Device Reduces Complications of Peripherally Inserted Central Venous Catheters. *Journal of Vascular and Interventional Radiology* 2002;13(1):77-81.
- 5. Trim JC, Elliott TSJ. A review of sharps injuries and preventative strategies. *Journal of Hospital Infection* 2003;53(4):237-42.
- 6. (OSHA) OSHA. Record Summary of the Request for Information on Occupational Exposure to Bloodborne Pathogens. In: Labor USDo, editor, 1999.
- 7. EPINet. <u>http://healthsystem.virginia.edu/internet/epinet/EPINet-2007-rates.pdf</u>, 2007. Retrieved October 10, 2012.
- Dement JM, Epling C, Østbye T, et al. Blood and body fluid exposure risks among health care workers: Results from the Duke Health and Safety Surveillance System. *American Journal of Industrial Medicine* 2004;46(6):637-48.
- 9. Elder A, Paterson C. Sharps injuries in UK health care: a review of injury rates, viral transmission and potential efficacy of safety devices. *Occupational Medicine* 2006;56(8):566-74.

10. Wicker S,	Jung J, Allwinn R, et al. Prevalence and	prevention of needlestick injuries among health
care	workers in a German university hospita	al. International Archives of Occupational and
Enviro	onmental Health 2008;81(3):347-54.	
11. Naghavi S	HR, Sanati KA. Accidental blood and b	ody fluid exposure among doctors. Occupational
Medi	cine 2009;59(2):101-06.	
12. Sharps Inj	juries Among Medical Trainees. In: Occ	upational Health Surveillance Program MDoPH,
edito	r. Boston, 2011.	
http:/	//www.mass.gov/Eeohhs2/docs/dph/d	occupational_health/injuries_medical_trainees_02_0
9.pdf	. Retrieved November 1, 2012.	
L3. Jagger J, F	Perry J, Gomaa A, et al. The impact of L	J.S. policies to protect healthcare workers from
blood	borne pathogens: The critical role of s	afety-engineered devices. Journal of Infection and
Public	c Health 2008;1(2):62-71.	
L4. Vason BJ.	The safety needle switchover, part 1 c	f 2. Nursing Management 2002;33(5):33-6.
5. Pegues DA	AMD. Building Better Programs to Prev	rent Transmission of Blood-Borne Pathogens to
Healt	hcare Personnel: Progress in the Work	place, But Still No End in Sight •. Infection Control
and H	lospital Epidemiology 2003;24(10):719	-21.
l6. Sohn SMP	PH, Eagan JRN, Sepkowitz KAMD, et al.	Effect of Implementing Safety-Engineered Devices
on Pe	ercutaneous Injury Epidemiology. Infec	tion Control and Hospital Epidemiology
2004;	;25(7):536-42.	
17. Guglielmi	CL, Spratt DG, Berguer R, et al. A Call t	o Arms to Prevent Sharps Injuries in Our ORs.
Assoc	ciation of Operating Room Nurses. AOF	N Journal 2010;92(4):387-92.
18. Hall J. Wo	orker safety: A road well-traveled, yet s	o far to go. Healthcare Purchasing News
	.27(8).46-46	

19. AORN. Seeking solutions to increase sharps safety. Association of Operating Room Nurses Journal

20. Hagstrom AM. Perceived Barriers to Implementation of a Successful Sharps Safety Program.

<text>

Figure 1. Right infraclavicular subclavian triple lumen catheter secured with SED needleless device. The device replaces the need for suturing with a locking device secured with benzoin

386x90mm (300 x 300 DPI)

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
00	
20	
21	
22	
23	
24	
25	
20	
26	
27	
28	
29	
30	
21	
20	
32	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
50	
59	

100 - 90 - 80 - 70 - 50 - 30 - 20 - 10 -				
Ŭ	2007- 2008	2008- 2009	2009- 2010	2010- 2011
■MD	29	36	43	28
S Nurse	lurse 35 40	36	39	
Other	3	13	3	9
Total 67 89		82	76	

Figure 2. NSI injury at Hahnemann Hospital by occupation from four year period: July 1, 2007 to June 30, 2011. MD includes residents, attendings, and fellows. Nurse: includes nurses, nurse anesthesia, and nurse practitioners. Others include respiratory therapy, environmental services, laboratory personnel and others

145x90mm (300 x 300 DPI)

200x90mm (300 x 300 DPI)

	2011 USD charges for "minimal risk" HCW exposure	Additional charges if more follow up visits deemed necessary
Office Visit (during weekday business hours) Initial visit Each additional follow up visit	\$240	\$76
Lab Costs		
HIV 1,2 Antibody Test Initial source patient	\$533	
HCW testing at baseline and each follow up interval		\$533
Hepatitis B Panel Initial source patient	\$511	1
HCW testing at baseline and each follow up interval		\$511
Hepatitis C Panel Initial source patient	\$863	
HCW testing at baseline and each follow up interval		\$863
Total Cost	\$2732	Varies by Number of follow up visits required

Neutral comments	Positive comments	Negative comments
[I] would want more	"[I] am motivated to use	"Time is of the essence. [I]
practice with applying the	StatLock after witnessing	don't want to wait for
StatLock device before	multiple coworkers	StatLock to dry when
using it in a clinical setting.	experience fingersticks."	sutures are faster, more
		efficient, more comfortable."
	After using the StatLock	Some residents were
	device just one time, one	hesitant to use the device
	resident found that the	because the nurses and
	placement of the StatLock	other practitioners lacked
	device was quicker than	knowledge of the device.
	suturing the CVC.	
	Two of the 6 residents	"The admitting team was
	reported that they valued	confused, did not know
	the StatLock device in	what device was, and [was]
	certain situations when they	concerned over whether
	were more likely to incur an	StatLock would stay in
	NSI. One stated this was	place."
	particularly useful when the	
	patient is unpredictable or	
	unwilling to lie still.	
	One stated that the device	Resistance to StatLock due

may be useful especially for	to familiarity with suturing,
patients who form keloids.	especially among surgical
	residents

1		
2 3 4	1	Investigation of a safety-engineered device to prevent needlestick injury:
5 6	2	Why hasn't StatLock stuck?
7 8	3	
9 10	4	Sharon Griswold ¹ , Alisha Bonaroti ¹ , Christopher J. Rieder ² , John Erbayri ¹ , Jessica
11 12 13	5	Parsons ¹ , Romy Nocera ¹ , Richard Hamilton ¹
14 15	6	
16 17	7	¹ Department of Emergency Medicine, Drexel University College of Medicine, Philadelphia,
18 19	8	PA
20 21	9	² Department of Security and Safety, Senior Industrial Hygienist, Hahnemann University
22 23	10	Hospital, Philadelphia, PA
24 25 26	11	Corresponding Author:
27	12	Sharon Griswold, MD, MPH
28 29	13	Simulation Center Director
30 21	14	Drexel University College of Medicine
32	15	Department of Emergency Medicine, NCB
33 34	16	Room 2108, 2nd floor, MS 1011
35	17	245 North 15th Street
36 37	18	Philadelphia, PA 19102
38 30	19	phone 215-762-2368
40	20	fax 215-762-1307
41 42	21	email sgriswol@drexelmed.edu
43 44 45 46	22 23	
47 48 49		
50 51 52		
52 53		
54 55		
56		
57 58		
59 60		

Article Summary
Article Focus
This article sought to define determine whether an alternative safety engineered device (SED)
could potentiallyhelp prevent needlestick injury (NSI) in healthcare workers (HCWs) who place
central venous catheters (CVC). It also aims to identify potential reasons why an available SED
is not utilized by HCW. To begin to answer these questions the study involved three phases:
1. A retrospective analysis of de-identified occupational health records from our tertiary
care urban United States (US) hospital to clearly identify how many HCW had NSI while
placing CVC.
2. Ninety-five residents who frequently place CVC during training were surveyed regarding
their knowledge and experience with NSIs and SEDs.
3. A random sample of six residents participated in a focus group session discussing
barriers to use of the SED.
Key Messages
•A readily available safety-engineered device does exist as an alternative to using three
sharps to suture a CVC.
 Sixteen percent (21 of 131) of NSIs occurring in residents and fellows over a 4-year
period (July 2007–Ju <u>nely</u> 2011) inof a single institution occurred during securement of
an invasive catheter despite a readily available safety-engineered device that would
eliminate the need for sharps during this part of invasive catheter insertion.
• If safety and efficacy of the device can be proven, 5.25 healthcare worker NSIs per year
could be avoided at our institution. This would translate into a direct cost savings of at
least \$57,18319,362 in charges associated with NSIs over the 4-year period.

2		
3 4	49	• Introduction of SED in an hospital should be accompanied by education, detailed
5 6	50	information, and training of healthcare workers to encourage utilization of the device.
7 8 9	51	
10 11	52	Strength <mark>s</mark> and Limitations
12 13	53	A notable strength of this work is that it addresses the International Healthcare Worker
14 15	54	Safety Center March 2012 ¹ call to action to address a lack of new progress in NSI rates.
16 17	55	The study identifies a new area where significant progress may be made to reduce
18 19	56	sharps injuries worldwide.
20 21 22	57	 A significant limitation is that the study is currently limited to a single US tertiary care
23 24	58	site.
25 26	59	
27 28	60	Keywords: needlestick injury; sharps injury; safety-engineered device; healthcare worker injury;
29 30	61	central venous catheter
31 32	62	
33 34 35	63	ABSTRACT
36 37	64	
38 39	65	Objective: This article sought to define whether an alternative safety engineered device (SED)
40 41	66	could help prevent needlestick injury (NSI) in healthcare workers (HCWs) who place central
42 43	67	venous catheters (CVC).
44 45 46	68	Design: The study involved three phases: 1) A retrospective analysis of de-identified
40 47 48	69	occupational health records from our tertiary care urban US hospital to clearly identify NSI risk
49 50	70	and rates to HCW during invasive catheter placement; 2) Ninety-five residents were surveyed
51 52	71	regarding their knowledge and experience with NSIs and SEDs. 3) A random sample of six
53 54	72	residents participated in a focus group session discussing barriers to use of the SED.
55 56 57 58 59	73	Setting: A single urban US tertiary care teaching hospital.

Participants: A retrospective analysis of NSI to HCW in a tertiary care urban US hospital was

that often place CVC during training (surgery, surgical subspecialties, internal medicine,

SEDs. A random sample of six residents participated in a focus group session discussing

conducted over a 4-year period (July 2007–Junely 2011). Ninety-five residents from specialties

anesthesia and emergency medicine) were surveyed regarding their experience with NSIs and

Results: 314 NSIs were identified via occupational health records. Sixteen percent (21 of 131) of

NSIs occurring in residents and fellows occurred during securement of an invasive catheter

avoided. Each NSI occurring in an HCW incurred an estimated average direct cost of \$922at

Conclusion: SEDs are currently available and can be used as an alternative to sharps. If safety

and efficacy can be demonstrated, then implementation of such devices can significantly reduce

such as a CVC. If an SED device had been used, these 5.25 NSIs/year could have been

least \$2,723 in charges. Thus, utilization of the SED could have saved a minimum of

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
36	
27	
20	
38	
39	
40	
41	
42	
43	
ΔΔ	
15	
40	
40	
47	
48	
49	
50	
51	
52	
52	
03	
54	
55	
56	
57	
52	
50	
29	
60	

1

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

barriers to use of the SED.

\$57,18319,362 over the 4-year period.

There is no additional data available

the number of NSIs.

INTRODUCTION

indicates that sharps injuries are significantly underreported³⁻⁵. These injuries place HCWs at risk for blood-borne infections and result in considerable psychological distress. In addition, the **For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml**

Needlestick or sharps injuries (NSIs) among healthcare workers (HCWs) are a common and

annually among HCWs in the United States². As high as these estimates appear, the literature

potentially avoidable injury. An estimated 600,000 to 800,000 percutaneous injuries occur

age 29 of	45 BMJ Open
98	healthcare system incurs substantial costs from the occupational health testing, prophylaxis,
99	and follow-up that must be implemented for each reported NSI.
100	
) 101	Safety-engineered devices (SEDs) are promising design innovations intended to prevent
2 3 102	hazards and accidents. In medicine, numerous engineering controls have been introduced to
103	decrease the incidence of NSIs among HCWs, including safety-winged steel needles, safety
104	intravenous catheter insertion needles, and many others.
)) 105	
2	
106	The StatLock device (Bard Access Systems, Salt Lake City, UT) (Figure 1) is an SED designed
, 107	to prevent NSIs during placement of central venous catheters (CVCs). It is a locking device that
108	secures CVCs to the skin with benzoin adhesive instead of the traditional method of using
,) 109	sutures to secure CVCs to skin. Traditionally, after a CVC is placed the patient may require
2 110	additional local anesthesia in a site separate from the insertion site, necessitating the use of a
, 111	hollow-bore needle for lidocaine injection. Then, a straight suture needle is used to suture the
112	CVC to the patient's skin. After making a knot with the suture, the ends are then cut with a
113	scalpel. Therefore, using the SED minimizes the risk of NSI during securement of CVC by
) 114	eliminating three steps during which sharps are used. Despite the easy availability of the
2 115	StatLock device, few resident physicians are aware of it and fewer still have used it in clinical
5 116	practice.
; 3 117	
)) 118	Th <u>ise SEDStatLock device</u> has been available in all adult triple-lumen CVC kits in our urban
119	tertiary care US institution since July 2009. Despite its availability, the SEDtatLock is not widely
120	used in clinical practice. The purpose of our study was to perform a needs analysis by
, , 121	retrospectively examining HCW data from our institution to determine whether implementation of
3	
)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

122	the SED would significantly reduce NSIs. We sought to determine whether practitioners did
123	incur NSIs during the securement phase of the CVC procedure, and if this could have been
124	prevented with the use of this SED. Since this SED device has already been readily available in
125	the safety triple luman catheter kits within the institution, but not yet utilized on a regular basis,
126	we also sought to identify the potential barriers to implementation of a new SED in the
127	healthcare environment. The SED device was readily available in the safety triple lumen
128	catheter kits within the institution yet not utilized within the institution.
129	
130	We hypothesized that a substantial number of NSIs occur during resident placement of CVCs
131	and could potentially which might be prevented by use of the SED tatLock device. However,
132	barriers to the utilization of this SED, including lack of training on the use of the device and staff
133	resistance are likely to impede implementation of safety controls.
134	
135	METHODS
136	Institutional review board approval was obtained and all NSI data were de-identified. The study
137	was conducted at Hahnemann University Hospital (HUH), an urban tertiary care hospital in the
138	United States. We analyzed retrospective data on all NSIs reported between July 2007 and
139	Junely 2011 by HCWs in the adult-care ACGME resident training programs (except
140	neurosurgery).
141	
142	NSI cost was determined by adding the required charges for a "minimal risk" NSI. For the
143	purpose of this study, a minimal risk NSI was defined as an NSI for which the HCW has a low
144	risk for sero-conversion to Hepatitis or HIV viral infection. When this type of NSI occurs, both
145	the HCW and source patient would be tested for HIV and Hepatitis B and C immediately after

Page 31 of 45

BMJ Open

1		
2 3 4	146	the NSI. The sum of the charges for the required occupational health appointments and initial
5 6	147	lab tests represents the lowest possible cost of a NSI in USD. When the potential risk of
7 8	148	transmission of Hepatitis or HIV infection is considered greater, the HCW may be prescribed
9 10 11	149	prophylactic medications and requires repeat tested at regular intervals up to a year after a NSI,
12 13	150	significantly increasing the costs associated with NSI.
14 15 16	151	
17 18	152	Ninety-five residents from surgery, emergency medicine, internal medicine, and anesthesia
19 20	153	programs, the disciplines responsible for CVC placement at our institution, were identified and
21 22	154	enrolled in a prospective longitudinal <u>the</u> study: surgery, emergency medicine, internal medicine,
23 24 25	155	and anesthesia. All participants signed written consent to participate. A plan for compensation
25 26 27	156	was incorporated into the study design to maximize return for 12-month follow-up. Demographic
28 29	157	data for each of the residents were collected, including level of training, department, age, sex,
30 31	158	race, and handedness. <u>SThe s</u> urvey questions were designed to determine residents' prior
32 33	159	exposure to NSIs and to evaluate their prior knowledge of and experience with the StatLock
34 35 26	160	device.
30 37 38	161	Each resident was randomly assigned to either a simulation curriculum or to a standard
39 40	162	curriculum educational program to familiarize them with the SED device application, and all
41 42	163	agreed to return in 12 months for a repeat questionnaire. The endpoint for the longitudinal
43 44	164	phase of the study was defined as a difference in NSIs between the groups. This portion of the
45 46 47	165	study is still in progress.
48 49	166	Finally, a focus group of six randomly selected residents was conducted to assess impressions
50 51	167	of the device and to identify potential barriers to its implementation. Participants were
52 53	168	interviewed by a study investigator (SG) individually and each session was audio recorded with
54 55 56	169	the permission of the participant. During the focus group sessions, participants were asked to
วง 57 58	170	discuss their impressions of the SED, and additional thoughts they had on the use of this
59 60	l	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 32 of 45

BMJ Open

alternative method as compared to traditional sutures when securing central lines. These
 discussions were recorded so that they could be later analyzed by two independent study
 investigators (SG and AB).

175 Data analysis

De-identified data on all NSIs occurring at our institution were independently reviewed by three study investigators (SG, AB, CR). All reported NSIs were reviewed and characterized according to occupation of the HCW incurring the injury (Figure 2) and according to circumstances regarding the injury. Frequency counts of NSIs were tabulated (Figures 2 and 3). Frequency counts of physician NSIs that occurred during a catheter placement such as a CVC, large bore single lumen catheter, dialysis catheter, or arterial catheter line were also reviewed by the same three investigators and compared for agreement in interpretation. After the focus group sessions, two independent study investigators categorized the residents' statements as neutral.

184 positive, or negative observations regarding the StatLock device.

RESULTS

Retrospective institutional data analysis

188 Analysis of the retrospective NSI data revealed that physicians (residents, fellows, and

attendings) accounted for 43% (136 of 314) of the total NSIs occurring between July 2007 and

190 Ju<u>nely</u> 2011 (Figure 2). <u>Resident NSIs accounted for Resident NSIs accounted for</u> 87% (118 of

191 13<u>6</u>) of the total physician NSIs (118 residents, 13 fellows, and 5 attending physicians)

192 occurring during this 4-year period. <u>Analysis of the circumstances surrounding each NSI</u>

193 <u>showed that 40 NSIs Thirty-one percent of the resident/fellow NSIs injuries (40 of 131) occurred</u>

194 during the placement of CVC<u>s</u> or <u>other</u> catheter lines that require<u>d</u> securement to patient skin.

195	Fifty-three percent (21 of 40) of the NSIs that occurred during these procedures occurred
196	specifically while the line was being secured to the patient's skin with a suture needle. This
197	accounted for 16% (21 of 131) of the total number of resident and fellow NSIs over the 4-year
198	period. It is possible that 13 additional NSIs occurred during securement of these catheter lines,
199	but unless our occupational health record specifically documented that the NSI occurred while
200	the worker was securing the line to the patient's skin, those data were not included. The
201	remaining six NSIs that occurred during placement of a CVC or other invasive catheter An
202	additional six NSIs occurred with the large-bore needle while the physicianworker was
203	attempting to cannulate the vessel.
204	
205	Cost analysis
206	Given the number of NSIs determined from retrospective analysis, we calculated that use of a
207	needleless device to secure the CVC could have prevented these 21 NSIs. The cost analysis
208	estimates that each NSI incurs at least \$2,723 USD in charges at this institution.each costing an
209	estimated \$922 (average NSI cost incurred at this institution). Costs associated with an NSI
210	include provider fees for initial and follow-up visits, blood draw and analysis costs, medication
211	costs, and administrative costs. Table 1 lists the minimal charges associated with a low risk NSI
212	using data from our instutution's Occupational Health Clinic. While the calculations for this
213	study represent the lowest possible cost of a NSI, the actual cost of a NSI varies from case to
214	case depending on the circumstances surrounding the NSI, the treatment plan, medication
215	requirements, and frequency of follow-up visits. If the HCW has a high risk exposure to HIV,
216	prophylactic antiviral medications must be prescribed and the cost of the medications, additional
217	labwork, and frequent followup visits increases the cost of the NSI significantly. The cost
218	estimates also do not include the indirect cost of time lost from work and other indirect financial
219	and social costs. Eliminating all 21 NSIs that definitively occurred during securement of a
I	

Page 34 of 45

CVCline would have translated into a <u>direct cost</u> savings of at least \$57,183 in USD charges. \$19,362. If the possible additional 13 NSIs also that possibly occurred during the securement phase where three sharps are included in the calculation (hollow bore needle for repeat anesthesia, suture needle, and scalpel), were also prevented, the cost savings would be at least this would translate to a direct cost savings of \$31,348 \$92,582 over the 4-year period. SEnrollment survey of residents enrolled into the longitudinal study The prospective portion of the study surveyed 95 residents. Only Of the 95 residents surveyed. only 30% had previous knowledge of the needleless SED that is supplied in all CVC safety kits at our institution. Only 19% had ever had training regarding the use of any SED or used the device in clinical practice. Twenty-seven percent of residents surveyed stated that they had had at least one close call needlestick incident in the past 2 months. And 20% of the residents surveyed had at least two near miss/close call needlestick incident in the past 2 months. (Figure 4). Twenty-five percent of responding residents (24 of 95) answered yes when asked the guestion, "Have you ever had a needlestick injury associated with patient body fluid exposure?" In a follow-up question, we asked, "Did you report the incident each time?" Twenty-one percent (5 of 24) responded that they did not always report NSI. This finding is consistent with prior data suggesting that HCW NSIs are underreported³⁻⁶. Forty-nine percent of residents surveyed stated that they had had at least one near miss/ close call needlestick incident in the past 2 months (Figure 4). Focus group data Data from discussions with six randomly selected study participants are presented in Table 2. Statements regarding each residents' experience with Statlock were categorized into positive,

Page 35 of 45

BMJ Open

2		
3 4	244	negative, or neutral. Opinions of the SED and experiences varied across participants. In
5 6	245	general, those residents who were comfortable and adept at suturing, especially surgical
7 8	246	residents, seemed to prefer using sutures over the Statlock device. According to the responses,
9 10	247	the use of the SED may also be dependent on patient characteristics, situational circumstances,
11 12	248	and knowledge or acceptance of the SED by other HCWs. One resident indicated that she
13 14	249	would want additional practice with the device before using it in a clinical setting, suggesting that
15 16 17	250	additional training may encourage increased use of the SED.
18 19 20	251	Focus group discussions were conducted with six randomly selected study participants.
21 22	252	Participants were interviewed by a study investigator (SG) individually and each session was
23 24	253	audio recorded with the permission of the participant. Focus group sessions lasted an average
25 26	254	of 30 minutes to discuss participant use of the StatLock device, their impressions of the SED,
27	255	and additional thoughts they had on the use of StatLock over traditional sutures when securing
29 30	256	central lines. Audio data were extracted and analyzed by two independent study investigators
31 32 33	257	(SG and AB). Focus group data are presented in Table 1.
34 35 36	258	
37 38	259	Responses varied across participants. One surgery resident noted that surgeons especially are
39 40	260	more familiar with suturing than with applying StatLock and may be able to secure a CVC faster
41 42	261	using sutures. The resident stated, "Time is of the essence. [I] don't want to wait for StatLock to
43 44	262	dry when sutures are faster, more efficient, more comfortable." Another resident who is also
45 46	263	comfortable and adept at suturing lines mentioned that she would want more practice with
47 48 49	264	applying the StatLock device before using it in a clinical setting.
50 51 52	265	
53 54	266	One emergency medicine resident described himself as "motivated to use StatLock after
55 56	267	witnessing multiple coworkers experience fingersticks." After using the StatLock device just one
57 58 59	268	time, he found the placement of the StatLock device was quicker than suturing the CVC.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

269	
270	Two of the six residents reported that they valued the StatLock device in certain situations when
271	they were more likely to incur an NSI, such as when the patient is unpredictable or unwilling to
272	lie still. One resident reported that in such cases it is "beneficial to use as few sharps as
273	possible."
274	
275	Half of the residents were hesitant to use StatLock in certain circumstances because they
276	thought that the nurses and other practitioners lacked knowledge about the device. After
277	securing a CVC using StatLock in the emergency department, one resident reported, "The
278	admitting team was confused, did not know what the device was, and [was] concerned over
279	whether StatLock would stay in place."
280	
281	One resident pointed out that the StatLock device may be beneficial in certain populations of
282	patients. "[StatLock would be] beneficial cosmetically when placing an upper neck line next to
283	the face, especially for patients who form keloids."
284	
285	Audio-recorded focus group text was transcribed and data were extracted and categorized as
286	neutral, positive or negative observations regarding the StatLock device.
287	
288	DISCUSSION
289	In 2009 we developed a partnership with our institutional industrial hygienist to investigate
290	opportunities to reduce NSIs among resident physicians in our institution. In the fiscal year
291	between 2008 and 2009, nurse NSIs increased 10% and physician NSIs increased 70% at our

Page 37 of 45

BMJ Open

institution. In 2009 at HUH, 46% of the total reported NSIs involved residents. A 2007 study of 699 surgical residents at 17 US medical centers found that by the 5th year of residency, 99% had had at least one NSI. Moreover, for 53% of respondents, the NSI had involved a high-risk patient with a history of HIV infection, hepatitis B or C virus infection, or injection drug use.² In 2009, our US-based urban hospital reported 27.6 injuries per 100 occupied beds, which is above the EPINet average of 20.1 for teaching hospitals⁷. Despite increased awareness of sharps injuries and some attempts at prevention, NSIs continue to be a serious problem. Our study supported earlier research findings that among HCWs, physicians have the highest risk of NSI^{2, 10}, and among physicians, residents have a three times greater risk of blood and body fluids exposure than senior doctors¹¹. These data were alarming and required immediate analysis for the potential for intervention. In medicine, engineering controls that have been introduced to decrease the incidence of NSIs among HCWs include safety-winged steel needles, safety intravenous catheter insertion needles, polyester film-coated capillary tubes, safety-shielded phlebotomy needles, needleless blood transfer devices, safety peripherally inserted central catheter stylets, blood gas needle-holding devices, blunt-tip needles, and shielded hypodermic needles/syringes⁸. Current literature indicates that 29% to 35% of reported occupational NSIs could have been prevented if an SED had been used⁹. Although engineering controls may require capital investment, the cost savings resulting from improved safety may justify the expense. However, devices that depend on user activation generate benefit only when correctly used; thus HCWs must be educated in their use.

For some HCW their lack of training and their unfamiliarity with SEDs is a major barrier to its
 use. The StatLock SED secures CVCs using a locking device attached to the skin using

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3 4	317
5 6	318
7 8	319
9 10	320
11 12 12	321
13 14 15	322
16 17	323
18 19	324
20 21	325
22 23	326
24 25 26	327
27 28	328
29 30	329
31 32	330
33 34	331
35 36 27	332
38 39	333
40 41	334
42 43	335
44 45	336
46 47	337
48 49 50	338
50 51 52	339
53 54	340
55 56	341
57 58	342
59 60	

317	benzoin adhesive instead of the traditional method of using sharps. Traditionally, after a CVC is
318	placed the patient may require additional local anesthesia in a site separate from the insertion
319	site, necessitating the use of a hollow-bore needle. A CVC is secured with the use of a straight
320	suture needle and the suture is cut with a scalpel. Therefore, using the SED minimizes the risk
321	of NSI during securement of CVC by eliminating three steps in which sharps are used. Despite
322	the easy availability of the StatLock device, few resident physicians are aware of it and fewer
323	still have used it in clinical practice. Only 30% in our study had previous knowledge of the
324	needleless SED that is supplied in all CVC safety kits at our institution. Only 19% had ever used
325	the device in clinical practice. Exposure to the SED and effective training may encourage the
326	use of SEDs and subsequently reduce NSI. A prospective cohort study using the same 95
327	residents who participated in this survey has been designed to determine the best means of
328	educating residents on the use of the Statlock device. Each resident was randomly assigned to
329	either a standard teaching video or a simulation curriculum involving both the video teaching
330	plus hands-on practice in a simulated clinical environment. The endpoint for the longitudinal
331	phase of the study was defined as a difference in NSIs between the groups. Additionally, all
332	participants agreed to return in 12 months for a repeat questionnaire on their attitudes and
333	experience with the SED. This portion of the study is still in progress. Despite increased
334	awareness of sharps injuries and some attempts at prevention, NSIs continue to be a serious
335	problem. Our study supported earlier research findings that among HCWs, physicians have the
336	highest risk of NSI ^{2, 10} , and among physicians, residents have a three times greater risk of blood
337	and body fluids exposure than senior doctors ¹¹ .
338	

In our institution, <u>some physicians residents who are already familiar with Statlock</u> have been reluctant to use <u>itthe StatLock device</u> because they have questions about efficacy and patient safety. Some express concern that the device might not work as well as the traditional method of securing a CVC to patients' skin using sutures. Many reports in the literature have been

343 authored by individuals associated with the manufacturers, raising the question of pole 344 The StatLock device is currently available in every triple-lumen CVC kit in our institution 345 Therefore, the issue of use of the device does not rest on its availability, but rather on p 346 awareness, training, and preference. 347 348 348 Focus group discussions revealed that such factors have indeed presented barriers to 349 implementation of the SEDtatLock device. Residents expressed concern regarding tim 350 constraints and familiarity with device. Previous literature has documented similar barri 351 implementation. Cost, personnel time, and resistance to change are several of the most 352 commonly documented deterrents. ^{6,12-16} Surgeons and anesthesiologists have been 353 recognized as the cohorts least likely to use safety devices designed to prevent NSIs, 354 presumably because they are skilled at suturing. ¹⁷ Reluctance may also stem from feed 355 discomfort and questions of efficacy. ¹⁷ Evidence-based reasoning is often absent from 366 engineered devices. Contractual purchasing agreements can render devices are not app 376 conventional sharps also hinders implementation of safety devices. ¹⁹ 378 359 Some institutions hav	
5 344 The StatLock device is currently available in every triple-lumen CVC kit in our institution 7 345 Therefore, the issue of use of the device does not rest on its availability, but rather on p 7 346 awareness, training, and preference. 7 347 347 7 348 Focus group discussions revealed that such factors have indeed presented barriers to 7 implementation of the SEDtatLock device. Residents expressed concern regarding tim 7 constraints and familiarity with device. Previous literature has documented similar barri 7 implementation. Cost, personnel time, and resistance to change are several of the most 7 commonly documented deterrents. 6.12-16 Surgeons and anesthesiologists have been 7 recognized as the cohorts least likely to use safety devices designed to prevent NSIs, 7 presumably because they are skilled at suturing. ¹⁷ Reluctance may also stem from fee 7 discomfort and questions of efficacy. ¹⁷ Evidence-based reasoning is often absent from 7 sto conventional sharps also hinders implementation of safety devices. ¹⁹ 7 sto conventional sharps also hinders imple logistics can prevent staff from using sa 7 some institutions have recognized that simple logistics can prevent st	tential bias.
 Therefore, the issue of use of the device does not rest on its availability, but rather on p awareness, training, and preference. awareness, training, and preference. Focus group discussions revealed that such factors have indeed presented barriers to implementation of the SEDtatLock device. Residents expressed concern regarding tim constraints and familiarity with device. Previous literature has documented similar barri implementation. Cost, personnel time, and resistance to change are several of the mos commonly documented deterrents.^{6,12-16} Surgeons and anesthesiologists have been recognized as the cohorts least likely to use safety devices designed to prevent NSIs, presumably because they are skilled at suturing.¹⁷ Reluctance may also stem from fee discomfort and questions of efficacy.¹⁷ Evidence-based reasoning is often absent from foundation of implementation programs, exacerbating opposition to change.¹⁸ Perpetual to conventional sharps also hinders implementation of safety devices.¹⁹ Some institutions have recognized that simple logistics can prevent staff from using sa engineered devices. Contractual purchasing agreements can render devices are not application on the market makes it difficult for institutions to choose¹⁵, yet most devices are not application on the market makes it difficult for institutions to choose¹⁵, yet most devices are not applicated to a safety devices are not application on the change it difficult for institutions to choose¹⁵, yet most devices are not application of a lastuations and technology must become more advanced to meet the remaining demand.^{15,16} Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is co 	on.
9 346 awareness, training, and preference. 11 347 12 347 13 348 Focus group discussions revealed that such factors have indeed presented barriers to 14 348 Focus group discussions revealed that such factors have indeed presented barriers to 14 349 implementation of the SEDiatLock device. Residents expressed concern regarding tim 15 constraints and familiarity with device. Previous literature has documented similar barri 16 351 implementation. Cost, personnel time, and resistance to change are several of the most 15 commonly documented deterrents. ^{6, 12-16} Surgeons and anesthesiologists have been 15 recognized as the cohorts least likely to use safety devices designed to prevent NSIs, 16 presumably because they are skilled at suturing. ¹⁷ Reluctance may also stem from fee 17 foundation of implementation programs, exacerbating opposition to change. ¹⁸ Perpetuation conventional sharps also hinders implementation of safety devices. ¹⁹ 16 Some institutions have recognized that simple logistics can prevent staff from using sa 17 Some institutions have recognized that simple logistics can prevent staff from using sa 18 Some institutions have recognized that simple logistics can prevent staff from using sa	ı physician
Focus group discussions revealed that such factors have indeed presented barriers to implementation of the SEDtatLock device. Residents expressed concern regarding tim constraints and familiarity with device. Previous literature has documented similar barri implementation. Cost, personnel time, and resistance to change are several of the mos commonly documented deterrents. ^{6, 12-16} Surgeons and anesthesiologists have been recognized as the cohorts least likely to use safety devices designed to prevent NSIs, presumably because they are skilled at suturing. ¹⁷ Reluctance may also stem from fee discomfort and questions of efficacy. ¹⁷ Evidence-based reasoning is often absent from foundation of implementation programs, exacerbating opposition to change. ¹⁸ Perpetua to conventional sharps also hinders implementation of safety devices. ¹⁹ Some institutions have recognized that simple logistics can prevent staff from using sa engineered devices. Contractual purchasing agreements can render devices are not app for all situations and technology must become more advanced to meet the remaining demand. ^{15,18} Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs. ¹⁷ When this complacency is co	
Focus group discussions revealed that such factors have indeed presented barriers to implementation of the SEDtatLock device. Residents expressed concern regarding tim constraints and familiarity with device. Previous literature has documented similar barri implementation. Cost, personnel time, and resistance to change are several of the mos commonly documented deterrents. ^{6, 12-16} Surgeons and anesthesiologists have been recognized as the cohorts least likely to use safety devices designed to prevent NSIs, presumably because they are skilled at suturing. ¹⁷ Reluctance may also stem from fee discomfort and questions of efficacy. ¹⁷ Evidence-based reasoning is often absent from foundation of implementation programs, exacerbating opposition to change. ¹⁸ Perpetua to conventional sharps also hinders implementation of safety devices. ¹⁹ Some institutions have recognized that simple logistics can prevent staff from using sa engineered devices. Contractual purchasing agreements can render devices are not app for all situations and technology must become more advanced to meet the remaining demand. ^{15,18} Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs. ¹⁷ When this complacency is co	
 implementation of the SEDtatLock device. Residents expressed concern regarding tim constraints and familiarity with device. Previous literature has documented similar barri implementation. Cost, personnel time, and resistance to change are several of the most commonly documented deterrents. ^{6, 12-16} Surgeons and anesthesiologists have been recognized as the cohorts least likely to use safety devices designed to prevent NSIs, presumably because they are skilled at suturing.¹⁷ Reluctance may also stem from feed discomfort and questions of efficacy.¹⁷ Evidence-based reasoning is often absent from foundation of implementation programs, exacerbating opposition to change.¹⁸ Perpetual to conventional sharps also hinders implementation of safety devices.¹⁹ Some institutions have recognized that simple logistics can prevent staff from using sa engineered devices. Contractual purchasing agreements can render devices unavailab certain devices may not be compatible with existing equipment^{6, 16}. The overabundance on the market makes it difficult for institutions to choose¹⁵, yet most devices are not app for all situations and technology must become more advanced to meet the remaining demand.^{15,18} Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is con 	0
18 193501constraints and familiarity with device. Previous literature has documented similar barri implementation. Cost, personnel time, and resistance to change are several of the most commonly documented deterrents. ^{6, 12-16} Surgeons and anesthesiologists have been recognized as the cohorts least likely to use safety devices designed to prevent NSIs, presumably because they are skilled at suturing. ¹⁷ Reluctance may also stem from fee discomfort and questions of efficacy. ¹⁷ Evidence-based reasoning is often absent from foundation of implementation programs, exacerbating opposition to change. ¹⁸ Perpetue to conventional sharps also hinders implementation of safety devices. ¹⁹ 351Some institutions have recognized that simple logistics can prevent staff from using sa engineered devices. Contractual purchasing agreements can render devices unavailab to certain devices may not be compatible with existing equipment ^{6, 16} . The overabundance on the market makes it difficult for institutions to choose ¹⁶ , yet most devices are not app for all situations and technology must become more advanced to meet the remaining demand. ^{15,18} 361Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs. ¹⁷ When this complacency is co for	ne
 implementation. Cost, personnel time, and resistance to change are several of the most commonly documented deterrents, ^{6, 12-16} Surgeons and anesthesiologists have been recognized as the cohorts least likely to use safety devices designed to prevent NSIs, presumably because they are skilled at suturing.¹⁷ Reluctance may also stem from feed discomfort and questions of efficacy.¹⁷ Evidence-based reasoning is often absent from foundation of implementation programs, exacerbating opposition to change.¹⁸ Perpetual to conventional sharps also hinders implementation of safety devices.¹⁹ Some institutions have recognized that simple logistics can prevent staff from using sare engineered devices. Contractual purchasing agreements can render devices unavailabt certain devices may not be compatible with existing equipment^{6, 16}. The overabundance on the market makes it difficult for institutions to choose¹⁵, yet most devices are not approximate for all situations and technology must become more advanced to meet the remaining demand.^{15,18} Lastly, HCWs are characterized as being desensitized to disease and consequently points and also server a server server server. 	rriers to
 22 commonly documented deterrents. ^{6, 12-16} Surgeons and anesthesiologists have been 23 recognized as the cohorts least likely to use safety devices designed to prevent NSIs, 25 presumably because they are skilled at suturing.¹⁷ Reluctance may also stem from fee 26 discomfort and questions of efficacy.¹⁷ Evidence-based reasoning is often absent from 26 foundation of implementation programs, exacerbating opposition to change.¹⁸ Perpetual 27 to conventional sharps also hinders implementation of safety devices.¹⁹ 28 Some institutions have recognized that simple logistics can prevent staff from using sa 29 engineered devices. Contractual purchasing agreements can render devices unavailab 28 certain devices may not be compatible with existing equipment^{6, 16}. The overabundance 29 on the market makes it difficult for institutions to choose¹⁵, yet most devices are not app 20 for all situations and technology must become more advanced to meet the remaining 29 demand.^{15,18} 20 demand.^{15,18} 21 demand.^{15,18} 22 demand.^{15,18} 23 demand.^{15,18} 24 demand.^{15,18} 25 demand.^{15,18} 26 demand.^{15,18} 27 demand.^{15,18} 28 demand.^{15,18} 29 demand.^{15,18} 	ost
 recognized as the cohorts least likely to use safety devices designed to prevent NSIs, presumably because they are skilled at suturing.¹⁷ Reluctance may also stem from fee discomfort and questions of efficacy.¹⁷ Evidence-based reasoning is often absent from foundation of implementation programs, exacerbating opposition to change.¹⁸ Perpetua to conventional sharps also hinders implementation of safety devices.¹⁹ Some institutions have recognized that simple logistics can prevent staff from using sa engineered devices. Contractual purchasing agreements can render devices unavailabt certain devices may not be compatible with existing equipment^{6, 16}. The overabundance on the market makes it difficult for institutions to choose¹⁵, yet most devices are not app for all situations and technology must become more advanced to meet the remaining demand.^{15,18} Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is co 	
 presumably because they are skilled at suturing.¹⁷ Reluctance may also stem from fee discomfort and questions of efficacy.¹⁷ Evidence-based reasoning is often absent from foundation of implementation programs, exacerbating opposition to change.¹⁸ Perpetua to conventional sharps also hinders implementation of safety devices.¹⁹ Some institutions have recognized that simple logistics can prevent staff from using sa engineered devices. Contractual purchasing agreements can render devices unavailab certain devices may not be compatible with existing equipment^{6, 16}. The overabundance on the market makes it difficult for institutions to choose¹⁵, yet most devices are not app for all situations and technology must become more advanced to meet the remaining demand.^{15,18} Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is co 	,
 discomfort and questions of efficacy.¹⁷ Evidence-based reasoning is often absent from foundation of implementation programs, exacerbating opposition to change.¹⁸ Perpetua to conventional sharps also hinders implementation of safety devices.¹⁹ Some institutions have recognized that simple logistics can prevent staff from using sa engineered devices. Contractual purchasing agreements can render devices unavailab certain devices may not be compatible with existing equipment^{6, 16}. The overabundance on the market makes it difficult for institutions to choose¹⁵, yet most devices are not applied for all situations and technology must become more advanced to meet the remaining demand.^{15,18} Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is constrained. 	elings of
31 32 33 34356foundation of implementation programs, exacerbating opposition to change.18 Perpetua to conventional sharps also hinders implementation of safety devices.19357 358 359359Some institutions have recognized that simple logistics can prevent staff from using sat engineered devices. Contractual purchasing agreements can render devices unavailab action devices may not be compatible with existing equipment ^{6, 16} . The overabundance on the market makes it difficult for institutions to choose15, yet most devices are not apple for all situations and technology must become more advanced to meet the remaining demand.15,18361 362Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs.17 When this complacency is con	m the
 to conventional sharps also hinders implementation of safety devices.¹⁹ to conventional sharps also hinders implementation of safety devices.¹⁹ Some institutions have recognized that simple logistics can prevent staff from using sa engineered devices. Contractual purchasing agreements can render devices unavailabt certain devices may not be compatible with existing equipment^{6, 16}. The overabundance on the market makes it difficult for institutions to choose¹⁵, yet most devices are not apple for all situations and technology must become more advanced to meet the remaining demand.^{15,18} Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is con 	ual access
 358 358 359 Some institutions have recognized that simple logistics can prevent staff from using sa a60 engineered devices. Contractual purchasing agreements can render devices unavailable a61 certain devices may not be compatible with existing equipment^{6, 16}. The overabundance a62 on the market makes it difficult for institutions to choose¹⁵, yet most devices are not applied a63 for all situations and technology must become more advanced to meet the remaining a64 demand.^{15,18} a65 a66 Lastly, HCWs are characterized as being desensitized to disease and consequently po a67 a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is co 	
 Some institutions have recognized that simple logistics can prevent staff from using sa engineered devices. Contractual purchasing agreements can render devices unavailable certain devices may not be compatible with existing equipment^{6, 16}. The overabundance on the market makes it difficult for institutions to choose¹⁵, yet most devices are not applied for all situations and technology must become more advanced to meet the remaining demand.^{15,18} Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is consection. 	
 and a sequence of security regarding the effects of NSIs.¹⁷ When this complacency is contractional data data data data data data data da	afety-
 361 certain devices may not be compatible with existing equipment^{6, 16}. The overabundance 362 on the market makes it difficult for institutions to choose¹⁵, yet most devices are not apple 363 for all situations and technology must become more advanced to meet the remaining 364 demand.^{15,18} 365 365 366 Lastly, HCWs are characterized as being desensitized to disease and consequently po 367 a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is conserved. 	able and
 an the market makes it difficult for institutions to choose¹⁵, yet most devices are not apple and technology must become more advanced to meet the remaining demand.^{15,18} demand.^{15,18} and technology and technology at technology and technology at t	ce of SEDs
 for all situations and technology must become more advanced to meet the remaining demand.^{15,18} demand.^{15,18} 365 365 366 Lastly, HCWs are characterized as being desensitized to disease and consequently po a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is con 	pplicable
 48 49 364 demand.^{15,18} 50 51 365 52 53 366 Lastly, HCWs are characterized as being desensitized to disease and consequently po 55 367 a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is con 	
 365 365 366 Lastly, HCWs are characterized as being desensitized to disease and consequently po 367 a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is con 367 	
 Lastly, HCWs are characterized as being desensitized to disease and consequently pc Lastly, HCWs are characterized as being desensitized to disease and consequently pc a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is con 	
 a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is con a false sense of security regarding the effects of NSIs.¹⁷ When this complacency is con 	ossessing
58 59 60	oupled

3 4	368	with a lack of multidisciplinary support, both "horizontally and vertically," implementation of
5 6	369	safety devices becomes extremely difficult. ²⁰
7 8	370	
9 10	371	CONCLUSIONS
11 12 13	372	The common incidence of NSIs needlestick injuries among healthcare workers clearly indicates
14 15	373	a need for further intervention. Retrospective analysis of institutional records demonstrated that
16 17	374	over a 4-year period (July 2007–June 2011), 16% of resident/fellow NSIs (21 of 131) could have
18 19	375	been avoided with the use of a needleless securement device such as the Statlock device.
20 21	376	Engineering controls such as While such SEDsneedleless securement devices are currently
22 23 24	377	available, they are infrequently used by HCWs for various reasonsand can be used as an
24 25 26	378	alternative to sharps. Retrospective analysis of institutional records demonstrated that over a 4-
27 28	379	year period (July 2007–July 2011), 16% of resident/fellow NSIs (21 of 131) could have been
29 30	380	avoided with the use of a safety-engineered device such as the Statlock device to secure a
31 32	381	CVC. The implementation of an SED in an institution requires proof of safety and efficacy as well
33 34 25	382	education and training of healthcare workers to encourage the use of the device and If safety and
36 37	383	efficacy of the device can be demonstrated, then implementation of such devices may
38 39	384	significantly reduce the number of NSIsneedlestick injuries among physicians. However,
40 41	385	education alone will not be sufficient to overcome barriers to implementation.
42 43	386	
44 45	387	
46 47 48	388	Funding
49 50	389	This study was supported by Drexel College of Medicine IBC Simulation Grant Funding. The
51 52	390	funding source had no involvement in the study design; collection, analysis or interpretation
53 54	391	data; writing of the report; nor the decision to submit the paper for publication.
55 56	392	
57 58 59 60	393	Contributorship

Page 41 of 45

1

2		
3 4	394	Dr Griswold-Theodorson had access to and takes responsibility for the integrity of the data and the
5 6 7	395	accuracy of the data analysis. Dr Griswold-Theodorson: contributed to study conception and design,
7 8 9	396	data collection, analysis and interpretation of the data, drafting of the manuscript, and critical revision
10 11	397	of the article for important intellectual content.
12 13 14	398	Ms Bonaroti: contributed to study design, data collection, data analysis and interpretation, reviewing
15 16	399	and editing of the manuscript, and critical revision of the article for important intellectual content.
17 18	400	Mr Rieder: contributed to study design, data collection and analysis, review and editing of the
19 20 21	401	manuscript.
22 23	402	Mr Erbayri: contributed to study design, data collection and analysis, review and editing of the
24 25	403	manuscript.
26 27 28	404	Dr Parsons: contributed to study design, data collection, data analysis and interpretation, reviewing,
29 30	405	editing, and section writing of the manuscript.
31 32	406	Dr Nocera: contributed to study design, data collection and data interpretation, reviewing, editing,
33 34 35	407	section writing of the manuscript and critical revision of the article for important intellectual content.
36 37	408	Dr Hamilton: contributed to interpretation of the data, reviewing, and editing of the manuscript and
38 39	409	critical revision of the article for important intellectual content.
40 41 42	410	
43 44 45 46	411	Data Sharing
47 48 49	412	There is no additional unpublished data.
50 51 52 53	413	Competing Interests
54 55 56	414	None
57 58 59 60	415	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

416	Figure 1. Right infraclavicular subclavian triple-lumen catheter secured with StatLock needleless
417	device (Bard Access Systems, Salt Lake City, UT). The StatLock needleless device replaces
418	the need for suturing with a locking device secured with benzoin and tape.
419	Figure 2. NSI injury at Hahnemann Hospital by occupation from four year period: July 1, 2007 to
420	June 30, 2011. MD includes residents, attendings, and fellows. Nurse: includes nurses, nurse
421	anesthesia, and nurse practitioners. Others include respiratory therapy, environmental services,
422	laboratory personnel and others not categorized above.
423	Figure 3. Needlestick injuries while inserting CVC or other invasive catheter requiring sutures at
424	Hahnemann University Hospital for the 4-year period July 1, 2007 to June 30, 2011.
425	Figure 4.3. Close calls involving needlestick injuries witnessed in the 2 months preceding survey
426	administration in July 2011.
427	Table 1. Minimal charges associated with a low risk needlestick injury at Hahnemann Hospital.
428	Table 24. Data extracted from discussions with six randomly selected focus group participants.
429	

International
November 1, 2012.
ns in training. <i>New</i>
rnal of Hospital
uces Complications of
erventional Radiology
al of Hospital
Exposure to
, 2007. Retrieved
health care workers:
ırnal of Industrial
al transmission and
-74.
וג היי היי

2		
3 4	453	10. Wicker S, Jung J, Allwinn R, et al. Prevalence and prevention of needlestick injuries among health
5 6	454	care workers in a German university hospital. International Archives of Occupational and
7 8 0	455	Environmental Health 2008;81(3):347-54.
9 10 11	456	11. Naghavi SHR, Sanati KA. Accidental blood and body fluid exposure among doctors. Occupational
12 13	457	Medicine 2009;59(2):101-06.
14 15	458	12. Sharps Injuries Among Medical Trainees. In: Occupational Health Surveillance Program MDoPH,
16 17 18	459	editor. Boston, 2011.
19 20	460	http://www.mass.gov/Eeohhs2/docs/dph/occupational_health/injuries_medical_trainees_02_0
21 22	461	9.pdf. Retrieved November 1, 2012.
23 24 25	462	13. Jagger J, Perry J, Gomaa A, et al. The impact of U.S. policies to protect healthcare workers from
26 27	463	bloodborne pathogens: The critical role of safety-engineered devices. Journal of Infection and
28 29	464	Public Health 2008;1(2):62-71.
30 31 32	465	14. Vason BJ. The safety needle switchover, part 1 of 2. Nursing Management 2002;33(5):33-6.
32 33 34	466	15. Pegues DAMD. Building Better Programs to Prevent Transmission of Blood-Borne Pathogens to
35 36	467	Healthcare Personnel: Progress in the Workplace, But Still No End in Sight •. Infection Control
37 38	468	and Hospital Epidemiology 2003;24(10):719-21.
39 40 41	469	16. Sohn SMPH, Eagan JRN, Sepkowitz KAMD, et al. Effect of Implementing Safety-Engineered Devices
42 43	470	on Percutaneous Injury Epidemiology. Infection Control and Hospital Epidemiology
44 45	471	2004;25(7):536-42.
46 47 48	472	17. Guglielmi CL, Spratt DG, Berguer R, et al. A Call to Arms to Prevent Sharps Injuries in Our ORs.
49 50	473	Association of Operating Room Nurses. AORN Journal 2010;92(4):387-92.
51 52	474	18. Hall J. Worker safety: A road well-traveled, yet so far to go. Healthcare Purchasing News
53 54 55 56 57 58 59	475	2003;27(8):46-46.
60		

1 2		
2 3 4	476	19. AORN. Seeking solutions to increase sharps safety. Association of Operating Room Nurses Journal
5 6	477	2011;94(6):C1-C1,C8,C9.
7 8 0	478	20. Hagstrom AM. Perceived Barriers to Implementation of a Successful Sharps Safety Program.
9 10 11 12	479	Association of Operating Room Nurses. AORN Journal 2006;83(2):391-7.
$\begin{array}{c}13\\14\\56\\17\\18\\90\\12\\23\\45\\67\\89\\01\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22$	480	