

A novel oral nutraceutical formula (PLP10) for the treatment of relapsing remitting multiple sclerosis: a randomized, double-blind, placebo-controlled proof-ofconcept clinical trial

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002170
Article Type:	Research
Date Submitted by the Author:	30-Sep-2012
Complete List of Authors:	Pantzaris, Marios; The Cyprus Institute of Neurology and Genetics (CING), Clinic C and PALUPA Medical Ltd Loukaides, George; The Cyprus Institute of Neurology and Genetics (CING), Neurology Clinic and PALUPA Medical Ltd Ntzani, Evangelia; University of Ioannina School of Medicine (UISM), Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology Patrikios, Ioannis; The Cyprus Institute of Neurology and Genetics (CING), Clinic C and PALUPA Medical Ltd; European University Cyprus, Health Science
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Neurology, Complementary medicine, Pharmacology and therapeutics
Keywords:	Nutrition < TROPICAL MEDICINE, NUTRITION & DIETETICS, Multiple sclerosis < NEUROLOGY

SCHOLARONE[™] Manuscripts

Page 1 of 62

 BMJ Open

A novel oral nutraceutical formula (PLP10) for the treatment of relapsing remitting multiple sclerosis: a randomized, double-blind, placebo-controlled proof-ofconcept clinical trial

Marios C. Pantzaris, George N. Loukaides, Evangelia E. Ntzani, Ioannis S. Patrikios

7 The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus Marios C.

8 Pantzaris Senior Consultant Neurologist Neurology Clinic C and PALUPA Medical Ltd., The

9 Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus George N.

10 Loukaides Clinical Dietitian/Nutritionist Neurology Clinic and PALUPA Medical Ltd.,

11 University of Ioannina School of Medicine (UISM) 45110 Ioannina, Greece Evangelia E.

12 Ntzani Assistant Professor Clinical and Molecular Epidemiology Unit, Department of

13 Hygiene and Epidemiology, PALUPA Medical Ltd at The Cyprus Institute of Neurology and

14 Genetics (CING) 1683 Nicosia, Cyprus Ioannis S. Patrikios Senior Research Scientist,

15 visiting Professor at European University Cyprus Nicosia, Cyprus, Department of Health and

16 Science. Correspondence should be addresses to e-mail: <u>I.Patrikios@euc.ac.cy</u> or

17 <u>pantzari@cing.ac.cy</u>

Correspondence to:

20 Ioannis Patrikios

- 21 The Cyprus Institute of Neurology and Genetics (CING)
- 22 Neurology Clinic C (PALUPA Medical),

23	6 International Airport Av.
----	-----------------------------

- 24 P.O.Box 23462, 1683 Ayios Dometios. Nicosia, Cyprus
- 25 Tel: +357 22 358 600, +357 99 097 856;
- 26 <u>i.patrikios@euc.ac.cy</u>
- 27 patrikiosioannis@gmail.com
- 29 AND
- 31 Marios Pantzaris
- 32 The Cyprus Institute of Neurology and Genetics (CING)
- 33 Neurology Clinic C (PALUPA Medical),
- 34 6 International Airport Av.
- 35 P.O.Box 23462, 1683 Ayios Dometios, Nicosia Cyprus
- 36 Tel: +357 22 358 600;
- 37 <u>pantzari@cing.ac.cy</u>
- 39 Keywords: antioxidant vitamins, polyunsaturated fatty acids, multiple sclerosis, systems
- 40 medicine, randomized clinical trial.

42 Word Count: 6217

BMJ Open

2		
3	47	Abstract
4		
5	48	Objective To assess whether our three novel interventions, formulated based on systems
6	40	Objective 10 assess whether our three nover interventions, formulated based on systems
7	49	medicine therapeutic concept reduce disease activity in patients with relapsing remitting
8 9	45	incureme therapeutic concept reduce disease activity in patients with relapsing remitting
9 10	50	multiple sclerosis who were either treated with disease modifying treatment or untreated.
10	50	multiple selerosis who were entier treated with disease mouriying treatment of untreated.
12	51	
13	51	
14	52	Design 30-month randomized double-blind, placebo-controlled, parallel design, phase II
15	52	Design 50-month randomized double-omila, placebo-controlled, paramer design, phase m
16	53	proof-of-concept clinical study.
17	55	proof-of-concept entited study.
18 19	54	
20	54	
21	55	Settings Cyprus Institute of Neurology and Genetics (CING)
22	55	Settings Cyprus institute of reactionogy and Genetics (Cirvo)
23	56	
24	50	
25	57	Participants and Interventions 80 subjects were randomized into four groups of 20. The
26 27		
28	58	first intervention (A) was composed of omega-3 and omega-6 polyunsaturated fatty acids at
29		
30	59	1:1 wt/wt. Specifically, the omega-3 fatty acids were docosahexaenoic acid (DHA) and
31		
32	60	eicosapentaenoic acid (EPA) at 3:1 wt/wt and the omega-6 fatty acids were linoleic acid (LA)
33		
34	61	and gamma (γ)-linolenic acid (GLA) at 2:1 wt/wt. This intervention also included minor
35	-	
36 37	62	quantities of other specific polyunsaturated, monounsaturated and specific saturated fatty
38		
39	63	acids as well as vitamin A and vitamin E (alpha-tocopherol). The third intervention (C) was
40		
41	64	γ -tocopherol alone. The second intervention (PLP10) was a combination of A and C. A fourth
42		
43	65	group of 20 received a vehicle placebo. The interventions were administered per os once
44 45		
40	66	daily.
47		
48	67	
49		
50	68	Main outcome measures The primary endpoint was the annualized relapse rate (ARR) of the
51		
52 53	69	three interventions versus placebo at two years. The secondary end point was the time to
53 54		
55	70	confirmed disability progression at two years.
56	74	
57	71	
58		
59		
60		

	BMJ Open
72	Results The per-protocol, proof-of-concept, analysis demonstrated a 64% adjusted relative
72	reduction in ARR at two years for PLP10 versus placebo (P=0.024). Regarding the secondary
74	endpoint, a relative reduction of 86% in the risk of sustained progression of disability was
75	observed within the PLP10 group (p=0.047). No adverse events were reported. Interventions
76	A and C showed no significant efficacy.
77	
78	Conclusions PLP10 treatment significantly reduced the ARR, and the risk of sustained
79	disability progression without any adverse or significant side effects.
80	
81	Trial registration International Standard Randomized Controlled Trial, number
82	ISRCTN87818535.
83	
84	
85	
86	
87	
88	
89	
90	
91	

BMJ Open

2	
3 4 5	
5	
6	
7	
7 0	
8 9	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
10 11 12 13 14 15 16 17 18 20 21 22 24 25 26 27 20	
∠ I ງງ	
22	
23	
24	
25	
26	
27	
Zð	
29	
30	
31	
32	
33	
34 35 36 37 38	
20	
30	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50 51	
52	
53	
53 54	
53 54 55	
53 54 55 56	
53 54 55 56 57	
53 54 55 56 57 58	
53 54 55 56 57 58	
53 54 55 56 57	

93 Multiple sclerosis (MS) is a complex multifactorial disease that results from interplay between as vet unidentified environmental factors and susceptibility genes.¹⁻³ Together, these 94 factors trigger a cascade of events, involving engagement of the immune system, 95 96 inflammatory injury of myelin, axons and glia, functional recovery and structural repair, gliosis, and neurodegeneration.⁴ The bio-mechanisms involved are: immune-mediated 97 inflammation, oxidative stress and excitotoxicity.⁵⁻⁹ These mechanisms may all contribute to 98 oligodendrocyte and neuronal damage and even cell death, hence promoting disease 99 100 progression. The increasing prevalence of MS, the limited efficacy and the side effects of the existing treatments urge the clinical need for the development of new, innovative, more 101 102 effective, safe, and preventive treatment strategies. 103 104 Research has shown that multiple variables dynamically interact and many different complex 105 interrelated processes are simultaneously orchestrated for MS pathogenesis. The fundamental 106 distinctiveness of SM is not just the recognition that different specific complex factors are 107 important in disease management, but that they need to be incorporated in some meaningful way to treatment selection and delivery.¹⁰ The primary challenge tackled by systems 108 scientific approach is the elucidation of how these multiple variables dynamically interact and 109 how one can apply this understanding to affect the system and achieve a desirable end.¹⁰ The 110 111 answer might be the simultaneous interference with all involved perturbed mechanisms, by 112 using a cocktail of different specific ingredients, potentially able through synergistic effect to give a long, holistic and effective treatment (Supplementary Information Methods 1). 113 114 115 The PUFA composition of membrane phospholipids plays a direct role in immune and non-

116 immune related inflammation. PUFA and antioxidant deficiencies along with decreased

2
3 4 5 6 7
4
5
6
7
8
9
10
11
9 10 11 12 13 14 15 16 17
12
13
14
15
16
17
18
19
20
21
22
23
19 20 21 22 23 24 25 26 27 28 29
25
20
20
21
28
23
30
31
32
33
34
35
36
37
20
20
39
30 31 32 33 34 35 36 37 38 39 40
41
42
43
44
45
46
47
48
49
49 50
52
53
54
55
56
57
58
59
60

cellular antioxidant defense mechanisms have been reported for MS patients.¹¹ The cause of
these PUFA deficiencies is not entirely clear and may involve metabolic and nutritional
alterations.¹¹

120

1

121 Increased or uncontrolled inflammation contributes to several different acute and chronic 122 diseases and it is characterized by the production of inflammatory cytokines, arachidonic acid 123 (AA)-derived eicosanoids (prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and other oxidized derivatives), other inflammatory agents such as reactive oxygen species 124 (ROS), nitric oxide (NO), and adhesion molecules (Fig 1).¹² During inflammation glutamate 125 126 homeostasis is altered by activated immune cells releasing increased quantities of glutamate 127 that can result in over activation of glutamate receptors and in return excitotoxic oligodendroglial death.^{7, 13} As such, among others, membrane-related pathology, immune-128 mediated inflammation, oxidative stress and excitotoxicity provide potentially useful 129 130 combined targets for intervention in MS. 131 In vitro and in vivo studies have demonstrated that dietary EPA, DHA, LA, and GLA can be 132 133 implicated and modulate almost all known complex network of events and pathways 134 repertoire in MS pathophysiology. Brain membrane fatty acid composition can be modified 135 with dietary supplementation, but the process has been showed to be age dependent (it takes 136 much longer in adults vs. developing brains) as well as possibly dependent on the quantities of the dietary/supplemented PUFAs.¹⁴ Both human and animal studies proved that diets high 137 138 in DHA and EPA increase the proportion of these PUFA in the membranes of inflammatory cells and reduce the levels of AA.^{12, 15} The anti-inflammatory properties of omega-3 include 139 production of PGs and TXs of the 3-series and LTs of the 5-series (Fig 1).^{14, 16} Resolvins and 140 protectins are biosynthesized from omega-3 fatty acids via cyclooxygenase-2/lipoxygenase 141

BMJ Open

2		
3		
4		
5		
6		
7		
1		
8		
9		
1	n	
!		
1	0 1 2 3 4	
1	2	
4	2	
1	3	
1	4	
1	5	
1	õ	
!	6	
1	7	
1	8 9	
1	ő	
1	J	
2	01234567890123456780	
2	1	
$\overline{2}$, S	
2	<u>ح</u>	
2	3	
2	4	
ົ	5	
2	5	
2	6	
2	7	
ົ	0	
_	0	
2	9	
3	0	
Š	4	
J	1	
3	2	
3	3	
ິ	1	
3	4	
3	5	
3	6	
2	-	
3	1	
3	8	
ຊ	9	
2	2	
	0	
4	1	
	2	
4	~	
4	3	
4	4	
	5	
4		
4	7	
Δ	8	
	9	
5	0	
5		
	2	
5	3	
	4	
	5	
5	6	
5		
	8	
5	9	
	0	
r٦		

142	(COX-2/LOX) pathways and they promote control of inflammation in neural tissues (Fig
143	1). ¹⁷⁻²¹ T-cell proliferation in acute and chronic inflammation can be reduced by
144	supplementation with either omega-6 or omega-3 PUFA. ²² Furthermore, vitamin E is an
145	important antioxidant that can interrupt the propagation of free radical chain reactions. ²³
146	Vitamin E (alpha-tocopherol, an isoform of vitamin E) efficiently detoxifies hydroxyl,
147	perhydroxyl and superoxide free radicals. ²⁴ However γ -tocopherol (another isoform of
148	vitamin E) seems to be more efficiently implicated in trapping NO radicals. ²⁵ In addition
149	alpha-tocopherol exerts non-antioxidant properties, including modulation of cell signaling
150	and immune function, regulation of transcription, and induction of apoptosis. ²⁶
151	
152	Moreover, omega-3 fatty acids electrophilic derivatives formed by COX-2, in activated
153	macrophages can stimulate the nuclear respiratory factor (Nrf2) inducing the transcription of
154	neuroprotective and antioxidant related genes, and can activate the peroxisome proliferator-
155	activated receptor (PPAR) γ for anti-inflammatory response. ²⁷⁻²⁹ In animal studies, EPA and

- 156 DHA proved to be endogenous ligands of RXRs, with positive effect on neurogenesis.³⁰
- 157 Additionaly, in 2008 Salvati and coworkers reported evidense of accelerated myelination in
- 158 DHA- and EPA-treated animals.³² Moreover, DHA and EPA are reported to significantly
- 159 decrease the levels of metalloproteinases (MMP) -2, -3, -9, and -13 with a significant role in
- 160 the migration of lymphocytes into the CNS by inducing disruption of the blood brain barrier
- 161 (BBB), an important step in the formation of MS lesions.³³⁻³⁹
- 162

Based on the above, specific PUFA and antioxidant vitamins fulfill the criterion of biologic plausibility and have the potential to diminish MS symptoms severity and activity, even promoting recovery (remyelination).¹¹ Overall, PLP10 includes multiple ingredients

2	
3	
4	
5	
6	
7	
7	
8	
9	
10	
14	
11	
12	
13	
14	
15	
10	
16	
9 10 11 12 13 14 15 16 17 18	
18	
19	
20	
20	
21	
22	
23	
20	
24	
23 24 25	
26	
27	
27 28	
20	
29	
30	
31	
32	
32 33 34	
33	
34	
35	
36	
27	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

interacting with key interconnected components within functional network modules, each

167 contributing a fraction of the effects of perturbations that cause the disease.⁴⁰

168

1

169 In our phase II, single-center, randomized, double-blind, placebo-controlled, proof-of-

170 concept clinical trial we intended to evaluate the therapeutic ability of PLP10 and of two

171 other interventions (A and C) consisting of PLP10 constituent partial fractions versus

172 placebo, when used on RRMS patients.

173

174

175 Methods

176 **Patients**

177 Eligibility criteria were an age of 18 to 65; a diagnosis of RRMS according to the McDonald 178 criteria; a score of 0.0 to 5.5 on the EDSS, a rating that ranges from 0 to 10, with higher 179 scores indicating more severe disability; MRI showing lesions consistent with MS; and at 180 least one documented clinical relapse either receiving or not disease modifying treatment (DMT) within the 24 months period before beginning (enrollment) of the study. Patients were 181 182 excluded because of a recent (<30 days) relapse, prior immunosuppressant or monoclonal antibodies therapy, pregnancy or nursing, other severe disease compromising organ function, 183 184 progressive MS, history of recent drug or alcohol abuse, use of any additional food 185 supplement, vitamin, or any form of PUFA, history of severe allergic or anaphylactic 186 reactions or known specific nutritional hypersensitivity. No monitor or limitations on 187 patients' daily diet habits were included in the study design since the quantities of the 188 ingredients within the formulas daily-dosage could not be significantly affected or spoiled by any confounding factors within any known global daily food diet (see procedures, treatment 189 regimen and end-points). 190

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

BMJ Open

2	
-	
3 4 5 6	
-	
S	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
8 9 10 11 12 13 14 15 16 17 18 19	
20	
21	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
22	
23	
24	
<u>~</u> ・ つ도	
20	
26	
27	
28	
20	
29	
30	
31	
32	
22 22	
33	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

The study was conducted in accordance with the standards of the International Conference of Harmonization Guidelines for Good Clinical Practice. The protocol was developed by the investigators and it was approved by the Cyprus National Bioethics Committee and was overseen by an independent safety-monitoring committee evaluating the safety and over-all benefit-risk profiles. The adherence of care providers with the protocol was assessed by an external committee assigned by the funder of the project through reviews of case report forms. All patients gave written informed consent at the time of enrolment.

199

200 Randomisation and masking

Patients were randomly assigned to four intervention groups in a 1:1:1:1 ratio stratified by 201 202 gender (women to men, 3:1). Randomization was facilitated by a lottery-type pool of 203 numbered balls. Patients were randomly assigned to treatment in blocks of four by flipping a 204 coin as follows: for the first two drawn balls heads stratified them to the groups A/B and tails 205 stratified them to the groups C/D. The other two balls were stratified accordingly. A second 206 toss of the coin assigned the two patients to group A (head)/B (tail) or group C (head)/D 207 (tail). The randomization scheme was generated, performed and securely stored by Helix 208 Incubator Organization of Nicosia University (HIONU).

209

210 The interventions had identical appearance and smell in dark bottles (15 daily-dose

portions/bottle) under nitrogen bed and labeled by HIONU with code numbers, unidentifiable
for both patients and investigators. Study data were collected by the investigators and saved
by the HIONU that also held the blinded codes of the study. All study personnel involved in
the conduct of the study were blinded throughout the study. Treating/examining physician,

215	other investigators, pharmacist, neuroradiologist and patients were masked to treatment
	allocation.
216	
217	
218	Procedures and end points
219	The specific omega-3 (re-esterified glycerides) and omega-6 (glycerides) raw materials were
220	purchased according to the required interventions' PUFA-fraction specification (molecular
221	structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant
222	stabilizer by the supplier. The vitamins and masking aroma were purchased separately. The
223	mixing of fractions to the final required intervention-composition specification was always
224	performed by the same team of scientists under the supervision of the involved medical
225	biochemist and lipidology specialist, under appropriate conditions every six months.
226	Interventions were stored refrigerated in dark until use. See Supplementary Information
227	Methods 1 and 2 for intervention specification detailed description and study/intervention
228	rational.
229	
230	Participants were randomly assigned to receive a daily dose of a mixture of EPA (1,650mg) /
231	DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg) / total
232	MUFA (1,700mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E
233	(22mg) (intervention A, group A); or composed mixture of pure γ-tocopherol (760mg)
234	dispersed in pure virgin olive oil (16,137 mg) as delivery vehicle (intervention C, group C);
235	or a mixture of intervention formula A with intervention C without the pure virgin olive oil
236	(intervention B, named PLP10, group B); or placebo composed of pure virgin olive oil
237	(16,930mg) (intervention D, group D). Citrus-aroma was used as masking agent of the taste
238	and odor and added in each one of the intervention for a total of 19.5ml dosage of solution
239	per day. The institution's pharmacist was responsible for the appropriate storage and handling

BMJ Open

240	of the interventions to the individual participants. The interventions were taken orally once
241	daily 30 minutes before dinner by a dosage calibrated cup for 30 months. The ingredients,
242	ratio and dose have been selected based on their biophysical interrelation to the total known
243	multiple MS causing factors, their biochemical importance and the role expected to play in
244	the normalisation and treatment of the involved complex network of events in the disease
245	pathophysiology. Moreover, the high intake dosage was used to overcome any abnormal
246	dietary accumulation of related agents as a result of patients' food intake habits, irrespective
247	of geographical origin, in relation to the daily consumption ratio of the total fatty acid intake;
248	in order to end-up with omega-3 to omega-6 PUFA indicated physiological body ratio
249	composition of 1:1 wt/wt.
250	
251	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry
252	baseline) was used for normalization period. This six-month normalization period would
253	allow the interventions' agents to exert their beneficial effect (for the
254	incorporation/normalization of cell membranes by oral PUFA, since they need four to six
255	months to exert pivotal action on immune and neural cells, correction of antioxidant
256	deficiency and body PUFA, and optimal normalization of EPA and DHA levels/ratio).41-43
257	The study was completed on December 31 st 2009 and the recording of relapses continued
258	until December 31 st 2010.
259	
260	Depending on their clinical status and in accordance with the ethical issues governing clinical
261	trials participants continued receiving the indicative regular available treatments, according to
262	international guidelines with persistent evaluation of any side-effects and adverse events.
263	The study was designed to end 30 months after enrolment and clinical assessments were
264	scheduled at entry baseline, 3, 9, 15, 21 and 24 months on-treatment. Patients were also

clinically examined by the treating neurologist within 48 hours after the onset of new orrecurrent neurologic symptoms.

The primary end point was the ARR at two years. A relapse was defined as new or recurrent neurologic symptoms not associated with fever or infection that lasted for at least 24 hours and accompanied by new neurologic signs. Relapses were treated with methyl-prednisolone at a dose of 1g intravenous per day, for three days followed by prednisone orally at a dose of 1mg/kg of weight per day on a tapering scheme for three weeks. The secondary end point at two years was the time to confirmed disability progression, defined as an increase of 1.0 or more on EDSS, confirmed after six months (progression could not be confirmed during a relapse). The final EDSS score was confirmed six months after the end of the study. A post-hoc analysis was performed assessing the proportion of patients free from new or enlarging T2 lesions on brain MRI scans at the end of the study for the per-protocol participants of the group receiving the highest effective intervention versus placebo. Comparison was made only versus the available archival MRI scans up to three months before the enrolment date. MRI scans were performed and blindly analyzed at an MRI evaluation centre. The patients continued to be followed for additional 12 months after completion of the trial and relapses were recorded. Finally, patients were strongly encouraged to remain in the study for follow-up assessments even if they had discontinued the study drug.

Blood samples were collected from all randomized patients at the time of enrolment, at every
scheduled clinical assessment and during relapses. To check individual compliance with
intake, the fatty acids composition of patients' red blood cells' membranes was determined,
by gas chromatography, according to a standard protocol. The fatty acid analyses were
performed after study termination and thus did not influence the blinding.

BMJ Open

	290	
	291	The involved neurologist was experienced with more than 20 years in practice and trained to
	292	standardise EDSS scoring procedures, examined patients, made all medical decisions,
)	293	determined the EDSS score and reviewed adverse or side-effects. The medical biochemist,
	294	specialist on lipidology and immunology and the registered clinical dietitian, members of the
•	295	investigator team were experienced with more than 25 years in practice. Patients were able to
, ,	296	contact the neurologist at any time if there was any adverse event, side-effect or allergic
	297	reaction. The study drug was not suspected to have any clinical or laboratory adverse effects
	298	different from placebo that could disturb the double-blind nature of the trial. Therefore, the
	299	same study-neurologist functioned as both the treating and evaluating physician.
	300	
	301	Safety measures were assessed from the time of enrollment until 12 months following study
	302	completion. Haematological and biochemical tests were performed at enrolment and at every
	303	12 months, including full blood count, renal and liver function tests, proteins, cholesterol,
•	304	triglycerides, glucose and electrolytes.
, ,	305	
	306	The whole procedure followed the clinical trial guidelines as required by the USA Food and
)	307	Drug Administration, European Medicines Agency, and the Committee for Medicinal
	308	Products for Human Use. ⁴⁴
i	309	
	310	Statistical analysis
	311	Power calculations could not be done before the study because of the lack of information
	312	from previous studies on potential effect sizes. Based on the population size of our country
	313	and the centre of reference, the CING, we were able to enrol the 20% of the total RRMS
,		
,		

2		
2 3 4	314	patients eligible for treatm
5 6	315	availability parameter and
7 8	316	
9 10	317	Baseline characteristics w
11 12	318	Kruskal-Wallis rank test
13 14 15	319	categorical variables, as a
16 17	320	
18 19	321	For the primary outcome,
20 21	322	interventions compared to
22 23 24	323	number of relapses withir
24 25 26	324	relapse rate was calculate
27 28	325	patient-years followed for
29 30	326	among all comparable par
31 32	327	
33 34 35	328	For the secondary end-po
36 37	329	curves were constructed.
38 39	330	wise fashion for the active
40 41	331	analysis and by Cox prop
42 43 44	332	age and DMT in the supp
44 45 46	333	0.05. Multivariate models
47 48	334	was no overt violation of
49 50	335	
51 52	336	Both, per-protocol and in
53 54	337	research questions to be a
55 56 57	338	follow patients were impu
58 59		
60		F

1

nent in the trial. Sample size was strictly based on this subjects' d the novelty of the assessed intervention.

vere compared across all intervention groups by ANOVA or

for continuous variables and by an exact chi-squared test for

appropriate.

the ARR was analysed in a pair-wise fashion for the active o placebo using negative binomial regression models adjusted for n two years before baseline, EDSS score at baseline and DMT. The ed as the total number of relapses divided by the total number of r each treatment group. ARR differences were also calculated rameters and reported as percent difference.

bint outcome, the time to disability progression, Kaplan–Meier Progression to disability and time thereof was compared in a paire interventions versus placebo by the log-rank test in the main ortional-hazards models with adjustment for baseline EDSS score, ortive analysis. Each test was performed with a significance level of s considered all variables with P < 0.1 on univariate models. There the proportionality assumption.

tention to treat (ITT) analyses were performed, for different sets of inswered, and both are reported. Missing data of the five lost to uted by use of the last-observation-carried-forward (LOCF)

BMJ Open

3	
4	
5	
5 6 7	
7	
8	
à	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	
23	
20	
24 25	
25	
26	
27	
28	
29	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	
21	
22	
3Z	
33	
34	
35	
36	
37	
38	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	
60	

339 approach. Due to the proof-of-concept design of the study, the considerable non-adherence 340 rate (49%) and the interpretation issues caused thereof regarding the ITT analysis, the per-341 protocol analysis considered being more informative and appropriate method approach to 342 answer the research addressed questions of efficacy of the interventions when subjects were 343 continuously following the protocol. All analyses were performed with STATA SE 10.0 344 (College Station, TX, USA). P-values are two-tailed. 345 346 **Role of the funding source** 347 The funders had no role in study design, data collection and analysis, decision to publish, or 348 preparation of the manuscript. All members of the writing group had full access to all study 349 data and contributed to its interpretation and prepared, reviewed, and approved the 350 manuscript for submission. All authors had final responsibility for the decision to submit the 351 paper for publication. 352 353 Results 354 **Study population** 355 From July 2007 through December 2010 (including the 12-month extended period), a total of 356 80 MS patients were randomly assigned to a study group at the CING (tertiary neurological 357 center). 358 359 Among the 80 patients, 20 patients were randomly assigned to each of the three groups to 360 receive the interventions and 20 to receive placebo (Fig 2). Baseline characteristics of both 361 the ITT and the per-protocol populations were similar across groups (Table 1A and 1B). 362 Total drop-out patients completed follow-up until study completion and were included in the

363 ITT analyses (Table 3). Five patients were totally lost to follow before their first scheduled

visit and two patients dropped-out before their first scheduled visit progressed to secondary progressive MS. Fifteen patients dropped-out without successfully completing the "normalization" period including five pregnancies. Another 17 patients dropped-out early after entry baseline. Seven patients that dropped out were given monoclonal antibody treatment (natalizumab). Overall, a total of 41 (51%) patients completed the 42-month study (July 2007 through December 31st 2010, including the 12-month extended period) where one patient from group A and two from the placebo group transferred on natalizumab, and 39 (49%) patients either withdrew (drop-out) or lost to follow. Reasons for study-interventions discontinuation are listed in Figure 2.

374 Efficacy

Relapses

As a proof-of-concept trial we primarily needed to answer whether the interventions were effective for those MS patients who adhere to the assigned treatment, the per-protocol analysis.⁴⁵ For the sake of methodological comprehensiveness we also present the ITT analysis as a secondary analysis, to answer a different question, complementary to our core hypothesis; like what happened to MS patients who were placed on the interventions (the effect of assignment).⁴⁵ Otherwise, as a result of a high drop-out rate, an ITT analysis will not likely be able to show the superiority of an intervention even if it is effective.⁴⁵ In any instance, the proper approach of evaluating a study data is to understand what question prompted the research and assure that the analysis is appropriate for providing the answer whatever it is called. Both analyses can be performed for a study, using the results from the different analyses to answer different research questions.⁴⁵ These interventions are original, composed by a different treatment rational, the SM, never tested before and the important main concern was to evaluate their efficacy and safety based on the per-protocol treated MS

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
4 5 6 7 8 9 10 11 2 3 4 15 16 7 8 9	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
3Z 22	
აა 2∕I	
25	
38	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	
38	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

patients, without any peripheral noise. The question that had to be answered was: "whathappens to the patients that are placed and stick on the specific treatment".

391

392 Regarding the per-protocol analysis, during the first year of treatment, the ARR was 0.80, 393 0.40, 0.78 and 0.83 for the four intervention groups respectively. During the second year, the 394 ARR was 0.90, 0.40, 0.67 and 1.25 for the four intervention groups respectively. Overall, for 395 the two-year primary end point, 8 relapses were recorded for the 10 patients in PLP10 group 396 (0.40 ARR) versus 25 relapses for the 12 patients in placebo (1.04 ARR), a 64% adjusted 397 relative rate reduction (RRR) for the PLP10 group (RRR 0.36, 95% confidence interval (CI) 398 0.15 to 0.87, p=0.024) (Tables 2A, 4 and Fig 3A and 3C). Excluding patients on monoclonal 399 antibody (natalizumab) treatment, the observed adjusted RRR became stronger (72%) over 400 the two years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016, Tables 2B and 4). Pair-wise 401 comparisons for the other two groups against placebo did not yield statistically significant 402 results (Tables 2A, 2B). The proportion of patients with ≤ 1 relapse for the two years on-study 403 was higher in the PLP10 group than in the placebo group (90% vs. 42%, p=0.030, Table 4). 404 Seeking to investigate further the observed difference, we compared the relapse rate during 405 the 24 months before entry to the study to the 24 months on-treatment for each intervention 406 group. We observed a statistically significant relative reduction in the ARR (70%) only in the 407 PLP10 group (RRR 0.30; 95% CI 0.14 to 0.65, p=0.003, Table 2A); within-group 408 comparisons for the three other groups ARR reduction was not significant and remained not 409 significant when natalizumab treated patients were further excluded from the analysis. The 410 effect of PLP10 through time at different time-windows versus placebo for all-time on-study 411 patients is shown in Figures 3A to 3D. The ARR analysis, within time-windows, was not an 412 assigned endpoint, but it could help in the process of evaluating parallel information as the 413 time needed for a specific treatment intervention activity to be evident, as well as the efficacy

profile through time. PLP10 reached maximum effect within a year on-treatment (counting

from the entry baseline) and remained stable at an ARR of 0.4, displaying a steadily reduced

ARR with long free-relapse time-windows. These group B characteristics are considered

important parameters of a successful MS treatment where the rule than the exception is the

heterogeneity among patients' disease evolution. Specifically, Figure 3D demonstrates the

dispersion of relapses throughout the 2-year period of all-time on-study (excluding patients

on natalizumab) of PLP10 (n=10) vs. placebo (n=10). Placebo, in line with the existing

knowledge of how relapse history works in relation to future relapses on MS patients

(contagion phenomenon) indicates the expected linearly increased trend of the relapse

incidence.⁴⁶ The same phenomenon was true for the groups A and C. Finally, during the 12

month post-study extended period (January 1st 2010 to December 31st 2010) all-time on-study

patients that received PLP10, showed persistent benefit in the ARR compared to placebo (six

relapses for the 10 subjects within PLP10, 0.6 ARR vs. 19 for the 12 subjects within placebo

group, 1.58 ARR) indicating a statistically significant 62% adjusted relative rate reduction in

Regarding the ITT analysis, within PLP10 group, none of the nine drop-out patients changed

to natalizumab and two out of nine discontinued because of pregnancy, whereas two out of

patients within the placebo arm population were on natalizumab, including the two patients

that transferred while all-time on-study versus none within PLP10 group (Supplementary

Information Fig 1). As reported, natalizumab reduces ARR by 68%, decreases the possibility

of disability progression by 43% with 57% of patients free of new or enlarging T2 lesions on

seven drop-out patients from the placebo group changed to natalizumab (a total of four

the ARR for the PLP10 group (RRR 0.38, 95% CI 0.12 to 0.99, p=0.046).

1	
2	
3	
4	
2 3 4 5 6 7 8	
6	
7	
1	
8	
9	
10	
11	
12	
13	
1/	
15	
16	
17	
18	
9 10 11 12 13 14 15 16 17 18	
20	
21	
22	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 32	
∠J 04	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
40	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

,	MRI scans compared to 15% on placebo. ⁴⁷ The relapses of the drop-out patients are reported
}	in Table 3A. As expected no statistically significant differences in the ARR were calculated
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	To peer review only - http://binjopen.binj.com/site/about/guidennes.xittini

BMJ Open

for the comparison of any group versus placebo for the 24 months on-treatment, with a 0.75
ARR within PLP10 (30 relapses) and 1.03 ARR within placebo (41 relapses) group, a 27%
ARR reduction (Table 3B). Interestingly, despite the high non-adherence rate, there was a
statistically significant difference for the comparison of the ARR in the 24 months before
entry baseline to the 24 months on-treatment for the PLP10 group (RRR 0.45, 95% CI 0.26 to
0.78, p=0.005).

Disability progression

Regarding the per-protocol analysis, at two years, the time to disability progression, with confirmation after six months (secondary end-point) was significantly longer only with PLP10. The cumulative probability of disability progression was 10% in the PLP10 group and 58% in the placebo group (p=0.019) (Supplementary Information Fig 2). After excluding patients on natalizumab, there was an increased statistically significant difference between the PLP10 and the placebo group for the same analysis (p=0.006) (Fig 4A). At two years, the cumulative probability of progression was 10% in the PLP10 group and 70% in the placebo group, which represents a decrease of 60 percentage points or a relative 86% decrease in the risk of sustained progression of disability within PLP10 group (adjusted hazard ratio, 0.11; 95% CI 0.01 to 0.97, p=0.047). One versus seven out of ten patients progressed to confirmed disability in the PLP10 and the placebo groups respectively when patients on natalizumab were excluded. No statistically significant difference was observed for any comparison of the other two groups compared to placebo (Fig 4A and Supplementary Information Fig 2).

Regarding the ITT analysis, at two years, the cumulative probability of progression was 10%
in the PLP10 group and 35% in the placebo group (p=0.052, a trend for an effect), which
represents a decrease of 25 percentage points or a relative 71% decrease of the PLP10 for the

2	
3	
4	
5	
6	
7	
8 9	
9 10	
11	
12	
13	
14	
14 15 16 17	
16	
17	
18	
19	
20 21	
21	
22 23	
23	
24 25	
25 26	
20	
26 27 28	
29	
30	
30 31 32 33	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
56 57	
57 58	
58 59	
60	
00	

1

risk of sustained progression of disability (adjusted hazard ratio 0.22, 95% CI 0.04 to 1.07,
p=0.06) (Fig 4B). Two versus seven out of the total randomized patients progressed to
confirmed disability in the PLP10 and the placebo groups respectively. No significant
differences were observed for groups A or C against placebo (Fig 4B). The mean change in
Expanded Disability Status Scale (EDSS) score as a function of visit number is shown in
Figure 5.

470

471 MRI

Over two years, the MRI results support the overall conclusion from the study that PLP10 has
a positive effect on disease activity since only 29% from the PLP10 group as opposed to 67%
from the placebo group developed new or enlarging T2 lesions (57% relative risk reduction).
Excluding patients on natalizumab there is an increased relative risk reduction (64%) between
PLP10 as opposed to placebo with 29% of patients on PLP10 and 80% on placebo with
development of new or enlarging T2 lesions (Table 4).

478

479 Safety

480 Over the course of the 30 month study no significant adverse events were reported from any 481 group. According to a questioner procedure the only aetiology for drop-outs was the 482 palatability and smell of the formula preparations. Nausea was reported by two patients. No 483 abnormal values observed on any of the biochemical and haematological blood tests. No 484 allergic reactions reported.

485

486 **Discussion**

487 In this proof-of-concept clinical trial assessing the safety and efficacy of three cocktail

intervention formulas in RRMS, we observed a significant benefit for the novel PLP10

Page 21 of 62

489

490

491

492

493

494

495

496

1 2

BMJ Open

intervention compared to placebo for both the ARR and the progression to disability. Our

results include analyses pertaining to a total of 42 months study collected data, including the

12-month, free of intervention treatment, extension period. We focused on the per-protocol

data analysis since it is the appropriate method to best provide the answer to the proof-of-

concept trial-addressed question. The high drop-out rate was solely the result of formulas

palatability, a common phenomenon in trials using oily interventions. We thus present our

main per-protocol analysis, as well as a subgroup analysis excluding patients on natalizumab.

We have found a statistically significant reduction in the ARR and the disability progression

2	
3	
4	
5 6	
6	
7	
8	
9 10	
10	
11	
12	
13	
1/	
13 14 15 16 17	
16	
10	
10	
18	
19	
20	
21	
22	
23	
23 24 25 26 27	
25	
26	
27	
28	
29	
30	
31 32	
32 22	
33	
34 35	
35	
36 37 38	
37	
38	
39 40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
49 50	
50 51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

490	we have found a statistically significant reduction in the AKK and the disability progression
497	comparing not only patients on PLP10 versus placebo but also comparing the ARR of the
498	PLP10 patients in the 24-month period prior to the study to the ARR of the 24 months on-
499	study; the observed differences became larger when patients that received natalizumab (the
500	most potent disease modifier) were excluded. The ARR decreased within a year on PLP10
501	and significantly remained stable until study completion. Statistically significant difference of
502	ARR between patients on PLP10 versus placebo continued for the additional 12 month
503	extended period (persistent effect) without significant difference on DMT. These clinical
504	findings are supported by the results regarding the MRI analysis where the proportion of
505	patients free from new or enlarging brain T2 lesions was also higher in PLP10 group versus
506	placebo. The persistent effect within the extended period it is considered of major importance
507	and supportive of the reults since it is in agreement with the very long washouts, reported
508	necessary, for omega-3 fatty acids and especially DHA to return towards pretreatment values
509	within the fatty acids of plasma, platelets, monocytes and red blood cells. ⁴² This study also
510	provides important 30-month, placebo-controlled information about the safety of PLP10, A
511	and C interventions, where no any severe or significant side-effects have been reported.
512	

As medications used to treat MS become increasingly highly specific and potent, attention to safety is paramount. Current available treatments are products of reductionism, partially effective, associated with severe side effects without (re)myelinating or neuroprotective abilities. Interferons and glatiramer acetate, the most widely used first-line MS drugs available today, are associated with the least severe side-effects among MS therapies but they are reported with only 29-33% ARR reduction and with no significant effects on the progression of disability. Natalizumab as previously discussed and Fingolimod with 54% ARR reduction (without significant benefit on the progression of disability) are second-line drugs associated with severe side-effects.^{47, 48} No existing MS treatment has ever been designed as a result of SM concept approach or with a potential to effectively stimulate intrinsic remyelinating and neuroprotecting mechanisms or exert such an action. Now we propose that a holistic SM model approach has to be applied by synchronized action on all involved perturbed mechanisms. PLP10 has innovative characteristics like no any other intervention or medication tried before for MS treatment, with unique efficacy abilities through different mechanisms of action, probably by the synergistic effect of its constituent ingredients. PLP10 has all the characteristics of a medical food with the action to feed a normal metabolic process by supplying nutritional structural membrane precursors, building blocks, and vitamins from dietary sources that enhance remyelination and neuroprotection and simultaneously promote normalization of all cellular

membranes lipid content. The intention is to normalize the specific nutritional requirementsof the MS patients.

536 Different factors and molecular entities appear to be part of the possible aetiology for MS 537 with specific PUFA and antioxidants found to be key substances related to all known

BMJ Open

538	pathogenic and recovery mechanisms. But, it is well established that MS patients are
539	characterized with significant deficiencies in antioxidant efficiency as well as in PUFA levels
540	in blood and cellular membranes. ^{11, 49-51}
541	
542	According to one hypothesis, the change in the ratio of omega-3 to omega-6, due to
543	increasing consumption of omega-6 PUFA, meaning high accumulation of AA, in the
544	Western diet, may be one of the major factors responsible for the increasing incidence of
545	inflammatory diseases relative to populations. In the Western diet, the ratio of omega-3 to
546	omega-6 is about 1:20–30; in populations that consume fish-based diets, the ratio is about
547	1:1–2. ^{52, 53} The intervention daily dose was aiming and believed to be high enough to
548	restore/amplify body efficient antioxidant activity and ensure cellular membranes lipid profile
549	normalization (PUFA content) and simultaneously potentiate involvement of the ingredients
550	in the anti-inflammatory and recovery mechanisms. Diet fatty acid molecules need about six
551	months period to exert their beneficial effect and this essential parameter was for the first
552	time under consideration in our study design. ⁴² This chronotherapy parameter it is of major
553	importance in line with the SM treatment philosophy and if it is not included in the trial
554	design the possibility of misleading result evaluation greatly increases. In fact, considering
555	that omega-3 supplementation can release and replace excess AA within the cellular
556	membranes, we can speculate that an increased inflammatory activity can possibly result
557	during the first six months of supplementation (during normalization period).
558	
559	The maintenance of myelin requires continued turnover of its components throughout life. ^{54,55}
560	In addition to the EPA, DHA, LA, and GLA, PLP10 was containing limited quantities of
561	other structural PUFA, specific MUFA (mostly oleic acid) and SFA (palmitic and stearic
562	acid), specifically to provide a direct source for neuronal cell membranes rehabilitation and

for (re)myelination and neuroprotection since they are all major components, precursors and

1	
2	
3 4	
4	
5	
6	
7	
0	
8	
9	
9 10 11 12 13 14 15	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
21 22 23 24 25 26	
23	
2/	
24	
20	
26	
27	
26 27 28	
29	
30	
31	
 30 31 32 33 34 35 36 37 38 39 	
22	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
51	
58	
59	
60	

1

563

564 building blocks of any new physiological myelin and cellular membranes in general. Assembly of the correct molecules into myelin membrane may be especially critical during 565 active synthesis. Possibly, if critical constituents aren't available or are metabolically 566 blocked, amyelination, dysmyelination or demyelination may ensue.⁵⁶ 567 568 569 The well known and established safety of the ingredients used and the protocol guidelines 570 were supportive reasons for us to proceed with the clinical study even though with limitation 571 on the pre-estimation of required trial sample size as it was discussed in method section. The 572 adherence of the subjects is another issue but the duration of the study (42 months) is adding power to the results;⁴⁴ having the research questions been consciously and carefully 573 approached and answered. Furthermore, the statistical methodologies used along with the 574 575 appropriate adjustments, broadly accepted for MS clinical trials, power the findings, results, and significance. The baseline characteristics of the treatment arms could possibly be 576 577 considered indicative of four very active groups of patients but that was the result of the 578 limited number of RRMS population eligible for the study within Cyprus. On the other hand 579 the balanced baseline characteristics without statistical differences, the statistical adjustments 580 (for all important baseline parameters i.e. relapses, EDSS, age and DMT) and the 581 randomization within four different groups are the safety valves against data 582 misinterpretation. It is possible to question why DMTs efficacy cannot be emerged out of the 583 data analysis, of the four treatment arms, and in accordance to their published values. We 584 believe that the limited efficacy of the DMTs, the sample size and the statistical adjustments 585 were strong limiting determining factors for such an indication to be countable. An additional 586 argument is that the efficacy reported for the analysis of pre-treatment (24 months before entry baseline) vs on-trial ARR could be considered as potentially biased due to differences 587

Page 25 of 62

1 2

BMJ Open

2	
3	
4	
5	
2	
6	
7	
8	
9	
4	^
1	U
1	1
1	2
1	0 1 2 3 4
1	1
4	- -
1	5
1	6
1	7
1	8
1	õ
ו ר	0
2	U
2	1
2	.8901234567890123456782
っ っ	3
~	1
2	4
2	5
2	6
2	7
	o
2	0
2	9
3	0
3	1
ž	ว
ა ი	~
3	3
3	4
3	5
3	6
ົ່	7
С С	1
3	8
3	9
4	0
4	
4	
4	
4	4
4	
4	
-	7
4	1
4	8
4	9
5	0
5	
5	
5	
5	4
5	
5	
5	
5	8
5	
6	
τ)	υ

588	of how relapses were defined during the course of a study compared to pre-treatment period;
589	or due to regression to the mean or placebo effect. This analysis was performed as an
590	additional exploratory analysis that we were able to do due to the availability of data. The
591	relapses of the two pre-treatment years were drawn out of the patients' archival records by
592	the same treating neurology involved in the study (MP), and according to the patients'
593	hospitalization date for receiving intravenous methyl-prednisolone. This analysis was not
594	used as a primary or a secondary end-point under investigation although it is usually reported
595	by many clinical studies. As a matter of fact many early phase trials are based only on such
596	an analysis (before vs after treatment results). In almost all MS trials the number of relapses
597	within the two years before baseline is a factor under adjustment for the statistical analyses. ⁴⁸
598	The inclusion of the post-hoc MRI analysis is another limiting factor that needs attention
599	since it was used as an additional aside exploratory approach (due to study budget limitations
600	it was not possible to be used as a formal endpoint); but the MRI evaluation was blinded and
601	can be considered as representative of the randomized subjects within the treatment arms. As
602	far as the regression to the mean and the placebo effect concerns we believe that the 6-month
603	normalization period is an accountable and valuable eliminating factor of the possible effect;
604	as well as the presence of four groups, where only the PLP10 treatment arm is associated
605	with statistically significant efficacy vs placebo. It is a placebo-controlled study after all.
606	

Our observations are consistent with the idea that simultaneous availability of specific PUFA along with other major membrane and myelin building blocks in combination with specific antioxidants, within optimum quantity, quality, ratio and structural form can possibly result to a more appropriate holistic therapy reducing MS disease activity. This is probably succeeded through synergistic and/or simultaneous effect on the interactions and dynamics of the most probable environmental and biological disease causing factors that induce complex biological

network of events for disease pathogenesis and evolution; as well as on the protective and
reparative mechanisms. We can additionally speculate that the nature of the intervention
formula cannot be prohibitive for its use as preventive regimen and does not preclude
probable positive efficacy on the other types of MS, but has to be further investigated. A
larger size multicenter clinical trial will better establish PLP10 place in the armamentarium of
treatments for MS.

It is commonly accepted that nutrition is one of the possible environmental factors involved in the pathogenesis of MS, but its role as complementary MS treatment is unclear and largely disregarded.⁵⁷ Dietary antioxidants and fatty acids may influence the disease process in MS by reducing immune-mediated inflammation, oxidative stress and excitotoxic damage.¹¹ Present data reveal that healthy dietary molecules have a pleiotropic role and are able to change cell metabolism from anabolism to catabolism and down-regulate inflammation by interacting with enzymes, nuclear receptors and transcriptional factors.⁵⁷ The present study, for the first time provides strong link evidence between dietary, metabolic, immunological, and neurobiological aspects of MS after three quarters of a century of unsuccessful scientific efforts. This might probably be the beginning of opening new horizons and new avenues in the approach of MS prevention and treatment, and possibly of other multifactorial chronic diseases, including neurodegenerative and autoimmune as well.

1a.		C DI	0 0	DI I	D
Characteristics	Group A (n=20)	Group B† (n=20)	Group C (n=20)	Placebo (n=20)	P- val
Sex					
Female - no. (%)	15 (75)	15 (75)	15 (75)	15 (75)	1.0
Age (yr)					
Mean ± Standard Deviation (SD)	38.0±11.9	36.9±8.4	37.7±8.7	38.1±10.9	0.9
Median (Range)	38.0 (22 - 65)	37.0 (25 –61)	36.5 (24 - 54)	36.0 (21–58)	
Treatment history					
Patients on DMT- no. (%)	11 (55)	9 (45)	12 (60)	10 (50)	0.8
Pre-treatment disease duration (yr)					
Mean ± SD	9.0±7.6	8.6±4.8	8.6±5.3	7.7±5.7	0.9
Median (Range)	7.5 (2 – 37)	8.0 (2 – 20)	8.0 (3 – 24)	6.5 (2 – 25)	
Pre-treatment relapses‡					
Mean ± SD	2.33±1.68	2.41±1.73	2.31±1.66	2.10±1.32	0.9
Median (Range)	2.0 (1 – 6)	2.0 (1 – 7)	2.0 (1 – 6)	2.0 (1 – 4)	
ARR	1.17	1.21	1.16	1.05	0.9
Patients -% with ≤ 1 relapse	40	45	40	35	
Baseline EDSS score‡					
Mean \pm SD	2.52±1.23	2.15±1.05	2.42±1.21	2.39± 0.93	0.7
Median (Range)	2.5 (1.0-5.5)	2.0 (1.0-4.0)	2.5 (0.0-5.0)	2.5 (1.0-4.0)	
1b.					
ID. Characteristics	Group A	Group B†	Group C	Placebo	P-
Sex	(n=10)	(n=10)	(n=9)	(n=12)	val
Female - no. (%)	5 (50)	7 (70)	6 (66.6)	10 (83.3)	0.4
	5 (50)	(10)	0 (00.0)	10 (05.5)	0.4
Age (yr)	26 (112 P	24 90 1 5 4	40.0+0.1	20.0+12.2	0.7
Mean \pm SD	36.6±13.5	34.80±5.4	40.9±8.1	39.8±13.2	0.5
Median (Range)	34.5 (22–65)	34.5 (26–43)	40.0 (29–54)	37.5 (21–58)	
Treatment history					
Patients on DMT- no. (%)	6 (60)	4 (40)	6 (67)	6 (50)	0.9
Pre-treatment disease duration (yr)					
Mean \pm SD	9.7±10.0	8.3±5.3	11.3±6.1	8.7± 7.1	0.8
Median (Range)	7.5 (2 – 37)	8.0 (2 - 20)	8.0(4-24)	5.5 (2 - 25)	

Mean \pm SD	2.20±1.47	2.70±1.25	1.78±0.66	1.67±1.37	0.241	
Median (Range)	2.0 (1 – 6)	2.5 (1 – 4)	2.0 (1 – 3)	1.5 (1 – 4)		
ARR	1.10	1.35	0.89	0.83		
Patients -% with ≤1 relapse	30	20	33	50		
Baseline EDSS score						
Mean ± SD	2.65±1.37	2.40±1.12	2.11±1.02	2.16±0.96	0.698	
Median (Range)	3.0 (1.0-5.5)	2.5 (1.0-4.0)	2.0 (1.0-4.0)	2.0 (1.0-3.5)		
 * PLP10 group * Available data at Entry Baseline (n=18 for group A, n=17 for group B, n=19 for group C, n=19 for group D) Table 1. The table section 1a reports the demographics and baseline disease characteristics for total randomized population by treatment arm. 						

The table section 1b reports the demographics and baseline disease characteristics of all-time onstudy population by treatment arm. There were no significant between study-group differences at baseline for any characteristic.

638	
639	
640	
641	
642	
643	
644	
645	
646	
647	
648	
649	
650	
651	

2a.			9	5.1	~	-		
Characteristics	Grou (N =	ap A Group B† =10) (N =10)			up C =9)	Placebo (N=12)		
End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	22	17	27	8	16	13	20	25
Annual Relapse Rate (ARR)	1.10	0.85	1.35	0.40	0.88	0.72	0.83	1.04
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-18		-62		-30		N/A
P Value against placebo		0.468		0.024		0.578		
ARR change -% (Y to X)¶	-2	3	-7	0	- 1	18	+	25
P value against baseline		425 0.0		03 0.578		70	0.500	

Y: Total number of relapses of 24 months pre-treatment (bus

¶ Unadjusted estimate

2b.								
<u>Excluding patients on</u> <u>natalizumab</u>		oup A [=9)	Grouj (N =		Grou (N =			cebo =10)
End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	16	15	27	8	16	13	13	19
Annual Relapse Rate (ARR)	0.88	0.83	1.35	0.40	0.88	0.72	0.65	0.95
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-13		-58		-24		N/A
P Value against placebo		0.493		0.016		0.412		
ARR change -% (Y to X)¶		-6	-7	0	- 1	8	+-	46
P value against baseline	0.	857	0.0	03	0.5	78	0.3	354

X: Total number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

† PLP10 group

¶ Unadjusted estimate

Table 2. The table section 2a reports the two year primary end points of ARR of all-time on-study

population by treatment arm and percent difference with placebo. During the 24mo period on-treatment

the ARR of the group A was 0.85 with 18% decrease compared to placebo (p=0.468), of PLP10 group 0.40 with 62% decrease (p=0.024), and of group C 0.72 with 30% decrease (p=0.578) and reports the comparison of the 24mo pre-treatment ARR (baseline ARR) to 24mo on-treatment ARR of all-time on-study population including patients on natalizumab.

The table section 2b reports comparison of the 24mo pre-treatment ARR to 24mo on-treatment ARR of all-time on-study population excluding patients on natalizumab; and the comparison of the ARR during the 24mo period on-treatment (primary end point) between each one of the groups against placebo.

652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	
663	
664	
665	
666	
667	
668	
669	

Characteristics	Group A (N =8)		Group B† (N=7)		Group C (N=10)		Placebo (N =7)	
	Х	Y	Х	Y	Х	Y	Х	Y
No. of Relapses	20	14	14	14	27	26	20	13
Annual Relapse Rate (ARR)	1.25	0.88	1.00	1.00	1.35	1.30	1.42	

X: Total number of relapses of 24 months pre-treatment

Y: Total number of relapses of 24 months on-treatment

-			
4	h		
	1)	-	

3b.								
Characteristics	Grou (N =	*		up B† =20)		up C =20)		ebo =20)
End Point	Х	Y	Х	Y	Х	Y	х	Y
No. of Relapses	45	34	49	30	46	41	43	41
Annual Relapse Rate (ARR)	1.13	0.85	1.23	0.75	1.15	1.03	1.08	1.03
ARR Reduction -% (Y to X)¶	-2	5	-	39	-1	.0	-	5
P value against baseline	0.1	20	0.	005	0. 4	75	0.6	52
% Reduction of the ARR Compared to Placebo (Ys)¶		-18		-27		0.0		N/A
P Value against placebo		0.447		0.121		0.996		

X: Total number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

¶ Unadjusted estimate

† PLP10 group

Table 3. The table section 3a reports the two year primary end point of relapses based on study design as reported by drop-out patients by Treatment Arm. The most drop-out patients that went on disease modified therapy (DMT) were from the group A and placebo with three and two patients respectively on natalizumab. These parameters justify the decreased number of relapses recorded within group A and placebo drop-outs; and this could affect the ITT analysis in favor of placebo when the total two-year recorded data are used. For PLP10 group, 14 relapses were reported at baseline and remained the same during the two-year study. For placebo, 20 relapses were reported at baseline and decreased to 13 during the two-

year study. This is expected since, for PLP10 group 43% of the drop-outs were under DMT at entry baseline and remained the same until the end of the study with no patient on natalizumab; but 57% of the placebo group drop-outs that were under DMT at entry baseline increased to 86% at the end of the study including two patients on natalizumab.

The table section 3b reports comparison of 24 months pre-treatment ARR (baseline) to 24 months on-treatment ARR of total randomized population, by treatment arm. The ARR of PLP10 group was 1.23 at baseline and 0.75 at the end of the study (39% reduction p=0.005), and for placebo 1.08 at baseline and 1.03 at the end of the study (5% reduction p=0.652). No statistical difference was calculated for the other two treatment arms. During the 24 months on-treatment, PLP10 group presented a 27% reduction of ARR *vs.* placebo (p=0.121), with all groups without statistically significant results.

670	
671	
672	
673	
674	
675	
676	
677	
678	

Characteristics*	Group A (n=10)	Group B PLP10 (n=10)	Group C (n=9)	Placebo (n=12)	P-v a Grou B vs Plac
Annual relapse rate over 1 year**	0.80	0.40	0.78	0.83	
Total number of relapses**	8	4	7	10	
Primary end points					
Annual relapse rate over 2 years (95% CI)**	0.85	0.40 (0.15-0.87)	0.72	1.04	0.0
Total number of relapses**	17	8	13	25	
Excluding patients on natalizumab	(n=9)	(n=10)	(n=9)	(n=10)	
Annual relapse rate over 2 years (95% CI)	0.83	0.40 (0.10-0.79)	0.72	0.95	0.0
Total number of relapses	15	8	13	19	
Secondary end points					
Cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -% ** Excluding patients on natalizumab	43	10 (1/10)	24	58 (7/12)	0.0
cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -%	33	10 (1/10)	24	70 (7/10)	0.0
Exploratory Results					
Patients proportion with ≤ 1 relapse over 2 years -% **	50 (5/10)	90 (9/10)	56 (5/9)	42 (5/12)	0.0
MRI					
Patients proportion with new or enlarging T2 lesions-% **		29 (2/7)		67 (4/6)	
Excluding patients on natalizumab Patients proportion with no new or enlarging T2 lesions-%		29 (2/7)		80 (4/5)	
DMT (interferons, glatiramer acetate) and natalizumab					
Patients proportion on DMT and natalizumab at the end of 2 years-% **	80 (8/10)†	60 (6/10)	67 (6/9)	75 (9/12)‡	0.7
 CI denotes confidence interval. Including patients on natalizumab lout of 10 on natalizumab 2 out of 12 on natalizumab 					

ו ס
2
ა ⊿
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
10
20
∠∪ 21
∠ I 20
22
∠3
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 3 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 21 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 31 \\ 32 \\ 33 \\ 4 \\ 56 \\ 7 \\ 8 \\ 9 \\ 33 \\ 34 \\ 56 \\ 7 \\ 8 \\ 9 \\ 33 \\ 34 \\ 56 \\ 7 \\ 8 \\ 9 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 33 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 31 \\ 34 \\ 35 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$
25
26
27
28
29
30
31
32
33
34
35
36
37
38
30
40
40 41
42 43
43 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

1

680	Acknowledgments: We thank all participant patients. We thank Thyrsos Posporis MD and the
681	central reading centre (Ayios Therissos Medical Diagnostic Centre, Nicosia, Cyprus), and
682	Eleni Eracleous, MD (neuroradiologist) for the contribution on the MRI scans and their team
683	for the MRI reading. Special thanks to Elena Kkolou the pharmacist involved in the study and
684	Eftychia Gaglia for her nursing contribution and collection of blood from the patients. We
685	also thank Demetris Hadjisofoklis and Ioanna Leontiou (University of Nicosia, Helix
686	Business incubator) for their contribution on randomization process, data collection, filing
687	and blind codes keeping. Additionally we would like to thank the CING for hosting the
688	project. Moreover, we thank the Cyprus Ministry of Commerce, Industry and Tourism for
689	funding the project; and Yasoo Health Ltd., for providing some of the raw materials in
690	exchange of investigating, on their behalf, the efficacy and safety of γ -tocopherol.
691	
692	Contributors: All authors interpreted the data. I.S.P drafted the report and figures and all
693	authors critically revised and approved the final version. M.C.P and I.S.P were responsible
694	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs
695	and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic
696	treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L
697	contributed on the intervention formulation and composition rational. I.S.P supervised the
698	composition procedure of the interventions and the fatty acid profile analysis of the red blood
699	cell membranes. E.E.N and I.S.P performed the statistical analyses. E.E.N was an
700	independent scientist. All authors vouch for the accuracy and completeness of the data and
701	the statistical analyses.
702	

BMJ Open

703	Funding: Supported by a grand from the Cyprus Ministry of Commerce, Industry and
704	Tourism, program for the creation of new high technology and innovation enterprises through
705	the business incubator.
706	
707	Competing interest: M.C.P, G.N.L, I.S.P received grand support from the Cyprus Ministry of
708	Commerce, Industry and Tourism, Program for the Creation of New High Technology and
709	Innovation Enterprises through the Business Incubator. PALUPA Medical Ltd. is a research
710	company formed and registered for completion of the study, as required by the Governments'
711	funding grand program. M.C.P, G.N.L, I.S.P, and CING are all stockholders of the PALUPA
712	Medical Ltd. M.C.P is an employee at the CING. I.S.P is a senior research collaborator
713	hosted by the CING. G.N.L is a CING collaborator. E.E.N declares no-competing interest.
714	No pharmaceutical companies were involved in this phase II clinical trial. The intervention is
715	under a USA provisional patent; Application Number 61469081.
716	
717	Ethical approval: Cyprus National bioethics committee (reference EEBK/EII/2005/10).
718	
719	All authors have completed the Unified Competing Interest form at
720	www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and
721	declare that (1) M.C.P, G.N.L, I.S.P have support from Cyprus Ministry of Commerce,
722	Industry and Tourism, Program for the Creation of New High Technology and Innovation
723	Enterprises through the Business Incubator for the submitted work; (2) E.E.N has no
724	relationships with Cyprus Ministry of Commerce, Industry and Tourism, or PLUPA Medical
725	Ltd. that might have an interest in the submitted work in the previous 3 years; (3) their
726	spouses, partners, or children have no financial relationships that may be relevant to the

2	
2	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
3 4 5 6 7 8 9 101 12 13 14 15 6 7 8 9 101 12 13 14 15 16 7 8 9 21 22 23 24 5 6 7 28 29 30 1 22 33 32 32	
24	
25	
20	
20	
27	
28	
29	
30	
31	
32 33 34 35 36 37 38	
33	
34	
35	
36	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
55	
54	
55	
56	
57	
58	
59	
60	

submitted work; and (4) E.E.N has a non-financial interests that may be relevant to thesubmitted work.

729

1

730	The Corresponding	Author has the right to	grant on behalf of all	authors and does grant on
-----	-------------------	-------------------------	------------------------	---------------------------

behalf of all authors, an exclusive license on a worldwide basis to the BMJ Publishing Group

T32 Ltd and its Licensees to permit this article (if accepted) to be published in BMJ editions and

any other BMJPGL products and sublicences to exploit all subsidiary rights, as set out in our

734 licence (<u>http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication)</u>."

735 Data Sharing:

736 No additional unpublished data from the study are available

737

Article Summary

Article focus:

- The increasing prevalence of Multiple Sclerosis (MS), the limited efficacy and the side effects of the existing treatments urge the clinical need for the development of new, innovative, more effective, safe, and preventive treatment strategies.
- For the first time we propose three original nutraceutical treatment intervention-cocktails, formulated based on systems medicine through nutritional systems biology rational; with PLP10 representing the complete composition of the formulation and the other two treatments represent partial formulations.
- We have studied the proposed interventions on 80 relapsing remitting MS patients (four

BMJ Open

groups of 20 each) for a total of 42 months, in a randomized, double-blind, placebocontrolled, phase II proof-of-concept clinical trial.

Key messages:

- The per-protocol data analyses indicated that PLP10 is associated with significant efficacy vs placebo on both reducing the annualized relapse rate and disease progression without adverse or significant side effects.
- PLP10 has probably the ability to interfere with the total known repertoire of mechanisms involved in MS pathogenesis as well as with the recovery mechanisms, neuroprotection and remyelination.; it is potentially able to manipulate global perturbed networks of the disease causing factors rather than focusing only on unique failing components.
- This proof-of-concept clinical study might be indicative and the beginning of new avenues in MS prevention and treatment and of new epoch of novel drug development with dynamic therapeutic potential for chronic complex multifactorial diseases.

Strengths and limitations of this study:

- The strength of this study is the systems medicine therapeutic approach, the length of the study the inclusion of the six months normalization (chronotherapy) period, and the study protocol following all indicated appropriate guidelines with definite inclusion/exclusion criteria and primary/secondary end points.
- The sample size and the high rate of drop-outs (palatability of the formula) are the limitations associated with the present study.
- A phase III multi-center clinical trial will establish the present intervention regime among the best choices among neurodegenerative diseases prophylaxis and MS treatment drugs faretra.

2	
3 4 5 6	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
$\begin{array}{c} 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 132\\ 33\\ 34\\ 35\\ 37\\ 38\\ 9\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\$	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
46 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58	
59	
60	

738

739	Refe	erences
740	1.	Baranzini SE, Oksenberg JR, Hauser SL. New insights into the genetics of multiple
741		sclerosis. Journal of Rehabilitation Research and Development 2002;39:201-210.
742	2.	Goni J, Esteban FJ, de Mendizabal NV, et al. A computational analysis of protein-
743		protein interaction networks in neurodegenerative diseases. BMC Syst Biol
744		2008;2:52.
745	3.	Lobo I. Multifactorial inheritance and genetic disease. Nature Education 2008; 1.
746	4.	Compston A, Coles A. Multiple sclerosis. Lancet 2002;359:1221.
747	5.	Evans PH. Free radicals in brain metabolism and pathology. British Medical Bulletin
748		1993;49:577-587.
749	6.	Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab
750		Sci 1997;27:11-25.
751	7.	Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez
752		MV. The link between excitotoxic oligodendroglial death and demyelinating diseases.
753		Trends in Neurosciences 2001;24:224-230.
754	8.	Owens T. The enigma of multiple sclerosis: inflammation and neurodegeneration
755		cause heterogeneous dysfunction and damage. Current Opinion in Neurology
756		2003;16:259-265.
757	9.	Smith KJ, Kapoor R, Felts PA. Demyelination: The role of reactive oxygen and
758		nitrogen species. Brain Pathology 1999;9:69-92.
759	10.	Ahn AC, Tewari M, Poon C-S, Phillips RS. The Clinical Applications of a Systems
760		Approach. PLoS Med 2006;3:e209.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4	761	11.	van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF. Antioxidants and
5 6	762		polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 2005;59:1347-1361.
7 8	763	12.	Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases.
9 10	764		The American Journal of Clinical Nutrition 2006;83:S1505-1519S.
11 12	765	13.	Piani D, Fontana A. Involvement of the cystine transport system xc- in the
13 14 15	766		macrophage- induced glutamate-dependent cytotoxicity to neurons. The Journal of
16 17	767		Immunology 1994;152:3578-3585.
18 19	768	14.	Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health
20 21	769		implications. International Journal of Developmental Neuroscience 2000;18:383-399.
22 23	770	15.	Calder PC. Dietary modification of inflammation with lipids. Proceedings of the
24 25 26	771		Nutrition Society 2002;61:345-358.
20 27 28	772	16.	Gil Á. Polyunsaturated fatty acids and inflammatory diseases. Biomedecine &
29 30	773		Pharmacotherapy 2002;56:388-396.
31 32	774	17.	Ariel A, Serhan CN. Resolvins and protectins in the termination program of acute
33 34	775		inflammation. Trends in Immunology 2007;28:176-183.
35 36 37	776	18.	Arita M, Ohira T, Sun Y-P, Elangovan S, Chiang N, Serhan CN. Resolvin E1
38 39	777		selectively interacts with leukotriene B4 receptor BLT1 and chemR23 to regulate
40 41	778		inflammation. The Journal of Immunology 2007;178:3912-3917.
42 43	779	19.	Janakiram NB, Rao CV. Role of Lipoxins and Resolvins as Anti-Inflammatory and
44 45	780		Proresolving Mediators in Colon Cancer. Current Molecular Medicine 2009;9:565-
46 47 48	781		579.
49 50	782	20.	Serhan C, Arita M, Hong S, Gotlinger K. Resolvins, docosatrienes, and
51 52	783		neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-
53 54	784		triggered epimers. Lipids 2004;39:1125-1132.
55 56 57			
57 58			
59 60			

785	21.	Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-
786		inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008;8:349-361.
787	22.	Rossetti RG, Seiler C, DeLuca P, Laposata M, Zurier R. Oral administration of
788		unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation.
789		Journal of Leukocyte Biology 1997;62:438-443.
790	23.	Vatassery G. Vitamin E and other endogenous antioxidants in the central nervous
791		system. Geriatrics 1998a;53:S25–S27.
792	24.	Fukuzawa K, Gebicki JM. Oxidation of [alpha]-tocopherol in micelles and liposomes
793		by the hydroxyl, perhydroxyl, and superoxide free radicals. Archives of Biochemistry
794		and Biophysics 1983;226:242-251.
795	25.	Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames
796		BN. γ -Tocopherol traps mutagenic electrophiles such as NOx and complements α -
797		tocopherol: Physiological implications. Proceedings of the National Academy of
798		Sciences of the United States of America 1997;94:3217-3222.
799	26.	Brigelius-Flohé R, Kelly FJ, Salonen JT, Neuzil J, Zingg J-M, Azzi A. The European
800		perspective on vitamin E: current knowledge and future research. The American
801		Journal of Clinical Nutrition 2002;76:703-716.
802	27.	Calder P. Polyunsaturated fatty acids, inflammatory processes and inflammatory
803		bowel diseases Mol Nutr Food Res 2008;52:885–897
804	28.	Edwards IJ, O'Flaherty JT. Omega-3 Fatty Acids and PPAR γ in Cancer. PPAR
805		Research 2008;2008:1-15.
806	29.	Groeger AL, Cipollina C, Cole MP, et al. Cyclooxygenase-2 generates anti-
807		inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 2010;6:433-441.

60

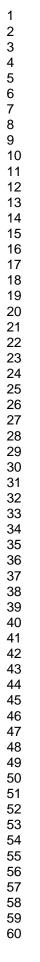
BMJ Open

1			
2 3 4	808	30.	Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related
5 6	809		decreases in nuclear receptors and increase neurogenesis in old rats. Journal of
7 8	810		Neuroscience Research 2010;88:2091-2102.
9 10	811	31.	McNamara RK. DHA Deficiency and Prefrontal Cortex Neuropathology in Recurrent
11 12	812		Affective Disorders. The Journal of Nutrition 2010;140:864-868.
13 14 15	813	32.	Salvati S, Natali F, Attorri L, et al. Eicosapentaenoic acid stimulates the expression of
16 17	814		myelin proteins in rat brain. Journal of Neuroscience Research 2008;86:776-784.
18 19	815	33.	Abraham M, Shapiro S, Karni A, Weiner HL, Miller A. Gelatinases (MMP-2 and
20 21	816		MMP-9) are preferentially expressed by Th1 vs. Th2 cells. Journal of
22 23 24	817		Neuroimmunology 2005;163:157-164.
24 25 26	818	34.	C ffrench-Constant. Pathogenesis of multiple sclerosis. The Lancet 1994;343:271-
27 28	819		275.
29 30	820	35.	Leppert D, Lindberg RLP, Kappos L, Leib SL. Matrix metalloproteinases:
31 32	821		multifunctional effectors of inflammation in multiple sclerosis and bacterial
33 34 35	822		meningitis. Brain Research Reviews 2001;36:249-257.
36 37	823	36.	Curtis CL, Rees SG, Cramp J, et al. Effects of n-3 fatty acids on cartilage metabolism.
38 39	824		Proceedings of the Nutrition Society 2002;61:381-389.
40 41	825	37.	Harris MA, Hansen RA, Vidsudhiphan P, et al. Effects of conjugated linoleic acids
42 43 44	826		and docosahexaenoic acid on rat liver and reproductive tissue fatty acids,
45 46	827		prostaglandins and matrix metalloproteinase production. Prostaglandins, Leukotrienes
47 48	828		and Essential Fatty Acids 2001;65:23-29.
49 50	829	38.	McCabe A, Wallace J, Gilmore W, Strain J, McGlynn H. The effect of
51 52 53	830		eicosapentanoic acid on matrix metalloproteinase gene expression. Lipids
53 54 55	831		1999;34:S217-S218.
56 57			
58 59			
- 1-:()			

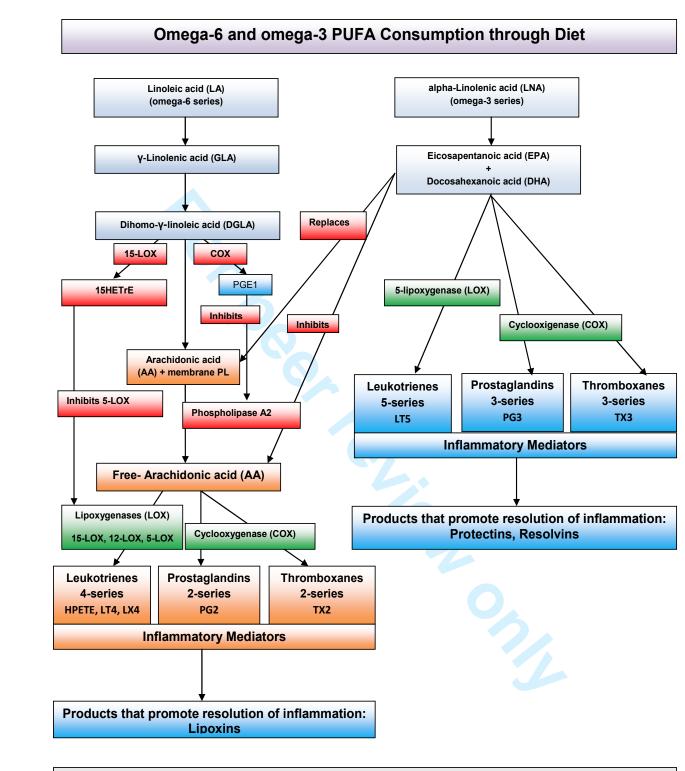
1 2

2 3 4	832	39.	Shinto L, Marracci G, Bumgarner L, Yadav V. The Effects of Omega-3 Fatty Acids
4 5 6	833		on Matrix Metalloproteinase-9 Production and Cell Migration in Human Immune
7 8	834		Cells: Implications for Multiple Sclerosis. Autoimmune Diseases 2011;2011.
9 10	835	40.	Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and
11 12	836		healthcare. Genome Med 2009;1:2.
13 14 15	837	41.	Huang WL, King VR, Curran OE, et al. A combination of intravenous and dietary
16 17	838		docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain
18 19	839		2007;130:3004-3019.
20 21	840	42.	Marangoni F, Angeli MT, Colli S, et al. Changes of $n - 3$ and $n - 6$ fatty acids in
22 23 24	841		plasma and circulating cells of normal subjects, after prolonged administration of 20:5
24 25 26	842		(EPA) and 22:6 (DHA) ethyl esters and prolonged washout. Biochimica et Biophysica
27 28	843		Acta (BBA) - Lipids and Lipid Metabolism 1993;1210:55-62.
29 30	844	43.	Martínez M, Vázquez E, García-Silva MT, et al. Therapeutic effects of
31 32	845		docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders1.
33 34 35	846		The American Journal of Clinical Nutrition 2000;71:376S-385S.
36 37	847	44.	Committee for medicinal products for human use. Guideline on clinical trials in small
38 39	848		populations In: European Medicines Agency, 2006: 1-10.
40 41	849	45.	Gerard E Dallal. The Little Handbook of Statistical Practice. [online]. Available at
42 43 44	850		URL . Accessed Date Accessed, Year .
44 45 46	851	46.	Wang YC, Meyerson L, Tang YQ, Qian N. Statistical methods for the analysis of
47 48	852		relapse data in MS clinical trials. Journal of the Neurological Sciences 2009;285:206-
49 50	853		211.
51 52	854	47.	Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial
53 54 55	855		of natalizumab for relapsing multiple sclerosis. The New England Journal of
56 57	856		Medicine 2006;354:899-910.
58 59			
60			

Page 43 of 62

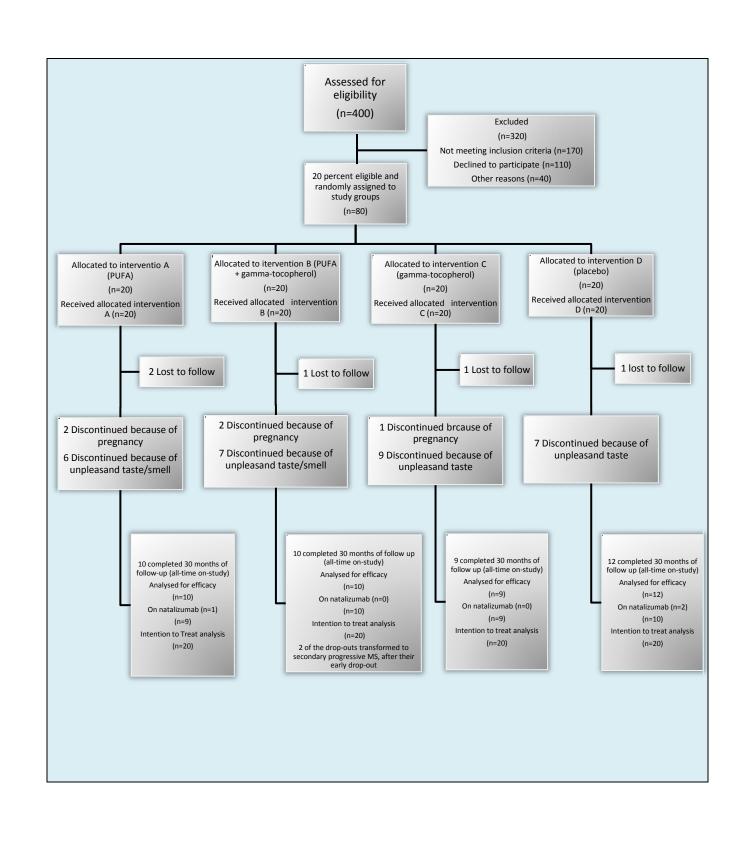

BMJ Open

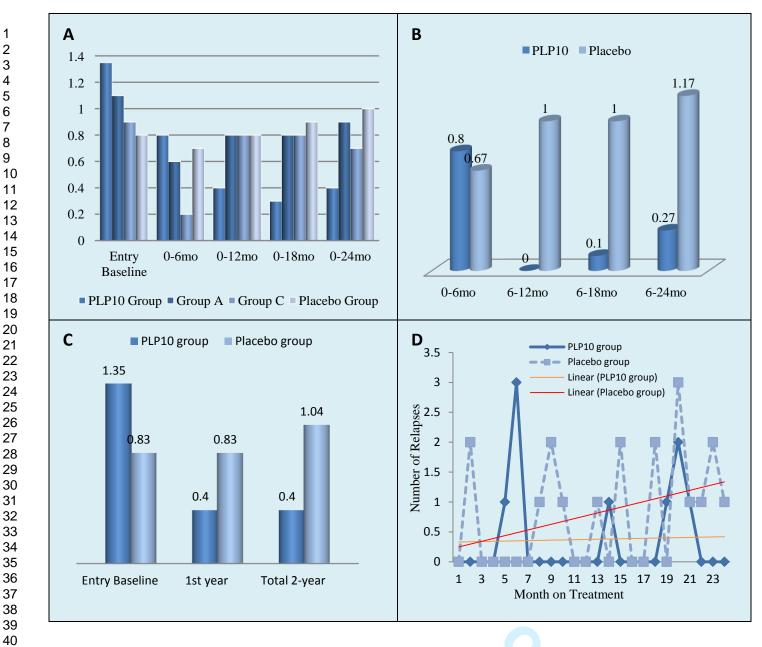
2 3 4	857	48.	Kappos L, Radue E-W, O'Connor P, et al. A Placebo-Controlled Trial of Oral
5	858		Fingolimod in Relapsing Multiple Sclerosis. New England Journal of Medicine
7 8	859		2010;362:387-401.
9 10	860	49.	Cunnane S, Ho S, Dore-Duffy P, Ells K, Horrobin D. Essential fatty acid and lipid
11 12	861		profiles in plasma and erythrocytes in patients with multiple sclerosis. The American
13 14 15	862		Journal of Clinical Nutrition 1989;50:801-806.
16 17	863	50.	Harbige LS, Sharief MK. Polyunsaturated fatty acids in the pathogenesis and
18 19	864		treatment of multiple sclerosis. British Journal of Nutrition 2007;98:S46-S53.
20 21	865	51.	Wilson R, Tocher D. Lipid and fatty acid composition is altered in plaque tissue from
22 23	866		multiple sclerosis brain compared with normal brain white matter. Lipids 1991;26:9-
24 25 26	867		15.
27 28	868	52.	Rafat AS, Saame RS, Laura AS, Heidi RY, William S, Gary PZ. Omega 3-Fatty
29 30	869		Acids: Health Benefits and Cellular Mechanisms of Action. Mini Reviews in
31 32	870		Medicinal Chemistry 2004;4:859-871.
33 34 35	871	53.	Shaikh SR, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells,
36 37	872		and antigen presentation. The American Journal of Clinical Nutrition 2006;84:1277-
38 39	873		1289.
40 41	874	54.	Lajtha A, Toth J, Fujimoto K, Agrawal CH. Turnover of Myelin Proteins in Mouse
42 43	875		Brain in vivo. Biochem J 1977;164:323-329.
44 45 46	876	55.	LeBaron FN, Sanyal S, Jungalwala FB. Turnover rate of molecular species of
47 48	877		sphingomyelin in rat brain. Neurochemical Research 1981;6:1081-1089.
49 50	878	56.	Yao JK. Increased polyunsaturated fatty acids in developing and regenerating
51 52	879		peripheral nerve. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid
53 54	880		Metabolism 1982;712:542-546.
55 56 57			
58 59			

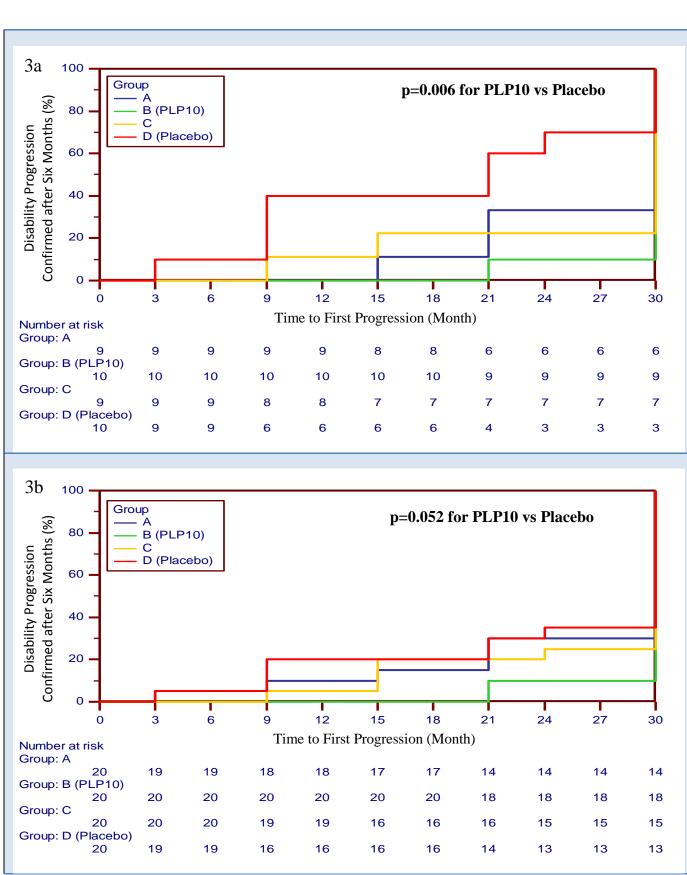

881	57.	Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a
882		narrative review. Complement Ther Med 2011;19:228-237.
883		
884		
885	Figu	re legends
886	Figur	e 1. Omega-6 and omega-3 PUFA, their respective metabolic derivatives and their
887	possib	le effects on inflammation.
000	Aftor	consumption the DLIFAs are motionalized via several nothways (not shown) to active
888		consumption, the PUFAs are metabolized via several pathways (not shown) to active
889	compo	ounds that mediate inflammation and products that promote resolution of inflammation
890	Abbre	viations: PL, phospholipid; IFN- γ , interferon γ ; IL-2, interleukin 2; NF κ B, nuclear
891	factor	kappa B; PGE2, prostaglandin E2; PPARγ, peroxisome proliferator-activated receptor
892	γ; PUI	FAs, polyunsaturated fatty acids; TGF β , transforming growth factor β ; TNF, tumor
893	necros	sis factor; COX, cyclooxygenase; hydroxyeicosatetraenoic acid; HPETE,
894	hydroj	peroxyeicosatetraenoic acid; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin;
895	TX, th	aromboxane; RXR-γ, retinoid X receptor-gamma; Nrf2, nuclear respiratory factor;
896	MMP,	, metalloproteinase.
897	Figur	e 2. Study Flowchart
898	Figur	e 3. Panel A demonstrates the ARR of all-time on-study patients during the 24mo pre-
899	treatm	ent (baseline ARR) and at different on-study intervals (6, 12, 18, 24 mo) per treatment
900	arm. *	*
901	Panel	B demonstrates the ARR of all-time on-study population between 0-6, 6-12, 6-18, and
902	6-24 n	no period intervals, of PLP10 vs. placebo group. **

BMJ Open

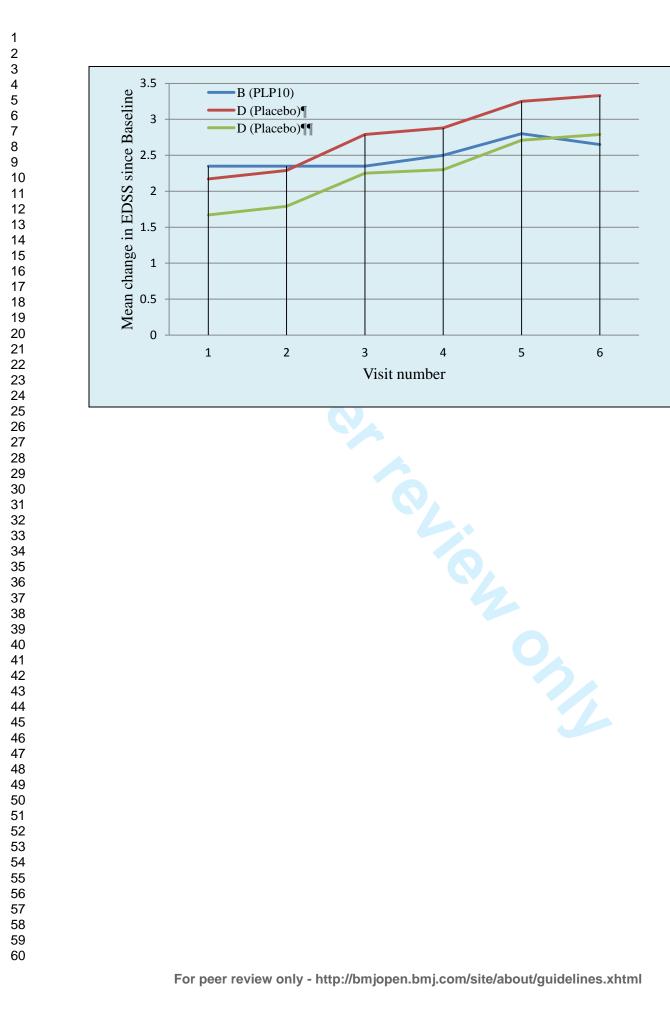
903	Panel C demonstrates the ARR of all-time on-study population of PLP10 vs. placebo group at
904	baseline, during 1 st year, and during the 2-year on-treatment. **
905	Panel D demonstrates the dispersion of relapses throughout the 2-year period of all-time on-
906	study (excluding patients on natalizumab) of PLP10 (n=10) vs. placebo (n=10). Placebo
907	shows an irregular dispersion of relapses in relation to PLP10 group with linear increasing
908	trend wile PLP10 shows a stabilized linear trend. By using the per-protocol model where
909	patients on natalizumab were excluded, we could compare the number of relapses on a same
910	number of patients.
911	** Including the patients on natalizumab.
912	Figure 4. Panel 4A demonstrates the Kaplan–Meier plot of the time to sustained progression
913	of disability among all-time on-study patients, excluding patients on natalizumab, receiving
914	intervention A, PLP10 and C as compared with placebo. PLP10 reduced the risk of sustained
915	progression of disability by 86% over two years (p=0.006). Intervention formula A reduced
916	the risk of sustained progression of disability by 53% (p=0.266) and intervention formula C
917	by 67% (p=0.061).
918	Panel 4B demonstrates the Kaplan-Meier plot of the time to sustained progression of
919	disability among ITT population receiving intervention A, PLP10 and C as compared with
920	placebo. PLP10 reduced the risk of sustained progression of disability by 71% over two years
921	(p=0.052, trend). Intervention formula A reduced the risk of sustained progression of
922	disability by 22% (p=0.727) and intervention formula C by 40% (p=0.447).
923	Figure 5. Mean change in expanded disability status scale score as a function of visit
924	number. Values are expressed as mean \pm s.e.m.
925	¶ Including patients on natalizumab




926 ¶ Excluding patients on natalizumab


Possible effects on inflammation:

Reduce IFN- γ production; Reduce IL-2 production; Increase TGF β activity; Increase PGE2 activity; Inhibit arachidonic acid; Reduce TNF levels; RXR- γ and PPAR γ agonist; NF κ B expression; stimulate Nrf2; reduce MMP-2, -3, -9, and -13



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Supplementary Information
---	----------------------------------

2 Table of Content

Supplementary Section	Page
Supplementary Information Methods 1	2-4
Supplementary Information Methods 2	5-6
Supplementary Information Figure 1	7
Supplementary Information Figure 2	8

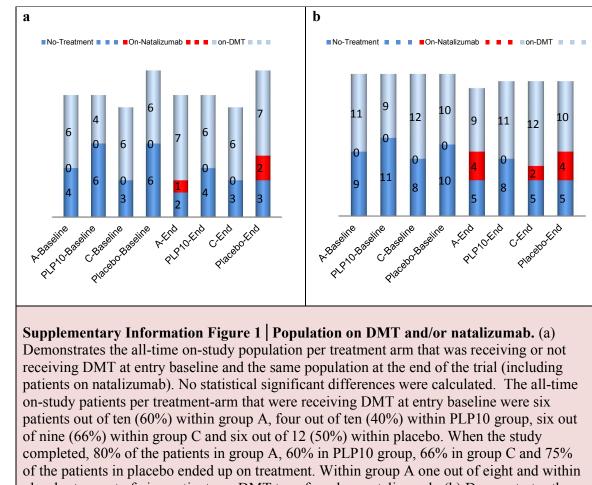
5	
6	
7	
5 6 7 8 9	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

Page 53 of 62

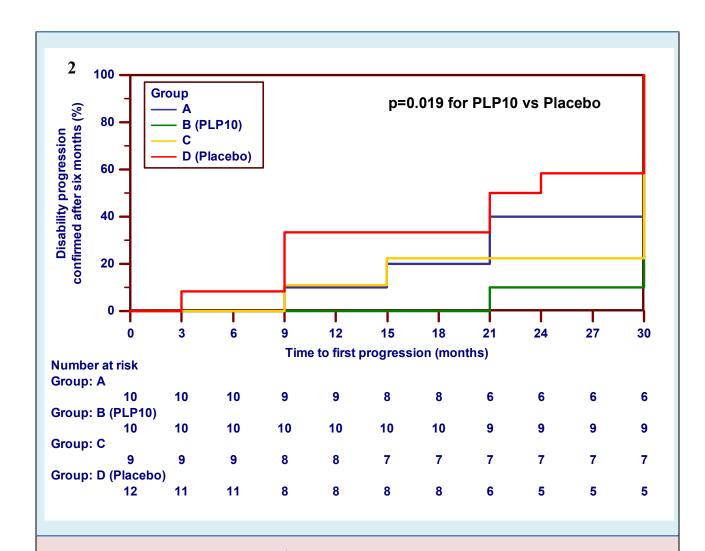
BMJ Open

Supplementary Information Methods 1 Intervention and study rational. We are using high dosage of 1:1 omega-3:omega-6 polyunsaturated (PUFA) aiming to overpass and normalize global diet regional traditions and habits in relation to abnormal PUFA/saturated fatty acids (SFA)/monounsaturated fatty acids (MUFA) daily ratio consumption irrespective of the quantities consumed; and enough to equilibrate patients' diet in line with the recommended more physiologic omega-3:omega-6 ratio of about 1:1-4 wt/wt as reported by Simopoulos, 2002. In addition to correct existing deficiencies, cell membrane abnormalities, specifically of the immunopathological system and blood mononuclear peripheral cells, and high enough for availability and immediate ongoing modulation of the involved pathogenic mechanisms and network of events in MS. The high dosage is also required to overpass the quantity limitations, previously discussed, of diet-consumed PUFAs for cellular incorporation, especially in the central nervous system (CNS) of adults. Additionally, fatty acids (FAs) must first cross the intestinal epithelium before reaching the different tissues, where digestion and absorption constitute further problems in their availability (Carlier, H, 1991). Omega-3 PUFA are used in re-esterified form to eliminate unwanted disturbances, at the sides of action, by other fatty acids and molecules present in crude fish oils but also to increase the bioavailability of the FA since triglycerides have been shown to be associated with much higher bioavailability (Dyerberg et al, 2010). Linoleic (LA) and gamma linolenic acid (GLA) are essential structure molecules and important for any physiological (re)generation of cell membrane. GLA quantity is doubled to LA to ensure high direct production of dihomo-gamma-linolenic acid (DGLA), from GLA when LA cannot be metabolized, due to desaturase deficiency or malfunction. Such a reduced capacity to convert LA to GLA has been associated with aging, diabetes, alcoholism, atopic dermatitis, premenstrual syndrome, rheumatoid arthritis, cancer and cardiovascular diseases (Bolton-Smith et al, 1997; Horrobin, 1990; Leventhal et al, 1993). This is going to result in the increase of DGLA relative to arachidonic acid (AA) with DGLA promoting production of prostaglandin (PG)E1 but also inhibition of phospholipase (PL)A2: two major reasons and rational for their use. If other metabolic problems are involved within the omega-6 series and the normal metabolites are not produced then the eicosapentaenoic acid EPA available in PLP10 will substitute the function of DGLA, as a competitive inhibitor of AA for PLA2. In both cases the pro-inflamatory leucotrienes, prostaglandines of the 2-series (PG2) and thromboxanes of the 2 series including the platelet-activator factor (PAF) will be attenuated. The synthesis of AA from DGLA by $\Delta 5$ desaturase promoted by LA/GLA supplementation is very limited in humans as a result of limited activity of the enzyme (Yang-Yi & Robert, 1998). AA in the body is mostly available through diet. EPA and docosahexaenoic acid (DHA) are both physiologically important and crucial structured molecules able to substitute excess AA and SFA within the cell membranes. EPA will contribute to the inhibition (competitive to AA) of PLA2, joining the co-supplied omega-6 PUFA but will also participate in the production of anti-inflammatory leukotrienes, prostaglandins of the 3-series (PG3) and thromboxane (TX3) along with DHA, both found in the PLP10 intervention. Moreover EPA will replace AA of the membrane phospholipids and both omega-3 PUFA will contribute replacing abnormal quantities of SFA and excess AA. DHA is used in 3:1 ratio to EPA to cover any possible inabilities of EPA to be metabolized, high enough to strongly promote high production of the aforementioned anti-inflammatory

eicosanoids and cytokines and to be incorporated into CNS cell membranes where DHA should be the major PUFA present, replacing other FA, probably saturated and excess of AA. EPA, DHA, LA and GLA along with the rest of the other ingredients used ("other" omega-3 PUFA, SFA and MUFA that are usually found in the cell membranes of healthy people in limited quantities) in the intervention regimen are for their availability as minor structural constituents of physiological cellular membranes integrity, fluidity and overall function as building blocks for myelin repair and/or myelination. Furthermore the PUFA used within the cocktail intervention aimed to manipulate all other pathophysiological pathways that are reported to be able to: as previously discussed including gene transcription for neuroprotection and remyelination. Furthermore, PUFA are used to ensure the integrity of blood brain barrier (BBB) and to modulate the gelatinases responsible for the T cell migration within the CNS. Three different antioxidant vitamins (vitamin E, mostly as alpha-tocopherol, gamma (γ)-tocopherol (vitamin E isoform) and vitamin A) are used in the regimen preparation to support the cellular antioxidant defenses but also to protect peroxidation of the supplied increased amounts of PUFA. Alpha-tocopherol low-molecular-weight antioxidants will contribute to radical scavenging, interfering with gene transcription, protein expression, enzyme activity and metal chelation (van Meeteren et al, 2005). Vitamin E (alpha tocopherol) and vitamin A are used as antioxidants for the protection of the excess supplemented PUFA, with alpha-tocopherol been demonstrated to protect against peroxynitrite-induced oxidative damage, as well as able to efficiently detoxify hydroxyl, perhydroxyl and superoxide free radicals (the elevated reactive oxygen species (ROS)); each one with different mechanism of action, increasing the effect capability (Vatassery et al, 1998b; van Meeteren, 2005). Gamma-tocopherol is used in high dosage since its half life is very short compared to alpha-tocopherol and has been demonstrated to specifically protect against nitro-radicals. Tocopherols can also exert non-antioxidant properties, including modulation of cell signaling and immune function, regulation of transcription, and induction of apoptosis as previously discussed (van Meeteren et al, 2005). PLP10 is the first preparation ever developed for MS therapy that is composed by the use of all different previously discussed PUFA, MUFA, SFA in a cocktail preparation mixed with the specific aforementioned antioxidant vitamins that have never been all together used before within a specific formulation. The ingredients ratio, quality, structural form and mostly the high dosage has never been before tested. Furthermore, the knowledge and chronotherapy as well as other unique limitations associated with the individual molecules used, have never been accounted, discussed, proposed or reported for any previous therapeutic regimen.


Through systems medicine therapeutic philosophy, by the use of PLP10, potentially MS
patients have the opportunity to be treated holistically, by natural source isolated molecules,
demonstrated as able of affecting and modulating all known pathophysiological,
immunopathological, habitual, gene related factors; thus the dynamic interconnected complex
network of events simultaneously. Possibly synergistic effects between PLP10 ingredients are
also feasible. Moreover we can speculate that treatment efficacy of PLP10, when used as

BMJ Open


2		
3	119	adjunct to existing pharmaceuticals produced by reductionism, can be proven therapeutically
4	120	superior to any available treatment for MS.
5 6	121	
6 7		
8	122	Bolton-Smith C, Woodward M, Tavendale R (1997) Evidence for age-related differences in
9	123	the fatty acid composition of human adipose tissue, independent of diet. <i>European Journal of</i>
10	124	Clinical Nutrition 51: 619-624
11		
12	125	
13 14	126	Carlier H, Bernard A, Caselli C (1991) Digestion and absorption of polyunsaturated fatty
14	127	acids. Reproduction, nutrition, development 31: 475-500
16	120	
17	128	Developer I. Madare D. Maller IM. Acadestrum I. Saluri & ED. (2010). Disconsidebility of
18	129	Dyerberg J, Madsen P, Møller JM, Aardestrup I, Schmidt EB (2010) Bioavailability of
19	130	marine n-3 fatty acid formulations. <i>Prostaglandins, leukotrienes, and essential fatty acids</i> 83:
20	131	137-141
21 22	132	
22	133	Horrobin DF (1990) Gamma-linolenic acid. Rev Contemp Physiol 1: 1-41
24		
25	134	
26	135	Leventhal LJ, Boyce EG, Zurier RB (1993) Treatment of rheumatoid arthritis with
27	136	gammalinolenic acid. Annals of Internal Medicine 119: 867-873
28	137	
29 30	137	Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids.
31	139	Biomedecine & Pharmacotherapy 56: 365-379
32	135	Biomedecine & I harmacomerapy 50. 565-575
33	140	
34	141	van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF (2005) Antioxidants and
35	142	polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 59: 1347-1361
36 37		
38	143	Vere ViE Debert SC (1000) Investment of Distance Lingle sold in house backhowd
39	144	Yang-Yi F, Robert SC (1998) Importance of Dietary g-Linolenic acid in human health and
40	145	nutrition. The Journal of Nutrition 128: 1411-1414
41	146	
42	147	Vatassery GT, Smith WE, Quach HT (1998b) Alpha-tocopherol in rat brain subcellular
43 44	148	fractions is oxidized rapidly during incubations with low concentrations of peroxynitrite.
44 45	149	Journal of Nutrition128:152–157.
46	150	
47	151	
48	152	
49	153	
50	154	
51 52		
53	155	
54	156	
55	157	
56	158	
57	159	
58 59		
60		

Supplementary Information Methods 2 Interventions specifications. The specific omega-3 (re-esterified glycerides) and omega-6 (glycerides) raw materials were purchased according to the required interventions' PUFA-fraction specification (molecular structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant stabilizer by the supplier. The vitamins and masking aroma were purchased separately. The mixing of fractions to the final required intervention-composition specification was always performed by the same team of scientists under the supervision of the involved medical biochemist and lipidology specialist, under appropriate conditions every six months. Interventions were stored refrigerated in dark until use. The ratios of the different ingredients used were as follows: omega-3, EPA to DHA (about 1 to 3 wt/wt), omega-6, LA to GLA (about 2 to 1 wt/wt), omega-3 (EPA + DHA) to omega-6 (LA + GLA) (about 1 to 1 wt/wt). The total omega-3 (EPA + DHA + "other" omega-3 PUFA) used as re-esterified triglycerol (minimum value 60%), diglyceride (about 33%), monoglyceride (about 2%) structural form mixture and about 2% ethyl ester structural form, with no less than 80% re-esterified triglycerol content to be DHA and EPA as a result of PUFA triglycerides re-esterification of fish body oils. The "other" group of omega-3 on the re-esterified glycerols included the 18:3 (alpha-linolenic acid), 18:4 (stearidonic acid), 20:4 (eicosatetraenoic acid) and 22:5 (docosapentaenoic acid) PUFA. The fraction of omega-6 (LA + GLA) used as triglycerides with no less than 50-65% triglycerol content to be LA and GLA in a ratio of 2 to 1 with 18:1 (oleic acid) 14-20% and 20:1 (eicosenoic acid), 22:1 (docosenoic acid), 24:1 (tetracosenic acid) as additional monounsaturated fatty acids and minor quantities of 16:0 (palmitic acid) 4-16%, 18:0 (stearic acid) 2-5% saturated fatty acids from Borage oil source. The vitamins used were vitamin A as beta-carotene, vitamin E (alpha-tocopherol) and pure gamma-tocopherol (vitamine E isoform). Citrus extract was used as masking aroma and pure virgin olive oil as delivery vehicle. The daily intervention formula agent dosages were: Intervention formula A daily dosage: EPA (1650mg) / DHA (4650mg) / GLA (2000mg) / LA (3850mg) / total other omega-3 (600mg) / total monounsaturated fatty acids (MUFA) (18:1 1300mg, 20:1 250mg, 22:1 82mg, 24:1 82mg) + total saturated fatty acids (SFA) (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg). Intervention formula B (PLP10) daily dosage: EPA (1650mg) / DHA (4650mg) / GLA (2000mg) / LA (3850mg) / total other omega-3 (600mg) / total MUFA (18:1 1300mg, 20:1 250mg, 22:1 82mg, 24:1 82mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) / gamma- tocopherol (γ -tocopherol) (760 mg). **Intervention formula C** daily dosage: γ -tocopherol (760 mg) (in 16137 mg pure virgin olive oil as a vehicle). **Intervention formula D** daily dosage: pure virgin olive oil (16930mg). Citrus aroma was added in each intervention formula to make up a total dosage of 19.5ml of solution per day.

1		
2		
3 4	201	The specific omega-3 related fraction, according to specifications required for the
5	202	interventions was prepared and purchased from EPAX AS, Aalesund, Norway; as re-
6	203	esterified glycerides from fish body oils as a source. The specific omega-6 PUFA, MUFA
7	204	and SFA related fraction, according to required specifications, was prepared and purchased
8 9	205	from Goerlich Pharma International GmbH, Edling, Germany, as triglycerides from Borage
9 10	206	seed oil (organic, cold pressed) "Borago officinalis" as a source. Both omega-3 and omega-6
11	207	fractions were delivered stabilized by the producer (vitamine E (alpha-tocopherol) ~ 4.5 mg/g
12	208	was used as antioxidant).
13		
14 15	209	Vitamins: vitamin A as beta-carotene (HealthAid Ltd., Middlesex, United Kingdom) and pure
16	210	gamma-tocopherol (Tama Biochemical Co. Ltd., Shinjuku-ku Tokyo, Japan).
17		
18	211	Citrus aroma (Givaudan Schwaiz AG, Dubendorf, Switzerland).
19 20		
20	212	
22		
23		Citrus aroma (Givaudan Schwaiz AG, Dubendorf, Switzerland).
24 25	213	
25 26		
27	214	
28	214	
29		
30 31	215	
32	-	
33		
34	216	
35 36		
37		
38	217	
39		
40 41	218	
42	210	
43		
44 45	219	
45 46		
47		
48	220	
49 50		
50 51	224	
52	221	
53		
54	222	
55 56		
50 57		
58	223	
59		
60		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

of nine (66%) within group C and six out of 12 (50%) within placebo. When the study completed, 80% of the patients in group A, 60% in PLP10 group, 66% in group C and 75% of the patients in placebo ended up on treatment. Within group A one out of eight and within placebo two out of nine patients on DMT transferred on natalizumab. (b) Demonstrates the total randomized population per treatment arm that was receiving or not receiving DMT at entry baseline and the same population at the end of the trial without lost to follow (including patients on natalizumab). A total of 61% of group A patients were on DMT at entry baseline and became 72% at the end; for PLP10 group 41% and became 53%; for group C 73% and became 74% and for placebo 53% and became 74% at study completion. At the end: for group A, four out of 13 patients on DMT transferred on natalizumab; for PLP10 group no patient was on natalizumab; for Group C two out of 14 patients on DMT transferred on natalizumab. No significant differences measured at entry baseline between the groups.

Supplementary Information Figure 2 | Kaplan–Meier estimates for the time to disability

progression. Kaplan–Meier plot of the time to sustained progression of disability among all-time onstudy patients, including patients on natalizumab, receiving intervention A, PLP10 and C vs. placebo. Intervention PLP10 reduced the risk of sustained progression of disability by 83% over two years (p=0.019). The cumulative probability of progression was 10% in the intervention B group and 58% in the placebo group. Intervention formula A reduced the risk of sustained progression of disability by 32% (p=0.301) and intervention formula C by 62% (p=0.109).

Checklist of Items for Reporting Trials of Nonpharmacologic Treatments*

Extension for Nonpharmacologic Trials	Reported on Page No.
In the abstract, description of the experimental treatment, comparator, care providers, centers, and blinding status	1,3,4
	5 to 8
When applicable, eligibility criteria for centers and those performing the interventions	8, 13,15
Precise details of both the experimental treatment and comparator	9,10,11 Appendix p. 5,6
Description of the different components of the interventions and, when applicable, descriptions of the procedure for tailoring the interventions to individual participants	10, Appendix p.5
Details of how the interventions were standardized	9,10,Appendix p.
Details of how adherence of care providers with the protocol was assessed or enhanced	9
1	7,8
	12
When applicable, details of whether and how the clustering by care providers or centers was addressed	13
	n/site/about/guidelines.xhtml

Randomization– sequence generation†	8	Method used to generate the random allocation sequence, including details of any restriction (e.g., blocking, stratification)	When applicable, how care providers were allocated to each trial group	9
Allocation concealment	9	Method used to implement the random allocation sequence (e.g., numbered containers or central telephone), clarifying whether the sequence was concealed until interventions were assigned		9
Implementation	10	Who generated the allocation sequence, who enrolled participants, and who assigned participants to their groups		9
Blinding (masking)†	11A	Whether or not participants, those administering the interventions, and those assessing the outcomes were blinded to group assignment	Whether or not those administering co- interventions were blinded to group assignment	9,10
	11B		If blinded, method of blinding and description of the similarity of interventions [†]	9,10,Appendix p
Statistical methods†	12	Statistical methods used to compare groups for primary outcome(s); methods for additional analyses, such as subgroup analyses and adjusted analyses	When applicable, details of whether and how the clustering by care providers or centers was addressed	13
Participant flow [†]	13	Flow of participants through each stage (a diagram is strongly recommended) specifically, for each group, report the numbers of participants randomly assigned, receiving intended treatment, completing the study protocol, and analyzed for the primary outcome; describe deviations from study as planned, together with reasons	The number of care providers or centers performing the intervention in each group and the number of patients treated by each care provider or in each center	15 Fig 2
Implementation of intervention [†]	New item		Details of the experimental treatment and comparator as they were implemented	10,15,16 Append p5,
Recruitment	14	Dates defining the periods of recruitment and follow-up		15,11
Baseline data†	15	Baseline demographic and clinical characteristics of each group	When applicable, a description of care providers (case volume, qualification, expertise, etc.) and centers (volume) in each group	15,Table 1

Numbers analyzed	16	Number of participants (denominator) in each group included in each analysis and whether analysis was by "intention-to-treat"; state the results in absolute numbers when feasible (e.g., 10/20, not 50%)		14,15,10
Outcomes and estimation	17	For each primary and secondary outcome, a summary of results for each group and the estimated effect size and its precision (e.g., 95% confidence interval)		15 to 20
Ancillary analyses	18	Address multiplicity by reporting any other analyses performed, including subgroup analyses and adjusted analyses, indicating those prespecified and those exploratory		15 to 20
Adverse events	19	All important adverse events or side effects in each intervention group		20
Discussion	20	Intermediation of the new life to line inte	The station of the intersection of the station of the	20.21
Interpretation†	20	Interpretation of the results, taking into account study hypotheses, sources of potential bias or imprecision, and the dangers associated with multiplicity of analyses and outcomes	In addition, take into account the choice of the comparator, lack of or partial blinding, and unequal expertise of care providers or centers in each group	20,21
Generalizability†	21	Generalizability (external validity) of the trial findings	Generalizability (external validity) of the trial findings according to the intervention, comparators, patients, and care providers and centers involved in the trial	22
Overall evidence	22	General interpretation of the results in the context of current evidence		22 to 26

A novel oral nutraceutical formula (PLP10) for the treatment of relapsing remitting multiple sclerosis: a randomized, double-blind, placebo-controlled proof-ofconcept clinical trial

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002170.R1
Article Type:	Research
Date Submitted by the Author:	19-Jan-2013
Complete List of Authors:	Pantzaris, Marios; The Cyprus Institute of Neurology and Genetics (CING), Clinic C and PALUPA Medical Ltd Loukaides, George; The Cyprus Institute of Neurology and Genetics (CING), Neurology Clinic and PALUPA Medical Ltd Ntzani, Evangelia; University of Ioannina School of Medicine (UISM), Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology Patrikios, Ioannis; The Cyprus Institute of Neurology and Genetics (CING), Clinic C and PALUPA Medical Ltd; European University Cyprus, Health Science
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Neurology, Complementary medicine, Pharmacology and therapeutics
Keywords:	Nutrition < TROPICAL MEDICINE, NUTRITION & DIETETICS, Multiple sclerosis < NEUROLOGY

SCHOLARONE[™] Manuscripts

Page 1 of 110

A novel oral nutraceutical formula (PLP10) for the treatment of relapsing remitting multiple sclerosis: a randomized, double-blind, placebo-controlled proof-ofconcept clinical trial

Marios C. Pantzaris, George N. Loukaides, Evangelia E. Ntzani, Ioannis S. Patrikios

The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus Marios C.

Pantzaris Senior Consultant Neurologist Neurology Clinic C and PALUPA Medical Ltd., The
Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus George N.

10 Loukaides Clinical Dietitian/Nutritionist Neurology Clinic and PALUPA Medical Ltd.,

11 University of Ioannina School of Medicine (UISM) 45110 Ioannina, Greece Evangelia E.

12 Ntzani Assistant Professor Clinical and Molecular Epidemiology Unit, Department of

13 Hygiene and Epidemiology, PALUPA Medical Ltd at The Cyprus Institute of Neurology and

14 Genetics (CING) 1683 Nicosia, Cyprus Ioannis S. Patrikios Senior Research Scientist,

15 visiting Professor at European University Cyprus Nicosia, Cyprus, Department of Health and

16 Science. Correspondence should be addresses to e-mail: <u>I.Patrikios@euc.ac.cy</u> or

17 <u>pantzari@cing.ac.cy</u>

Correspondence to:

20 Ioannis Patrikios

21 The Cyprus Institute of Neurology and Genetics (CING)

22 Neurology Clinic C (PALUPA Medical),

2		
3		
4		
5		
2		
6		
7		
8		
a		
4	~	
1	0123456	
1	1	
1	2	
1	ર	
4	1	
1	4	
1	5	
1	6	
1	7	
1	Ω.	
1	8	
1	9	
2	0	
2	901234567890123456	
2	2	
<u>~</u>	2	
2	3	
2	4	
2	5	
2	6	
ົ	7	
<u> </u>	1	
2	8	
2	9	
3	0	
2	1	
0 0	-	
3	2	
3	3	
3	4	
Q	5	
3	2	
J	0	
3	7	
3	8	
3	9	
ر ۸	7 8 9 0	
4	J	
4		
4	2	
4	3	
	4	
	5	
	6	
4	7	
	8	
	9	
	0	
5		
5	2	
5		
	4	
	5	
5	6	
5		
5		
5		
ദ	n	

- 23 6 International Airport Av.
- 24 P.O.Box 23462, 1683 Ayios Dometios. Nicosia, Cyprus
- 25 Tel: +357 22 358 600, +357 99 097 856;
- 26 <u>i.patrikios@euc.ac.cy</u>
- 27 patrikiosioannis@gmail.com
- 28
- 29 AND
- 30
- 31 Marios Pantzaris
- 32 The Cyprus Institute of Neurology and Genetics (CING)
- 33 Neurology Clinic C (PALUPA Medical),
- 34 6 International Airport Av.
- 35 P.O.Box 23462, 1683 Ayios Dometios, Nicosia Cyprus
- 36 Tel: +357 22 358 600;
- 37 <u>pantzari@cing.ac.cy</u>

38

- 39 Keywords: antioxidant vitamins, polyunsaturated fatty acids, multiple sclerosis, systems
- 40 medicine, randomized clinical trial.

41

43

44

45

46

42 Word Count: 6415

BMJ Open

47	Abstract
48	Objective To assess whether our three novel interventions, formulated based on systems
49	medicine therapeutic concept reduce disease activity in patients with relapsing remitting
50	multiple sclerosis who were either treated with disease modifying treatment or untreated.
51	
52	Design 30-month randomized double-blind, placebo-controlled, parallel design, phase II
53	proof-of-concept clinical study.
54	
55	Settings Cyprus Institute of Neurology and Genetics (CING)
56	
57	Participants and Interventions 80 subjects were randomized into four groups of 20. The
58	first intervention (A) was composed of omega-3 and omega-6 polyunsaturated fatty acids at
59	1:1 wt/wt. Specifically, the omega-3 fatty acids were docosahexaenoic acid (DHA) and
60	eicosapentaenoic acid (EPA) at 3:1 wt/wt and the omega-6 fatty acids were linoleic acid (LA)
61	and gamma (γ)-linolenic acid (GLA) at 2:1 wt/wt. This intervention also included minor
62	quantities of other specific polyunsaturated, monounsaturated and specific saturated fatty
63	acids as well as vitamin A and vitamin E (alpha-tocopherol). The third intervention (C) was
64	γ -tocopherol alone. The second intervention (PLP10) was a combination of A and C. A fourth
65	group of 20 received a vehicle placebo. The interventions were administered per os once
66	daily.
67	
68	Main outcome measures The primary endpoint was the annualized relapse rate (ARR) of the
69	three interventions versus placebo at two years. The secondary end point was the time to
70	confirmed disability progression at two years.
71	

1	
2	
3	
4	
5	
6	
7	
8 9	
9 10	
11	
12	
13	
14	
15	
16 17 18 19 20 21	
17	
18	
19	
20	
21	
22 23 24	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35 36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
50 51	
52	
53	
54	
55	
56 57	
57	
58	
59	
60	

72	Results The per-protocol, proof-of-concept, analysis demonstrated a 64% adjusted relative
73	reduction in ARR at two years for PLP10 versus placebo (P=0.024). Regarding the secondary
74	endpoint, a relative reduction of 86% in the risk of sustained progression of disability was
75	observed within the PLP10 group (p=0.047). No adverse events were reported. Interventions
76	A and C showed no significant efficacy.
77	
78	Conclusions PLP10 treatment significantly reduced the ARR, and the risk of sustained
79	disability progression without any adverse or severe side effects.
80	
81	Trial registration International Standard Randomized Controlled Trial, number
82	ISRCTN87818535.
83	
84	
85	
86	
87	
88	
89	
90	
91	

Introduction

1 r

BMJ Open

2
1
3 4 5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
6 7 8 9 10 11 12 13 14 15 16 7 8 9 20 21 22 23
22 23 24 25 26 27 28
23
24
24
25
26
27
28
28 29 30
30
31
32
33
34
34 35
36
36 37 38
31
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
56
57
58
59
60

93	Multiple sclerosis (MS) is a complex multifactorial disease that results from interplay
94	between as yet unidentified environmental factors and susceptibility genes. ¹⁻³ Together, these
95	factors trigger a cascade of events, involving engagement of the immune system,
96	inflammatory injury of myelin, axons and glia, functional recovery and structural repair,
97	gliosis, and neurodegeneration. ⁴ The bio-mechanisms involved are: immune-mediated
98	inflammation, oxidative stress and excitotoxicity. ⁵⁻⁹ These mechanisms may all contribute to
99	oligodendrocyte and neuronal damage and even cell death, hence promoting disease
100	progression. The increasing prevalence of MS, the limited efficacy and the side effects of the
101	existing treatments urge the clinical need for the development of new, innovative, more
102	effective, safe, and preventive treatment strategies.

103

Research has shown that multiple variables dynamically interact and many different complex 104 105 interrelated processes are simultaneously orchestrated for MS pathogenesis. The fundamental 106 distinctiveness of systems medicine (SM) is not just the recognition that different specific 107 complex factors are important in disease management, but that they need to be incorporated in some meaningful way to treatment selection and delivery.¹⁰ The primary challenge tackled 108 109 by systems scientific approach is the elucidation of how these multiple variables dynamically interact and how one can apply this understanding to affect the system and achieve a 110 desirable end.¹⁰ The answer might be the simultaneous interference with all involved 111 112 perturbed mechanisms, by using a cocktail of different specific ingredients, potentially able through synergistic effect to give a long, holistic and effective treatment (Supplementary 113 114 Information Methods 1).

115

60

5

116	The polyunsaturated fatty acids (PUFA) composition of membrane phospholipids plays a
117	direct role in immune and non-immune related inflammation. PUFA and antioxidant
118	deficiencies along with decreased cellular antioxidant defense mechanisms have been
119	reported for MS patients. ¹¹ The cause of these PUFA deficiencies is not entirely clear and may
120	involve metabolic and nutritional alterations. ¹¹
121	
122	Increased or uncontrolled inflammation contributes to several different acute and chronic
123	diseases and it is characterized by the production of inflammatory cytokines, arachidonic acid
124	(AA)-derived eicosanoids (prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs),
125	and other oxidized derivatives), other inflammatory agents such as reactive oxygen species
126	(ROS), nitric oxide (NO), and adhesion molecules (Fig 1). ¹² During inflammation glutamate
127	homeostasis is altered by activated immune cells releasing increased quantities of glutamate
128	that can result in over activation of glutamate receptors and in return excitotoxic
129	oligodendroglial death. ^{7, 13} As such, among others, membrane-related pathology, immune-
130	mediated inflammation, oxidative stress and excitotoxicity provide potentially useful
131	combined targets for intervention in MS.
132	
133	In vitro and in vivo studies have demonstrated that dietary EPA, DHA, LA, and GLA can be
134	implicated and modulate almost all known complex network of events and pathways
135	repertoire in MS pathophysiology. Brain membrane fatty acid composition can be modified
136	with dietary supplementation, but the process has been showed to be age dependent (it takes
137	much longer in adults versus developing brains) as well as possibly dependent on the
138	quantities of the dietary/supplemented PUFAs. ¹⁴ Both human and animal studies proved that
139	diets high in DHA and EPA increase the proportion of these PUFA in the membranes of
140	inflammatory cells and reduce the levels of AA. ^{12, 15} The anti-inflammatory properties of

BMJ Open

י ר
2
ა ⊿
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
23456789101234156789012222222222223333333333333333333333333
20
21
21 22
22 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
30
40
41
42 43
43
44 45
45
46
47
48
49
50
51
52
53
52 53 54
55
56
57
58
59
60
00

141	omega-3 include production of PGs and TXs of the 3-series and LTs of the 5-series (Fig 1). ^{14,}
142	¹⁶ Resolvins and protectins are biosynthesized from omega-3 fatty acids via cyclooxygenase-
143	2/lipoxygenase (COX-2/LOX) pathways and they promote control of inflammation in neural
144	tissues (Fig 1). ¹⁷⁻²¹ T-cell proliferation in acute and chronic inflammation can be reduced by
145	supplementation with either omega-6 or omega-3 PUFA. ²² Furthermore, vitamin E is an
146	important antioxidant that can interrupt the propagation of free radical chain reactions. ²³
147	Vitamin E (alpha-tocopherol, an isoform of vitamin E) efficiently detoxifies hydroxyl,
148	perhydroxyl and superoxide free radicals. ²⁴ However γ -tocopherol (another isoform of
149	vitamin E) seems to be more efficiently implicated in trapping NO radicals. ²⁵ In addition
150	alpha-tocopherol exerts non-antioxidant properties, including modulation of cell signaling
151	and immune function, regulation of transcription, and induction of apoptosis. ²⁶
152	
153	Moreover, omega-3 fatty acids electrophilic derivatives formed by COX-2, in activated
154	macrophages can stimulate the nuclear respiratory factor (Nrf2) inducing the transcription of
155	neuroprotective and antioxidant related genes, and can activate the peroxisome proliferator-
156	activated receptor (PPAR) γ for anti-inflammatory response. ²⁷⁻²⁹ In animal studies, EPA and
157	DHA proved to be endogenous ligands of RXRs, with positive effect on neurogenesis. ³⁰

Additionaly, in 2008 Salvati and coworkers reported evidense of accelerated myelination in
 DHA- and EPA-treated animals.³² Moreover, DHA and EPA are reported to significantly

decrease the levels of metalloproteinases (MMP) -2, -3, -9, and -13 with a significant role in
the migration of lymphocytes into the CNS by inducing disruption of the blood brain barrier
(BBB), an important step in the formation of MS lesions.³³⁻³⁹

163

Based on the above, specific PUFA and antioxidant vitamins fulfill the criterion of biologic
plausibility and have the potential to diminish MS symptoms severity and activity, even

2	
3	
4	
5 6	
6	
7	
0	
9 10	
10	
11	
12	
12	
14	
11 12 13 14 15 16 17	
15	
16	
17	
18	
19	
20	
21	
 18 19 20 21 22 23 24 25 26 27 	
23	
24	
25	
26	
26 27	
21	
28	
29	
30	
31	
 31 32 33 34 35 36 37 38 20 	
33	
34	
35	
36	
37	
38	
39	
39 40	
40 41	
41	
-	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

promoting recovery (remyelination).¹¹ Overall, PLP10 includes multiple ingredients 166

167 interacting with key interconnected components within functional network modules, each

contributing a fraction of the effects of perturbations that cause the disease.⁴⁰ 168

169

1

In our phase II, single-center, randomized, double-blind, placebo-controlled, proof-of-170

171 concept clinical trial we intended to evaluate the therapeutic ability of PLP10 and of two

172 other interventions (A and C) consisting of PLP10 constituent partial fractions versus

173 placebo, when used on RRMS patients. O C C C C C

174

175

Methods 176

177 **Patients**

178 Eligibility criteria were an age of 18 to 65; a diagnosis of RRMS according to the McDonald 179 criteria; a score of 0.0 to 5.5 on the EDSS, a rating that ranges from 0 to 10, with higher 180 scores indicating more severe disability; MRI showing lesions consistent with MS; and at 181 least one documented clinical relapse either receiving or not disease modifying treatment 182 (DMT) within the 24 months period before beginning (enrollment) of the study. Patients were 183 excluded because of a recent (<30 days) relapse, prior immunosuppressant or monoclonal 184 antibodies therapy, pregnancy or nursing, other severe disease compromising organ function, 185 progressive MS, history of recent drug or alcohol abuse, use of any additional food 186 supplement, vitamin, or any form of PUFA, history of severe allergic or anaphylactic 187 reactions or known specific nutritional hypersensitivity. No monitor or limitations on 188 patients' daily diet habits were included in the study design since the quantities of the ingredients within the formulas daily-dosage could not be significantly affected or spoiled by 189

BMJ Open

2		
- 3 4	190	any confounding factors within any known global daily food diet (see procedures, treatment
- 5 6	191	regimen and end-points).
7 8	192	
9 10	193	The study was conducted in accordance with the standards of the International Conference o
11 12	194	Harmonization Guidelines for Good Clinical Practice. The protocol was developed by the
13 14 15	195	investigators and it was approved by the Cyprus National Bioethics Committee and was
16 17	196	overseen by an independent safety-monitoring committee evaluating the safety and over-all
18 19	197	benefit-risk profiles. The adherence of care providers with the protocol was assessed by an
20 21	198	external committee assigned by the funder of the project through reviews of case report
22 23	199	forms. All patients gave written informed consent at the time of enrolment.
24 25 26	200	
27 28	201	Randomization and masking
29 30	202	Patients were randomly assigned to four intervention groups in a 1:1:1:1 ratio stratified b
31 32	203	gender (women to men, 3:1). Randomization was facilitated by a lottery-type pool of
33 34 35	204	numbered balls. Patients were randomly assigned to treatment in blocks of four by flipping
36 37	205	coin as follows: for the first two drawn balls heads stratified them to the groups A/B and tai
38 39	206	stratified them to the groups C/D. The other two balls were stratified accordingly. A secon
40 41	207	toss of the coin assigned the two patients to group A (head)/B (tail) or group C (head)/
42 43	208	(tail). The randomization scheme was generated, performed and securely stored by Heli
44 45 46	209	Incubator Organization of Nicosia University (HIONU).
40 47 48	210	
49 50	211	The interventions had identical appearance and smell in dark bottles (15 daily-dose
51 52	212	portions/bottle) under nitrogen bed and labeled by HIONU with code numbers, unidentifiabl
53 54	213	for both patients and investigators. Study data were collected by the investigators and saved
55 56 57 58 59	214	by the HIONU that also held the blinded codes of the study. All study personnel involved in
60		

n and masking

3
4
5
6
7
0
ð
9
10
11
12
13
14
15
16
17
10
10
4 5 6 7 8 9 10 1 12 3 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 3 3 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 3 3 4 5 6 7 8 9 10 1 12 3 3 3 3 3 3 3 3 3 3 4 1 1 12 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
46
40 47
41
48
49
50
51
52
53
54
55
56
53 54 55 56 57 58 59
5/ 50
58
59
60

the conduct of the study were blinded throughout the study. Treating/examining physician,

other investigators, pharmacist, neuroradiologist and patients were masked to treatmentallocation.

218

1 2

219 **Procedures and end points**

220 The specific omega-3 (re-esterified glycerides) and omega-6 (glycerides) raw materials were 221 purchased according to the required interventions' PUFA-fraction specification (molecular 222 structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant 223 stabilizer by the supplier. The vitamins and masking aroma were purchased separately. The 224 mixing of fractions to the final required intervention-composition specification was always 225 performed by the same team of scientists under the supervision of the involved medical 226 biochemist and lipidology specialist, under appropriate conditions every six months. 227 Interventions were stored refrigerated in dark until use. See Table 1 and Supplementary 228 Information Methods 1 and 2 for intervention specification detailed description and 229 study/intervention rational. 230 231 Participants were randomly assigned to receive a daily dose of a mixture of EPA (1,650mg) / 232 DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg) / total 233 MUFA (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E 234 (22mg) (intervention A, group A); or composed mixture of pure γ -tocopherol (760mg) 235 dispersed in pure virgin olive oil (16,137 mg) as delivery vehicle (intervention C, group C); 236 or a mixture of intervention formula A with intervention C without the pure virgin olive oil 237 (intervention B, named PLP10, group B); or placebo composed of pure virgin olive oil 238 (16,930mg) (intervention D, group D) (Table 1). Citrus-aroma was used as masking agent of 239 the taste and odor and added in each one of the intervention for a total of 19.5ml dosage of

BMJ Open

solution per day. The institution's pharmacist was responsible for the appropriate storage and handling of the interventions to the individual participants. The interventions were taken orally once daily 30 minutes before dinner by a dosage calibrated cup for 30 months. The ingredients, ratio and dose have been selected based on their biophysical interrelation to the total known multiple MS causing factors, their biochemical importance and the role expected to play in the normalisation and treatment of the involved complex network of events in the disease pathophysiology. Moreover, the high intake dosage was used to overcome any abnormal dietary accumulation of related agents as a result of patients' food intake habits, irrespective of geographical origin, in relation to the daily consumption ratio of the total fatty acid intake; in order to end-up with omega-3 to omega-6 PUFA indicated physiological body ratio composition of 1:1 wt/wt. The period beginning from July 1st 2007 (enrolment) until December 31st 2007 (entry baseline) was used for normalization period. This six-month normalization period would allow the interventions' agents to exert their beneficial effect (for the incorporation/normalization of cell membranes by oral PUFA, since they need four to six months to exert pivotal action on immune and neural cells, correction of antioxidant deficiency and body PUFA, and optimal normalization of EPA and DHA levels/ratio).⁴¹⁻⁴³ The study was completed on December 31st 2009 and the recording of relapses continued

until December 31st 2010. More clearly the study included the "normalization period" (July

 1^{st} 2007 to Dec 31st 2007), the "on treatment" period (Jan 1st 2008 to Dec 31st 2009) and the

261 12-month "extended period" (Jan 1^{st} 2010– Dec 31^{st} 2010).

263 Depending on their clinical status and in accordance with the ethical issues governing clinical 264 trials participants continued receiving the indicative regular available treatments, according to

2	
3	
4	
5	
4 5 6	
6 7	
1	
8	
9	
10	
44	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
20	
21	
22	
9 9 10 11 12 13 14 15 16 7 18 9 02 12 22 22 22 22 22 22 23 33 23 33 33 33 33	
24	
25	
20	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
25	
30	
36	
37	
38	
30	
10	
40	
41	
42 43	
43	
44	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
59 60	
nu	

1

international guidelines with persistent evaluation of any side-effects and adverse events.
The study was designed to end 30 months after enrolment and clinical assessments were
scheduled at entry baseline, 3, 9, 15, 21 and 24 months on-treatment. Patients were also
clinically examined by the treating neurologist within 48 hours after the onset of new or
recurrent neurologic symptoms.

270

271 The primary end point was the ARR at two years. A relapse was defined as new or recurrent 272 neurologic symptoms not associated with fever or infection that lasted for at least 24 hours 273 and accompanied by new neurologic signs. Relapses were treated with methyl-prednisolone 274 at a dose of 1g intravenous per day, for three days followed by prednisone orally at a dose of 275 1mg/kg of weight per day on a tapering scheme for three weeks. The secondary end point at 276 two years was the time to confirmed disability progression, defined as an increase of 1.0 or 277 more on EDSS, confirmed after six months (progression could not be confirmed during a 278 relapse). The final EDSS score was confirmed six months after the end of the study. A post-279 hoc analysis was performed assessing the proportion of patients free from new or enlarging 280 T2 lesions on brain MRI scans at the end of the study for the per-protocol participants of the 281 group receiving the highest effective intervention versus placebo. Comparison was made only 282 versus the available archival MRI scans up to three months before the enrolment date. MRI 283 scans were performed and blindly analyzed at an MRI evaluation centre. The patients 284 continued to be followed for additional 12 months after completion of the trial and relapses 285 were recorded. Finally, patients were strongly encouraged to remain in the study for follow-286 up assessments even if they had discontinued the study drug.

287

Blood samples were collected from all randomized patients at the time of enrolment, at every
scheduled clinical assessment and during relapses. To check individual compliance with

BMJ Open

	290	intake, the fatty acids composition of patients' red blood cells' membranes was determined,
	291	by gas chromatography, according to a standard protocol. The fatty acid analyses were
	292	performed after study termination and thus did not influence the blinding.
1	293	
	294	The involved neurologist was experienced with more than 20 years in practice and trained to
	295	standardise EDSS scoring procedures, examined patients, made all medical decisions,
	296	determined the EDSS score and reviewed adverse or side-effects. The medical biochemist,
	297	specialist on lipidology and immunology and the registered clinical dietitian, members of the
	298	investigator team were experienced with more than 25 years in practice. Patients were able to
	299	contact the neurologist at any time if there was any adverse event, side-effect or allergic
- - -	300	reaction. The study drug was not suspected to have any clinical or laboratory adverse effects
	301	different from placebo that could disturb the double-blind nature of the trial. Therefore, the
)	302	same study-neurologist functioned as both the treating and evaluating physician.
	303	
	304	Safety measures were assessed from the time of enrollment until 12 months following study
	305	completion. Haematological and biochemical tests were performed at enrolment and at every
	306	12 months, including full blood count, renal and liver function tests, proteins, cholesterol,
)	307	triglycerides, glucose and electrolytes.
	308	
;	309	The whole procedure followed the clinical trial guidelines as required by the USA Food and
	310	Drug Administration, European Medicines Agency, and the Committee for Medicinal
	311	Products for Human Use. ⁴⁴
	312	
	313	Statistical analysis

314	Power calculations could not be done before the study because of the lack of information
315	from previous studies on potential effect sizes. In 2005 the prevalence of MS in Cyprus
316	(600,000 population) was 120/100.000. Based on the aforementioned MS patients' numbers
317	of our country and the centre of reference, the CING, we were able to enrol the 20% of the
318	total RRMS patients eligible for treatment in the trial. Sample size was strictly based on this
319	subjects' availability parameter and the novelty of the assessed intervention.
320	
321	Baseline characteristics were compared across all intervention groups by ANOVA or
322	Kruskal-Wallis rank test for continuous variables and by mean Fisher's exact test for
323	categorical variables, as appropriate.
324	
325	For the primary outcome, the ARR was analysed in a pair-wise fashion for the active
326	interventions compared to placebo using negative binomial regression models adjusted for
327	number of relapses within two years before baseline, EDSS score at baseline and DMT. The
328	relapse rate was calculated as the total number of relapses divided by the total number of
329	patient-years followed for each treatment group. ARR differences were also calculated
330	among all comparable parameters and reported as percent difference.
331	
332	For the secondary end-point outcome, the time to disability progression, Kaplan-Meier
333	curves were constructed. Progression to disability and time thereof was compared in a pair-
334	wise fashion for the active interventions versus placebo by the log-rank test in the main
335	analysis and by Cox proportional-hazards models with adjustment for baseline EDSS score,
336	age and DMT in the supportive analysis. Each test was performed with a significance level of
337	0.05. Multivariate models considered all variables with $P < 0.1$ on univariate models. There
338	was no overt violation of the proportionality assumption.

BMJ Open

2		
3	339	
4 5 6	340	Both, per-protocol and intention to treat (ITT) analyses were performed, for different sets of
7 8	341	research questions to be answered, and both are reported. Missing data of the five lost to
9 10	342	follow patients were imputed by use of the last-observation-carried-forward (LOCF)
11 12 13	343	approach. Due to the proof-of-concept design of the study, the considerable non-adherence
13 14 15	344	rate (49%) and the interpretation issues caused thereof regarding the ITT analysis, the per-
16 17	345	protocol analysis considered being more informative and appropriate method approach to
18 19	346	answer the research addressed questions of efficacy of the interventions when subjects were
20 21 22	347	continuously following the protocol. All statistical analyses were well defined a priori. All
22 23 24	348	analyses were performed with STATA SE 10.0 (College Station, TX, USA). P-values are
25 26	349	two-tailed.
27 28	350	
29 30 31	351	Role of the funding source
32 33	352	The funders had no role in study design, data collection and analysis, decision to publish, or
34 35	353	preparation of the manuscript. All members of the writing group had full access to all study
36 37	354	data and contributed to its interpretation and prepared, reviewed, and approved the
38 39	355	manuscript for submission. All authors had final responsibility for the decision to submit the
40 41 42	356	paper for publication.
43 44	357	paper for publication.
45 46	358	Results
47 48 49	359	Study population
49 50 51	360	From July 2007 through December 2010 (including the 12-month extended period), a total of
52 53	361	80 MS patients were randomly assigned to a study group at the CING (tertiary neurological
54 55	362	center).
56 57 58 59 60	363	

2
2
3 4 5 6 7 8 9 10 11 12
4
-
5
6
-
1
8
0
9
10
11
11
12
12
13
14
15
10
16
17
40
11 12 13 14 15 16 17 18 19
19
20
20
21
22
20 21 22 23 24 25 26 27 28 29 30 31 23 34 35 36 37 89 20
23
24
<u></u>
25
26
27
21
28
29
23
30
31
20
32
33
24
34
35
36
50
37
38
00
39
40
10
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

364	Among the 80 patients, 20 patients were randomly assigned to each of the three groups to
365	receive the interventions and 20 to receive placebo (Fig 2). Baseline characteristics of both
366	the ITT and the per-protocol populations were similar across groups (Table 2A and 2B).
367	Total drop-out patients completed follow-up until study completion and were included in the
368	ITT analyses (Table 4). Five patients were totally lost to follow before their first scheduled
369	visit and two patients dropped-out before their first scheduled visit progressed to secondary
370	progressive MS. Fifteen patients dropped-out without successfully completing the
371	"normalization" period including five pregnancies. Another 17 patients dropped-out early
372	after entry baseline. Seven patients that dropped out were given monoclonal antibody
373	treatment (natalizumab). Overall, a total of 41 (51%) patients completed the 42-month study
374	(July 2007 through December 31 st 2010, including the 12-month extended period) where one
375	patient from group A and two from the placebo group transferred on natalizumab, and 39
376	(49%) patients either withdrew (drop-out) or lost to follow. Reasons for study-interventions
377	discontinuation are listed in Figure 2.
378	discontinuation are listed in Figure 2.

379 Efficacy

380 Relapses

381 As a proof-of-concept trial we primarily needed to answer whether the interventions were 382 effective for those MS patients who adhere to the assigned treatment, the per-protocol analysis.⁴⁵ For the sake of methodological comprehensiveness we also present the ITT 383 384 analysis as a secondary analysis, to answer a different question, complementary to our core 385 hypothesis; like what happened to MS patients who were placed on the interventions (the effect of assignment).⁴⁵ Otherwise, as a result of a high drop-out rate, an ITT analysis will not 386 likely be able to show the superiority of an intervention even if it is effective.⁴⁵ In any 387 instance, the proper approach of evaluating a study data is to understand what question 388

BMJ Open

~	
3	
3 4 5 6 7 8	
5	
6	
0	
7	
8 9 10 11 12 13	
õ	
9	
10	
11	
12	
12	
13	
14	
15	
40	
16	
17 18	
18	
10	
19	
20	
21	
22	
19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
22	
32	
33	
34	
25	
30	
36	
37	
20	
50	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51 52	
52	
53	
54	
55	
56	
57	
58	
59 60	

prompted the research and assure that the analysis is appropriate for providing the answer
whatever it is called. Both analyses can be performed for a study, using the results from the
different analyses to answer different research questions.⁴⁵ These interventions are original,
composed by a different treatment rational, the SM, never tested before and the important
main concern was to evaluate their efficacy and safety based on the per-protocol treated MS
patients, without any peripheral noise. The question that had to be answered was: "what
happens to the patients that are placed and stick on the specific treatment".

396

397 Regarding the per-protocol analysis, during the first year of treatment, the ARR was 0.80, 398 0.40, 0.78 and 0.83 for the four intervention groups respectively. During the second year, the 399 ARR was 0.90, 0.40, 0.67 and 1.25 for the four intervention groups respectively. Overall, for 400 the two-year primary end point, 8 relapses were recorded for the 10 patients in PLP10 group 401 (0.40 ARR) versus 25 relapses for the 12 patients in placebo (1.04 ARR), a 64% adjusted 402 relative rate reduction (RRR) for the PLP10 group (RRR 0.36, 95% confidence interval (CI) 403 0.15 to 0.87, p=0.024) (Tables 3A, 5 and Fig 3A and 3C). Excluding patients on monoclonal 404 antibody (natalizumab) treatment, the observed adjusted RRR became stronger (72%) over 405 the two years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016, Tables 3B and 5). Pair-wise 406 comparisons for the other two groups against placebo did not yield statistically significant 407 results (Tables 3A, 3B). The proportion of patients with ≤ 1 relapse for the two years on-study 408 was higher in the PLP10 group than in the placebo group (90% versus 42%, p=0.030, Table 409 5). Seeking to investigate further the observed difference, we compared the relapse rate 410 during the 24 months before entry to the study to the 24 months on-treatment for each 411 intervention group. We observed a statistically significant relative reduction in the ARR 412 (70%) only in the PLP10 group (RRR 0.30; 95% CI 0.14 to 0.65, p=0.003, Table 3A); 413 within-group comparisons for the three other groups ARR reduction was not significant and

414	remained not significant when natalizumab treated patients were further excluded from the
415	analysis. The effect of PLP10 through time at different time-windows versus placebo for all-
416	time on-study patients is shown in Figures 3A to 3D. The ARR analysis, within time-
417	windows, was not an assigned endpoint, but it could help in the process of evaluating parallel
418	information as the time needed for a specific treatment intervention activity to be evident, as
419	well as the efficacy profile through time. PLP10 reached maximum effect within a year on-
420	treatment (counting from the entry baseline) and remained stable at an ARR of 0.4,
421	displaying a steadily reduced ARR with long free-relapse time-windows. These group B
422	characteristics are considered important parameters of a successful MS treatment where the
423	rule than the exception is the heterogeneity among patients' disease evolution. Specifically,
424	Figure 3D demonstrates the dispersion of relapses throughout the 2-year period of all-time
425	on-study (excluding patients on natalizumab) of PLP10 (n=10) versus placebo (n=10).
426	Placebo, in line with the existing knowledge of how relapse history works in relation to future
427	relapses on MS patients (contagion phenomenon) indicates the expected linearly increased
428	trend of the relapse incidence. ⁴⁶ The same phenomenon was true for the groups A and C.
429	Finally, during the 12 month post-study extended period (January 1st 2010 to December 31st
430	2010) all-time on-study patients that received PLP10, showed persistent benefit in the ARR
431	compared to placebo (six relapses for the 10 subjects within PLP10, 0.6 ARR versus19 for
432	the 12 subjects within placebo group, 1.58 ARR) indicating a statistically significant 62%
433	adjusted relative rate reduction in the ARR for the PLP10 group (RRR 0.38, 95% CI 0.12 to
434	0.99, p=0.046).
435	
436	Regarding the ITT analysis, within PLP10 group, none of the nine drop-out patients changed
437	to natalizumab and two out of nine discontinued because of pregnancy, whereas two out of

seven drop-out patients from the placebo group changed to natalizumab (a total of four

BMJ Open

439	patients within the placebo arm population were on natalizumab, including the two patients
440	that transferred while all-time on-study versus none within PLP10 group (Supplementary
441	Information Fig 1). As reported, natalizumab reduces ARR by 68%, decreases the possibility
442	of disability progression by 43% with 57% of patients free of new or enlarging T2 lesions on
443	MRI scans compared to 15% on placebo. ⁴⁷ The relapses of the drop-out patients are reported
444	in Table 4A. As expected no statistically significant differences in the ARR were calculated
445	for the comparison of any group versus placebo for the 24 months on-treatment, with a 0.75
446	ARR within PLP10 (30 relapses) and 1.03 ARR within placebo (41 relapses) group, a 27%
447	ARR reduction (Table 4B). Interestingly, despite the high non-adherence rate, there was a
448	statistically significant difference for the comparison of the ARR in the 24 months before
449	entry baseline to the 24 months on-treatment for the PLP10 group (RRR 0.45, 95% CI 0.26 to
450	0.78, p=0.005).

Disability progression

Regarding the per-protocol analysis, at two years, the time to disability progression, with confirmation after six months (secondary end-point) was significantly longer only with PLP10. The cumulative probability of disability progression was 10% in the PLP10 group and 58% in the placebo group (p=0.019) (Supplementary Information Fig 2). After excluding patients on natalizumab, there was an increased statistically significant difference between the PLP10 and the placebo group for the same analysis (p=0.006) (Fig 4A). At two years, the cumulative probability of progression was 10% in the PLP10 group and 70% in the placebo group, which represents a decrease of 60 percentage points or a relative 86% decrease in the risk of sustained progression of disability within PLP10 group (adjusted hazard ratio, 0.11; 95% CI 0.01 to 0.97, p=0.047). One versus seven out of ten patients progressed to confirmed disability in the PLP10 and the placebo groups respectively when patients on natalizumab

	BMJ Open
464	were excluded. No statistically significant difference was observed for any comparison of the
465	other two groups compared to placebo (Fig 4A and Supplementary Information Fig 2).
466	
467	Regarding the ITT analysis, at two years, the cumulative probability of progression was 10%
468	in the PLP10 group and 35% in the placebo group (p=0.052, a trend for an effect), which
469	represents a decrease of 25 percentage points or a relative 71% decrease of the PLP10 for the
470	risk of sustained progression of disability (adjusted hazard ratio 0.22, 95% CI 0.04 to 1.07,
471	p=0.06) (Fig 4B). Two versus seven out of the total randomized patients progressed to
472	confirmed disability in the PLP10 and the placebo groups respectively. No significant
473	differences were observed for groups A or C against placebo (Fig 4B). The mean change in
474	Expanded Disability Status Scale (EDSS) score as a function of visit number is shown in
475	Figure 5.
476	
477	MRI
478	Over two years, the MRI results support the overall conclusion from the study that PLP10 has
479	a positive effect on disease activity since only 29% from the PLP10 group as opposed to 67%
480	from the placebo group developed new or enlarging T2 lesions (57% relative risk reduction).
481	Excluding patients on natalizumab there is an increased relative risk reduction (64%) between
482	PLP10 as opposed to placebo with 29% of patients on PLP10 and 80% on placebo with
483	development of new or enlarging T2 lesions (Table 5).
484	
485	Safety
486	Over the course of the 30 month study no significant adverse events were reported from any
487	group. According to a questioner procedure the only aetiology for drop-outs was the
488	palatability and smell of the formula preparations. Nausea was reported by two patients. No

BMJ Open

abnormal values observed on any of the biochemical and haematological blood tests. Noallergic reactions reported.

Discussion

In this proof-of-concept clinical trial assessing the safety and efficacy of three cocktail intervention formulas in RRMS, we observed a significant benefit for the novel PLP10 intervention compared to placebo for both the ARR and the progression to disability. Our results include analyses pertaining to a total of 42 months study collected data, including the 12-month, free of intervention treatment, extension period. We focused on the per-protocol data analysis since it is the appropriate method to best provide the answer to the proof-of-concept trial-addressed question. The high drop-out rate was solely the result of formulas palatability, a common phenomenon in trials using oily interventions where a lot of patients tend to drop-out soon after first dosage. We thus present our main per-protocol analysis, as well as a subgroup analysis excluding patients on natalizumab. We have found a statistically significant reduction in the ARR and the disability progression comparing not only patients on PLP10 versus placebo but also comparing the ARR of the PLP10 patients in the 24-month period prior to the study to the ARR of the 24 months on-study; the observed differences became larger when patients that received natalizumab (the most potent disease modifier) were excluded. The ARR decreased within a year on PLP10 and significantly remained stable until study completion. Statistically significant difference of ARR between patients on PLP10 versus placebo continued for the additional 12 month extended period (persistent effect) without significant difference on DMT. These clinical findings are supported by the results regarding the MRI analysis where the proportion of patients free from new or enlarging brain T2 lesions was also higher in PLP10 group versus placebo. The persistent effect within the extended period it is considered of major importance and supportive of the results since it is

in agreement with the very long washouts, reported necessary, for omega-3 fatty acids and especially DHA to return towards pretreatment values within the fatty acids of plasma, platelets, monocytes and red blood cells.⁴² This study also provides important 30-month, placebo-controlled information about the safety of PLP10, A and C interventions, where no any adverse or severe side effects have been reported. As medications used to treat MS become increasingly highly specific and potent, attention to safety is paramount. Current available treatments are products of reductionism, partially effective, associated with severe side effects without (re)myelinating or neuroprotective abilities. Interferons and glatiramer acetate, the most widely used first-line MS drugs available today, are associated with the least severe side-effects among MS therapies but they are reported with only 29-33% ARR reduction and with no significant effects on the progression of disability. Natalizumab as previously discussed and Fingolimod with 54% ARR reduction (without significant benefit on the progression of disability) are second-line drugs associated with severe side-effects.^{47,48} No existing MS treatment has ever been designed as a result of SM concept approach or with a potential to effectively stimulate intrinsic remyelinating and neuroprotecting mechanisms or

533 synchronized action on all involved perturbed mechanisms. PLP10 has innovative

exert such an action. Now we propose that a holistic SM model approach has to be applied by

characteristics like no any other intervention or medication tried before for MS treatment,

with unique efficacy abilities through different mechanisms of action, probably by the

536 synergistic effect of its constituent ingredients. PLP10 has all the characteristics of a medical

537 food with the action to feed a normal metabolic process by supplying nutritional structural

538 membrane precursors, building blocks, and vitamins from dietary sources that enhance

BMJ Open

539	remyelination and neuroprotection and simultaneously promote normalization of all cellular
540	membranes lipid content. The intention is to normalize the specific nutritional requirements
541	of the MS patients.
542	
543	Different factors and molecular entities appear to be part of the possible aetiology for MS
544	with specific PUFA and antioxidants found to be key substances related to all known
545	pathogenic and recovery mechanisms. But, it is well established that MS patients are
546	characterized with significant deficiencies in antioxidant efficiency as well as in PUFA levels
547	in blood and cellular membranes. ^{11, 49-51}
548	
549	According to one hypothesis, the change in the ratio of omega-3 to omega-6, due to
550	increasing consumption of omega-6 PUFA, meaning high accumulation of AA, in the
551	Western diet, may be one of the major factors responsible for the increasing incidence of
552	inflammatory diseases relative to populations. In the Western diet, the ratio of omega-3 to
553	omega-6 is about 1:20–30; in populations that consume fish-based diets, the ratio is about
554	1:1–2. ^{52, 53} The intervention daily dose was aiming and believed to be high enough to
555	restore/amplify body efficient antioxidant activity and ensure cellular membranes lipid profile
556	normalization (PUFA content) and simultaneously potentiate involvement of the ingredients
557	in the anti-inflammatory and recovery mechanisms. Diet fatty acid molecules need about six
558	months period to exert their beneficial effect and this essential parameter was for the first
559	time under consideration in our study design (normalization period). ⁴² This chronotherapy
560	parameter it is of major importance in line with the SM treatment philosophy and if it is not
561	included in the trial design the possibility of misleading result evaluation greatly increases. In
562	fact, considering that omega-3 supplementation can release and replace excess AA within the

563	cellular membranes, we can speculate that an increased inflammatory activity can possibly
564	result during the first six months of supplementation (during normalization period).
565	
566	The maintenance of myelin requires continued turnover of its components throughout life. ^{54,55}
567	In addition to the EPA, DHA, LA, and GLA, PLP10 was containing limited quantities of
568	other structural PUFA, specific MUFA (mostly oleic acid) and SFA (palmitic and stearic
569	acid), specifically to provide a direct source for neuronal cell membranes rehabilitation and
570	for (re)myelination and neuroprotection since they are all major components, precursors and
571	building blocks of any new physiological myelin and cellular membranes in general.
572	Assembly of the correct molecules into myelin membrane may be especially critical during
573	active synthesis. Possibly, if critical constituents aren't available or are metabolically
574	blocked, amyelination, dysmyelination or demyelination may ensue. ⁵⁶
575	
576	The well known and established safety of the ingredients used and the protocol guidelines
577	were supportive reasons for us to proceed with the clinical study even though with limitation
578	on the pre-estimation of required trial sample size as it was discussed in method section. The
579	adherence of the subjects is another issue but the duration of the study (42 months) is adding
580	power to the results; ⁴⁴ having the research questions been consciously and carefully
581	approached and answered. Furthermore, the statistical methodologies used along with the
582	appropriate adjustments, broadly accepted for MS clinical trials, power the findings, results,
583	and significance. The baseline characteristics of the treatment arms could possibly be
584	considered indicative of four very active groups of patients but that was the result of the
585	limited number of RRMS population eligible for the study within Cyprus. On the other hand
586	the balanced baseline characteristics without statistical differences, the statistical adjustments
587	(for all important baseline parameters i.e. relapses, EDSS, age and DMT) and the

Page 25 of 110

1

BMJ Open

1 2
2
4
5
6
7
8
9
10
11
12
13
14
15
10
10
19
20
-3 4 5 6 7 8 9 112 134 15 16 17 18 201 223 242 267 289 31 323 345 367 389 333 356 378 39 39 312 3345 567 39 39 312 3345 357 39
22
23
24
25
26
27
28
29
30
31
32
33
34 25
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 51
51 52
52 53
54
55
56
57
58
59
60

588	randomization within four different groups are the safety valves against data
589	misinterpretation. Yet, in small randomized control trials with a high drop-out rate, the per-
590	protocol analysis could be affected by the characteristics of the patients dropping out. In
591	order to safeguard our findings in the best possible way under the circumstances, we
592	proceeded to adjusting for confounders. Moreover, we cannot discard our finding as a false
593	positive, given that this is a randomized, double-blind, placebo-controlled clinical trial and,
594	despite its small sample size, represents a piece of evidence that only a larger randomized
595	controlled trial can replicate or refute. It is possible to question why DMTs efficacy cannot
596	be emerged out of the data analysis, of the four treatment arms, and in accordance to their
597	published values. We believe that the limited efficacy of the DMTs, the sample size and the
598	statistical adjustments were strong limiting determining factors for such an indication to be
599	countable. An additional argument is that the efficacy reported for the analysis of pre-
600	treatment (24 months before entry baseline) versus on-trial ARR could be considered as
601	potentially biased due to differences of how relapses were defined during the course of a
602	study compared to pre-treatment period; or due to regression to the mean or placebo effect.
603	This analysis was performed as an additional exploratory analysis that we were able to do due
604	to the availability of data. The relapses of the two pre-treatment years were drawn out of the
605	patients' archival records by the same treating neurologist involved in the study (MP), and
606	according to the patients' hospitalization date for receiving intravenous methyl-prednisolone.
607	This analysis was not used as a primary or a secondary end-point under investigation
608	although it is usually reported by many clinical studies. As a matter of fact many early phase
609	trials are based only on such an analysis (before versus after treatment results). In almost all
610	MS trials the number of relapses within the two years before baseline is a factor under
611	adjustment for the statistical analyses. ⁴⁸ The inclusion of the post-hoc MRI analysis is another
612	limiting factor that needs attention since it was used as an additional aside exploratory

approach (due to study budget limitations it was not possible to be used as a formal
endpoint); but the MRI evaluation was blinded and can be considered as representative of the
randomized subjects within the treatment arms. As far as the regression to the mean and the
placebo effect concerns we believe that the 6-month normalization period is an accountable
and valuable eliminating factor of the possible effect; as well as the presence of four groups,
where only the PLP10 treatment arm is associated with statistically significant efficacy versus
placebo. It is a placebo-controlled study after all.

Our observations are consistent with the idea that simultaneous availability of specific PUFA along with other major membrane and myelin building blocks in combination with specific antioxidants, within optimum quantity, quality, ratio and structural form can possibly result to a more appropriate holistic therapy reducing MS disease activity. This is probably succeeded through synergistic and/or simultaneous effect on the interactions and dynamics of the most probable environmental and biological disease causing factors that induce complex biological network of events for disease pathogenesis and evolution; as well as on the protective and reparative mechanisms. We can additionally speculate that the nature of the intervention formula cannot be prohibitive for its use as preventive regimen and does not preclude probable positive efficacy on the other types of MS, but has to be further investigated. A larger size multicenter clinical trial will better establish PLP10 place in the armamentarium of treatments for MS.

It is commonly accepted that nutrition is one of the possible environmental factors involved in the pathogenesis of MS, but its role as complementary MS treatment is unclear and largely disregarded.⁵⁷ It is well known that the majority of the patients suffering from MS they do use dietary supplements for a variable length of time and they prefer supplement type of

BMJ Open

638	"help" over conventional drugs.58 Dietary antioxidants and fatty acids may influence the
639	disease process in MS by reducing immune-mediated inflammation, oxidative stress and
640	excitotoxic damage. ¹¹ Present data reveal that healthy dietary molecules have a pleiotropic
641	role and are able to change cell metabolism from anabolism to catabolism and down-regulate
642	inflammation by interacting with enzymes, nuclear receptors and transcriptional factors. ⁵⁷
643	The present study, for the first time provides strong link evidence between dietary, metabolic,
644	immunological, and neurobiological aspects of MS after three quarters of a century of
645	unsuccessful scientific efforts. This might probably be the beginning of opening new
646	horizons and new avenues in the approach of MS prevention and treatment, and possibly of
647	other multifactorial chronic diseases, including neurodegenerative and autoimmune as well.
648	
649	
650	
651	
652	
653	other multifactorial chronic diseases, including neurodegenerative and autoimmune as well.
654	
655	
656	
657	
658	
659	
660	
661	
662	

1.	Turoturo	ant A mana	
А	B (PLP10)	ent Arms C	Placebo
Intervention: EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg)* / total MUFA** (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg)	Intervention: EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg)* / total MUFA** (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) + pure γ-tocopherol (760mg)	Intervention: pure γ-tocopherol (760mg) dispersed in pure virgin olive oil (16,137 mg) as delivery vehicle	Intervention: Olive oil (pure virgin)
** MUFA: 18:1 1300mg,	n-3 37mg, C18:4n-3 73mg, C 20:1 250mg, 22:1 82mg, 24:1 Aalesund, Norway; was used	82mg	-
International GmbH, Edli triglycerides. The pure γ	v oils; Borage seed oil (organ ng, Germany, was used as th -tocopherol was purchased fi carotene from HealthAid Ltd., ubendorf, Switzerland.	ne source for the omega-6 F rom Tama Biochemical Co	PUFA, MUFA and SFA . Ltd., Shinjuku-ku To
Table I. Intervention	ingredients per treatment	t arm. Citrus-aroma was	used as masking as
of the taste and odor a solution per day.	and added in each one of		-
	and added in each one of		
	and added in each one of	the intervention for a to	otal of 19.5ml dosag
	and added in each one of	the intervention for a to	-
	and added in each one of	the intervention for a to	otal of 19.5ml dosag
	and added in each one of	the intervention for a to	otal of 19.5ml dosag
	and added in each one of	the intervention for a to	otal of 19.5ml dosag
	and added in each one of	the intervention for a to	otal of 19.5ml dosag

Characteristics	Group A (n=20)	Group B† (n=20)	Group C (n=20)	Placebo (n=20)	P- val
Sex	(11-20)	(II-20)	(11-20)	(11-20)	Val
Female - no. (%)	15 (75)	15 (75)	15 (75)	15 (75)	1.0
Age (yr)					
Mean ± Standard Deviation (SD)	38.0±11.9	36.9±8.4	37.7±8.7	38.1±10.9	0.9
Median (Range)	38.0 (22 - 65)	37.0 (25 –61)	36.5 (24 - 54)	36.0 (21–58)	
Treatment history					
Patients on DMT- no. (%)	11 (55)	9 (45)	12 (60)	10 (50)	0.8
Pre-treatment disease duration (yr)					
Mean ± SD	9.0±7.6	8.6±4.8	8.6±5.3	7.7±5.7	0.9
Median (Range)	7.5 (2 – 37)	8.0 (2 – 20)	8.0 (3 – 24)	6.5 (2 – 25)	
Pre-treatment relapses‡					
Mean ± SD	2.33±1.68	2.41±1.73	2.31±1.66	2.10±1.32	0.9
Median (Range)	2.0 (1 – 6)	2.0 (1 – 7)	2.0 (1 - 6)	2.0 (1 – 4)	
ARR	1.17	1.21	1.16	1.05	0.9
Patients -% with ≤ 1 relapse	40	45	40	35	
Baseline EDSS score‡					
Mean ± SD	2.52±1.23	2.15±1.05	2.42±1.21	2.39± 0.93	0.7
Median (Range)	2.5 (1.0-5.5)	2.0 (1.0-4.0)	2.5 (0.0–5.0)	2.5 (1.0-4.0)	
1D					
2B. Characteristics	Group A	Group B†	Group C	Placebo	P-
Sex	(n=10)	(n=10)	(n=9)	(n=12)	val
Female - no. (%)	5 (50)	7 (70)	6 (66.6)	10 (83.3)	0.4
	5 (50)	(10)	0 (00.0)	10 (05.5)	0.4
Age (yr) Mean ± SD	36 6+12 5	34.80±5.4	<i>1</i> 0 0±9 1	20 8+12 2	0.5
	36.6±13.5		40.9±8.1	39.8±13.2	0.5
Median (Range)	34.5 (22–65)	34.5 (26–43)	40.0 (29–54)	37.5 (21–58)	
Treatment history					
Patients on DMT- no. (%)	6 (60)	4 (40)	6 (67)	6 (50)	0.9
Pre-treatment disease duration (yr)					
Mean \pm SD	9.7±10.0	8.3±5.3	11.3±6.1	8.7± 7.1	0.8
Median (Range)	7.5 (2 – 37)	8.0 (2 – 20)	8.0 (4 – 24)	5.5 (2 – 25)	

Mean \pm SD	2.20±1.47	2.70±1.25	1.78±0.66	1.67±1.37	0.241
Median (Range)	2.0 (1 – 6)	2.5 (1 – 4)	2.0 (1 – 3)	1.5 (1 – 4)	
ARR	1.10	1.35	0.89	0.83	
Patients -% with ≤ 1 relapse	30	20	33	50	
Baseline EDSS score					
Mean ± SD	2.65±1.37	2.40±1.12	2.11±1.02	2.16±0.96	0.698
Median (Range)	3.0 (1.0-5.5)	2.5 (1.0-4.0)	2.0 (1.0-4.0)	2.0 (1.0-3.5)	

† PLP10 group

‡ Available data at Entry Baseline (n=18 for group A, n=17 for group B, n=19 for group C, n=19 for group D)

Table 2. The table section 2A reports the demographics and baseline disease characteristics for

 total randomized population by treatment arm.

The table section 2B reports the demographics and baseline disease characteristics of all-time onstudy population by treatment arm. There were no significant between study-group differences at baseline for any characteristic.

674	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	
687	

Characteristics	Grou	110 A	Grou	n D‡	Grou	un C	Dlo	aba
Characteristics		up A =10)	Group B† (N=10)		Group C (N =9)		Placebo (N =12)	
	(1)	-10)	(11	-10)	(1)	-))	(11	-12)
End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	22	17	27	8	16	13	20	25
Annual Relapse Rate (ARR)	1.10	0.85	1.35	0.40	0.88	0.72	0.83	1.04
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-18		-62		-30		N/A
P Value against placebo		0.468		0.024		0.578		
ARR change -% (Y to X)¶	-2	23	-7	70	- :	18	+	25
P value against baseline	0.4	25	0.0	003	0.0	578		500

number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

¶ Unadjusted estimate

3B.								
<u>Excluding patients on</u> <u>natalizumab</u>	Group A (N =9) Group B† (N =10)				Grou (N =		Placebo (N=10)	
End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	16	15	27	8	16	13	13	19
Annual Relapse Rate (ARR)	0.88	0.83	1.35	0.40	0.88	0.72	0.65	0.95
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-13		-58		-24		N/A
P Value against placebo		0.493		0.016		0.412		
ARR change -% (Y to X)¶		-6	-7	0	- 1	8	+4	46
P value against baseline	0.	857	0.0	03	0.5	78	0.3	354

X: Total number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

† PLP10 group

¶ Unadjusted estimate

Table 3. The table section 3A reports the two year primary end points of ARR of all-time on-study

population by treatment arm and percent difference with placebo. During the 24mo period on-treatment

the ARR of the group A was 0.85 with 18% decrease compared to placebo (p=0.468), of PLP10 group 0.40 with 62% decrease (p=0.024), and of group C 0.72 with 30% decrease (p=0.578) and reports the comparison of the 24mo pre-treatment ARR (baseline ARR) to 24mo on-treatment ARR of all-time on-study population including patients on natalizumab.

The table section 3B reports comparison of the 24mo pre-treatment ARR to 24mo on-treatment ARR of all-time on-study population excluding patients on natalizumab; and the comparison of the ARR during the 24mo period on-treatment (primary end point) between each one of the groups against placebo.

688	
689	
690	
691	
692	
693	
694	
695	
696	
697	
698	
699	
700	
701	
702	
703	
704	
705	

Characteristics	Group A (N =8)		Group B† (N =7)		Group C (N=10)		Placebo (N =7)	
	Х	Y	Х	Y	Х	Y	Х	Y
No. of Relapses	20	14	14	14	27	26	20	13
Annual Relapse Rate (ARR)	1.25	0.88	1.00	1.00	1.35	1.30	1.42	0.92

X: Total number of relapses of 24 months pre-treatment

Y: Total number of relapses of 24 months on-treatment

4B.								
Characteristics	Grou (N =			up B† =20)		up C =20)		ebo =20)
End Point	Х	Y	Х	Y	Х	Y	Х	Y
No. of Relapses	45	34	49	30	46	41	43	41
Annual Relapse Rate (ARR)	1.13	0.85	1.23	0.75	1.15	1.03	1.08	1.03
ARR Reduction -% (Y to X)¶	-2:	5	-:	39	-1	.0	-:	5
P value against baseline	0.12	20	0.0	005	0.4	75	0.6	52
% Reduction of the ARR Compared to Placebo (Ys)¶		-18		-27		0.0		N/A
P Value against placebo		0.447		0.121		0.996		

X: Total number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

¶ Unadjusted estimate

† PLP10 group

Table 4. The table section 4A reports the two year primary end point of relapses based on study design as reported by drop-out patients by Treatment Arm. The most drop-out patients that went on disease modified therapy (DMT) were from the group A and placebo with three and two patients respectively on natalizumab. These parameters justify the decreased number of relapses recorded within group A and placebo drop-outs; and this could affect the ITT analysis in favor of placebo when the total two-year recorded data are used. For PLP10 group, 14 relapses were reported at baseline and remained the same during the two-year study. For placebo, 20 relapses were reported at baseline and decreased to 13 during the two-

year study. This is expected since, for PLP10 group 43% of the drop-outs were under DMT at entry baseline and remained the same until the end of the study with no patient on natalizumab; but 57% of the placebo group drop-outs that were under DMT at entry baseline increased to 86% at the end of the study including two patients on natalizumab.

The table section 4B reports comparison of 24 months pre-treatment ARR (baseline) to 24 months on-treatment ARR of total randomized population, by treatment arm. The ARR of PLP10 group was 1.23 at baseline and 0.75 at the end of the study (39% reduction p=0.005), and for placebo 1.08 at baseline and 1.03 at the end of the study (5% reduction p=0.652). No statistical difference was calculated for the other two treatment arms. During the 24 months on-treatment, PLP10 group presented a 27% reduction of ARR versus placebo (p=0.121), with all groups without statistically significant results.

706	
707	
708	
709	
710	
711	
712	
713	
714	

Characteristics*	Group A (n=10)	Group B PLP10 (n=10)	Group C (n=9)	Placebo (n=12)	P-va Grou B vs. Place
Annual relapse rate over 1 year**	0.80	0.40	0.78	0.83	
Total number of relapses**	8	4	7	10	
Primary end points					
Annual relapse rate over 2 years (95% CI)**	0.85	0.40 (0.15-0.87)	0.72	1.04	0.02
Total number of relapses**	17	8	13	25	
Excluding patients on natalizumab	(n=9)	(n=10)	(n=9)	(n=10)	
Annual relapse rate over 2 years (95% CI)	0.83	0.40 (0.10-0.79)	0.72	0.95	0.01
Total number of relapses	15	8	13	19	
Secondary end points					
Cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -% **	43	10 (1/10)	24	58 (7/12)	0.01
Excluding patients on natalizumab cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -%	33	10 (1/10)	24	70 (7/10)	0.00
Exploratory Results					
Patients proportion with ≤ 1 relapse over 2 years $-\% **$	50 (5/10)	90 (9/10)	56 (5/9)	42 (5/12)	0.03
MRI					
Patients proportion with new or enlarging T2 lesions-% **		29 (2/7)		67 (4/6)	
Excluding patients on natalizumab Patients proportion with no new or enlarging T2 lesions-%		29 (2/7)		80 (4/5)	
DMT (interferons, glatiramer acetate) and natalizumab					
Patients proportion on DMT and natalizumab at the end of 2 years-% **	80 (8/10)†	60 (6/10)	67 (6/9)	75 (9/12) ‡	0.74
 CI denotes confidence interval. Including patients on natalizumab 1out of 10 on natalizumab 2 out of 12 on natalizumab 					

2
3
4
5
6
7
8
9
10
11
12
13
14
10
17
18
19
20
2 3 4 5 6 7 8 9 10 1 12 3 4 15 16 7 8 9 20 1 22 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 2 3 2 4 2 5 2 7 8 9 20 1 3 2 3 3 4 5 6 7 8 9 20 1 2 2 3 2 4 5 6 7 8 9 20 1 2 3 3 4 5 6 7 8 9 20 1 2 2 3 4 5 6 7 8 9 20 1 2 2 3 4 5 6 7 8 9 20 1 2 2 3 4 5 6 7 8 9 20 1 2 2 3 4 5 6 7 8 9 20 1 2 2 3 4 5 6 7 8 9 20 1 2 2 3 4 5 6 7 8 9 20 1 2 2 3 4 5 6 7 8 9 20 1 2 2 3 4 5 6 7 8 9 20 1 2 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 3 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 3 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 3 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 3 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 3 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 3 3 4 3 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 3 4 3 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 3 4 3 5 6 7 8 9 20 1 2 3 3 4 3 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 20 1 2 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
22
23
24
25
26
27
28
29
30
31
32
33 24
34 25
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 53
53 54
54 55
55 56
50 57
58
59
60

1

716	Acknowledgments: We thank all participant patients. We thank Thyrsos Posporis MD and the
717	central reading centre (Ayios Therissos Medical Diagnostic Centre, Nicosia, Cyprus), and
718	Eleni Eracleous, MD (neuroradiologist) for the contribution on the MRI scans and their team
719	for the MRI reading. Special thanks to Elena Kkolou the pharmacist involved in the study and
720	Eftychia Gaglia for her nursing contribution and collection of blood from the patients. We
721	also thank Demetris Hadjisofoklis and Ioanna Leontiou (University of Nicosia, Helix
722	Business incubator) for their contribution on randomization process, data collection, filing
723	and blind codes keeping. Additionally we would like to thank the CING for hosting the
724	project. Moreover, we thank the Cyprus Ministry of Commerce, Industry and Tourism for
725	funding the project; and Yasoo Health Ltd., for providing some of the raw materials in
726	exchange of investigating, on their behalf, the efficacy and safety of γ -tocopherol.
727	
121	
728	Contributors: All authors interpreted the data. I.S.P drafted the report and figures and all
	Contributors: All authors interpreted the data. I.S.P drafted the report and figures and all authors critically revised and approved the final version. M.C.P and I.S.P were responsible
728	
728 729	authors critically revised and approved the final version. M.C.P and I.S.P were responsible
728 729 730	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs
728 729 730 731	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic
728 729 730 731 732	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L
728 729 730 731 732 733	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the
728 729 730 731 732 733 734	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the composition procedure of the interventions and the fatty acid profile analysis of the red blood
728 729 730 731 732 733 734 735	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the composition procedure of the interventions and the fatty acid profile analysis of the red blood cell membranes. E.E.N and I.S.P performed the statistical analyses. E.E.N was an

BMJ Open

739	Funding: Supported by a grand from the Cyprus Ministry of Commerce, Industry and
740	Tourism, program for the creation of new high technology and innovation enterprises through
741	the business incubator.
742	
743	Competing interest: M.C.P, G.N.L, I.S.P received grand support from the Cyprus Ministry of
744	Commerce, Industry and Tourism, Program for the Creation of New High Technology and
745	Innovation Enterprises through the Business Incubator. PALUPA Medical Ltd. is a research
746	company formed and registered for completion of the study, as required by the Governments'
747	funding grand program. M.C.P, G.N.L, I.S.P, and CING are all stockholders of the PALUPA
748	Medical Ltd. M.C.P is an employee at the CING. I.S.P is a senior research collaborator
749	hosted by the CING. G.N.L is a CING collaborator. E.E.N declares no-competing interest.
750	No pharmaceutical companies were involved in this phase II clinical trial. The intervention is
751	under a USA provisional patent; Application Number 61469081.
752	
753	Ethical approval: Cyprus National bioethics committee (reference EEBK/EII/2005/10).
754	
755	All authors have completed the Unified Competing Interest form at
756	www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and
757	declare that (1) M.C.P, G.N.L, I.S.P have support from Cyprus Ministry of Commerce,
758	Industry and Tourism, Program for the Creation of New High Technology and Innovation
759	Enterprises through the Business Incubator for the submitted work; (2) E.E.N has no
760	relationships with Cyprus Ministry of Commerce, Industry and Tourism, or PLUPA Medical
761	Ltd. that might have an interest in the submitted work in the previous 3 years; (3) their
762	spouses, partners, or children have no financial relationships that may be relevant to the

3
4
5
6
5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 22 23 24 25 26 27 28 9 30 13 23 33 33 33 33 35 6 7 8 9 10 11 22 23 24 25 26 27 28 9 30 13 23 33 33 33 33 35 6 7 8 9 10 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8
9
10
11
12
13
14
15
16
10
10
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
20
39
40 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

submitted work; and (4) E.E.N has a non-financial interests that may be relevant to thesubmitted work.

765

1 2

The Corresponding Author has the right to grant on behalf of all authors and does grant on
behalf of all authors, an exclusive license on a worldwide basis to the BMJ Publishing Group
Ltd and its Licensees to permit this article (if accepted) to be published in BMJ editions and
any other BMJPGL products and sublicences to exploit all subsidiary rights, as set out in our
licence (http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication)."

771

Article Summary

Article focus:

- The increasing prevalence of Multiple Sclerosis (MS), the limited efficacy and the side effects of the existing treatments urge the clinical need for the development of new, innovative, more effective, safe, and preventive treatment strategies.
- For the first time we propose three original nutraceutical treatment intervention-cocktails, formulated based on systems medicine through nutritional systems biology rational; with PLP10 representing the complete composition of the formulation and the other two treatments represent partial formulations.
- We have studied the proposed interventions on 80 relapsing remitting MS patients (four groups of 20 each) for a total of 42 months, in a randomized, double-blind, placebo-controlled, phase II proof-of-concept clinical trial.

Key messages:

- The per-protocol data analyses indicated that PLP10 is associated with significant efficacy versus placebo on both reducing the annualized relapse rate and disease progression without any adverse or severe side effects.
- PLP10 has probably the ability to interfere with the total known repertoire of mechanisms involved in MS pathogenesis as well as with the recovery mechanisms, neuroprotection and remyelination.; it is potentially able to manipulate global perturbed networks of the disease causing factors rather than focusing only on unique failing components.
- This proof-of-concept clinical study might be indicative and the beginning of new avenues in MS prevention and treatment and of new epoch of novel drug development with dynamic therapeutic potential for chronic complex multifactorial diseases.

Strengths and limitations of this study:

- The strength of this study is the systems medicine therapeutic approach, the length of the study the inclusion of the six months normalization (chronotherapy) period, and the study protocol following all indicated appropriate guidelines with definite inclusion/exclusion criteria and primary/secondary end points.
- The sample size and the high rate of drop-outs (palatability of the formula) are the limitations associated with the present study.
- A phase III multi-center clinical trial will establish the present intervention regime among the best choices among neurodegenerative diseases prophylaxis and MS treatment drugs faretra.

1	
2	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15 16	
17	
18	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 2 2 3 2 2 5 2 6 7 8 9 30 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
20	
21	
22	
24	
25	
26	
27	
28 29	
30	
31	
32	
33	
34 35	
36	
37	
38	
40 41	
41	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52 53	
53 54	
55	
56	
57	
58 50	
59 60	
00	

1

773 **References**

774	1.	Baranzini SE, Oksenberg JR, Hauser SL. New insights into the genetics of multiple
775		sclerosis. Journal of Rehabilitation Research and Development 2002;39:201-210.
776	2.	Goni J, Esteban FJ, de Mendizabal NV, et al. A computational analysis of protein-
777		protein interaction networks in neurodegenerative diseases. BMC Syst Biol
778		2008;2:52.
779	3.	Lobo I. Multifactorial inheritance and genetic disease. Nature Education 2008; 1.
780	4.	Compston A, Coles A. Multiple sclerosis. Lancet 2002;359:1221.
781	5.	Evans PH. Free radicals in brain metabolism and pathology. British Medical Bulletin
782		1993;49:577-587.
783	6.	Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab
784		Sci 1997;27:11-25.
785	7.	Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez
786		MV. The link between excitotoxic oligodendroglial death and demyelinating diseases.
787		Trends in Neurosciences 2001;24:224-230.
788	8.	Owens T. The enigma of multiple sclerosis: inflammation and neurodegeneration
789		cause heterogeneous dysfunction and damage. Current Opinion in Neurology
790		2003;16:259-265.
791	9.	Smith KJ, Kapoor R, Felts PA. Demyelination: The role of reactive oxygen and
792		nitrogen species. Brain Pathology 1999;9:69-92.
793	10.	Ahn AC, Tewari M, Poon C-S, Phillips RS. The Clinical Applications of a Systems
794		Approach. PLoS Med 2006;3:e209.
795	11.	van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF. Antioxidants and
796		polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 2005;59:1347-1361.

Page 41 of 110

1

BMJ Open

2			
2 3 4	797	12.	Calder PC. n–3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases.
5 6	798		The American Journal of Clinical Nutrition 2006;83:S1505-1519S.
7 8	799	13.	Piani D, Fontana A. Involvement of the cystine transport system xc- in the
9 10	800		macrophage- induced glutamate-dependent cytotoxicity to neurons. The Journal of
11 12	801		Immunology 1994;152:3578-3585.
13 14 15	802	14.	Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health
16 17	803		implications. International Journal of Developmental Neuroscience 2000;18:383-399.
18 19	804	15.	Calder PC. Dietary modification of inflammation with lipids. Proceedings of the
20 21	805		Nutrition Society 2002;61:345-358.
22 23	806	16.	Gil Á. Polyunsaturated fatty acids and inflammatory diseases. Biomedecine &
24 25 26	807		Pharmacotherapy 2002;56:388-396.
27 28	808	17.	Ariel A, Serhan CN. Resolvins and protectins in the termination program of acute
29 30	809		inflammation. Trends in Immunology 2007;28:176-183.
31 32	810	18.	Arita M, Ohira T, Sun Y-P, Elangovan S, Chiang N, Serhan CN. Resolvin E1
33 34 25	811		selectively interacts with leukotriene B4 receptor BLT1 and chemR23 to regulate
35 36 37	812		inflammation. The Journal of Immunology 2007;178:3912-3917.
38 39	813	19.	Janakiram NB, Rao CV. Role of Lipoxins and Resolvins as Anti-Inflammatory and
40 41	814		Proresolving Mediators in Colon Cancer. Current Molecular Medicine 2009;9:565-
42 43	815		579.
44 45 46	816	20.	Serhan C, Arita M, Hong S, Gotlinger K. Resolvins, docosatrienes, and
40 47 48	817		neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-
49 50	818		triggered epimers. Lipids 2004;39:1125-1132.
51 52	819	21.	Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-
53 54	820		inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008;8:349-361.
55 56 57			
57 58			
59 60			

2 3	821	22.	Rossetti RG, Seiler C, DeLuca P, Laposata M, Zurier R. Oral administration of
4 5 6	822		unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation.
7 8	823		Journal of Leukocyte Biology 1997;62:438-443.
9 10	824	23.	Vatassery G. Vitamin E and other endogenous antioxidants in the central nervous
11 12	825		system. Geriatrics 1998a;53:S25-S27.
13 14	826	24.	Fukuzawa K, Gebicki JM. Oxidation of [alpha]-tocopherol in micelles and liposomes
15 16 17	827		by the hydroxyl, perhydroxyl, and superoxide free radicals. Archives of Biochemistry
18 19	828		and Biophysics 1983;226:242-251.
20 21	829	25.	Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames
22 23	830		BN. γ -Tocopherol traps mutagenic electrophiles such as NOx and complements α -
24 25	831		tocopherol: Physiological implications. Proceedings of the National Academy of
26 27	832		Sciences of the United States of America 1997;94:3217-3222.
28 29 30	833	26.	Brigelius-Flohé R, Kelly FJ, Salonen JT, Neuzil J, Zingg J-M, Azzi A. The European
30 31 32	834		perspective on vitamin E: current knowledge and future research. The American
33 34	835		Journal of Clinical Nutrition 2002;76:703-716.
35 36	836	27.	Calder P. Polyunsaturated fatty acids, inflammatory processes and inflammatory
37 38	837	27.	bowel diseases Mol Nutr Food Res 2008;52:885–897
39 40	838	28.	Edwards IJ, O'Flaherty JT. Omega-3 Fatty Acids and PPARy in Cancer. PPAR
41 42 43		20.	Research 2008;2008:1-15.
43 44 45	839	•	
46	840	29.	Groeger AL, Cipollina C, Cole MP, et al. Cyclooxygenase-2 generates anti-
47 48	841		inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 2010;6:433-441.
49 50 51	842	30.	Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related
52 53	843		decreases in nuclear receptors and increase neurogenesis in old rats. Journal of
54 55	844		Neuroscience Research 2010;88:2091-2102.
56 57			
57 58			

BMJ Open

2 3 4	845	31.	McNamara RK. DHA Deficiency and Prefrontal Cortex Neuropathology in Recurrent
5 6	846		Affective Disorders. The Journal of Nutrition 2010;140:864-868.
7 8	847	32.	Salvati S, Natali F, Attorri L, et al. Eicosapentaenoic acid stimulates the expression of
9 10	848		myelin proteins in rat brain. Journal of Neuroscience Research 2008;86:776-784.
11 12	849	33.	Abraham M, Shapiro S, Karni A, Weiner HL, Miller A. Gelatinases (MMP-2 and
13 14 15	850		MMP-9) are preferentially expressed by Th1 vs. Th2 cells. Journal of
16 17	851		Neuroimmunology 2005;163:157-164.
18 19	852	34.	C ffrench-Constant. Pathogenesis of multiple sclerosis. The Lancet 1994;343:271-
20 21	853		275.
22 23 24	854	35.	Leppert D, Lindberg RLP, Kappos L, Leib SL. Matrix metalloproteinases:
24 25 26	855		multifunctional effectors of inflammation in multiple sclerosis and bacterial
27 28	856		meningitis. Brain Research Reviews 2001;36:249-257.
29 30	857	36.	Curtis CL, Rees SG, Cramp J, et al. Effects of n-3 fatty acids on cartilage metabolism.
31 32	858		Proceedings of the Nutrition Society 2002;61:381-389.
33 34 35	859	37.	Harris MA, Hansen RA, Vidsudhiphan P, et al. Effects of conjugated linoleic acids
36 37	860		and docosahexaenoic acid on rat liver and reproductive tissue fatty acids,
38 39	861		prostaglandins and matrix metalloproteinase production. Prostaglandins, Leukotrienes
40 41	862		and Essential Fatty Acids 2001;65:23-29.
42 43 44	863	38.	McCabe A, Wallace J, Gilmore W, Strain J, McGlynn H. The effect of
45 46	864		eicosapentanoic acid on matrix metalloproteinase gene expression. Lipids
47 48	865		1999;34:S217-S218.
49 50	866	39.	Shinto L, Marracci G, Bumgarner L, Yadav V. The Effects of Omega-3 Fatty Acids
51 52 53	867		on Matrix Metalloproteinase-9 Production and Cell Migration in Human Immune
54 55	868		Cells: Implications for Multiple Sclerosis. Autoimmune Diseases 2011;2011.
56 57			
58 59			
60			

2 3	
4 5	
5 6 7	
7 8	
9 10	
11	
12 13	
14 15	
16	
12 13 14 15 16 17 18 19	
19 20	
20 21 22 23	
22 23	
24 25	
26	
27 28	
29 30	
31	
32 33	
34 35	
36	
37 38	
39 40	
41 42	
43	
44 45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56 57	
58 59	
59 60	

1 2

40. Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and
healthcare. Genome Med 2009;1:2.

41. Huang WL, King VR, Curran OE, et al. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 2007;130:3004-3019.

- 874 42. Marangoni F, Angeli MT, Colli S, et al. Changes of n 3 and n 6 fatty acids in
 - plasma and circulating cells of normal subjects, after prolonged administration of 20:5
- 876 (EPA) and 22:6 (DHA) ethyl esters and prolonged washout. Biochimica et Biophysica
- 877 Acta (BBA) Lipids and Lipid Metabolism 1993;1210:55-62.
- 878 43. Martínez M, Vázquez E, García-Silva MT, et al. Therapeutic effects of
- 879 docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders1.
- 880 The American Journal of Clinical Nutrition 2000;71:376S-385S.
- 44. Committee for medicinal products for human use. Guideline on clinical trials in small
 populations In: European Medicines Agency, 2006: 1-10.
 - 883 45. Gerard E Dallal. The Little Handbook of Statistical Practice. [online]. Available at
 - 884 URL|. Accessed Date Accessed, Year|.
- Wang YC, Meyerson L, Tang YQ, Qian N. Statistical methods for the analysis of
 relapse data in MS clinical trials. Journal of the Neurological Sciences 2009;285:206211.
 - 888 47. Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial
 889 of natalizumab for relapsing multiple sclerosis. The New England Journal of
 890 Medicine 2006;354:899-910.
 - 48. Kappos L, Radue E-W, O'Connor P, et al. A Placebo-Controlled Trial of Oral
 Fingolimod in Relapsing Multiple Sclerosis. New England Journal of Medicine
 2010;362:387-401.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2			
2 3 4	894	49.	Cunnane S, Ho S, Dore-Duffy P, Ells K, Horrobin D. Essential fatty acid and lipid
5 6	895		profiles in plasma and erythrocytes in patients with multiple sclerosis. The American
7 8	896		Journal of Clinical Nutrition 1989;50:801-806.
9 10	897	50.	Harbige LS, Sharief MK. Polyunsaturated fatty acids in the pathogenesis and
11 12	898		treatment of multiple sclerosis. British Journal of Nutrition 2007;98:S46-S53.
13 14	899	51.	Wilson R, Tocher D. Lipid and fatty acid composition is altered in plaque tissue from
15 16 17	900		multiple sclerosis brain compared with normal brain white matter. Lipids 1991;26:9-
18 19	901		15.
20 21	902	52.	Rafat AS, Saame RS, Laura AS, Heidi RY, William S, Gary PZ. Omega 3-Fatty
22 23	903		Acids: Health Benefits and Cellular Mechanisms of Action. Mini Reviews in
24 25	904		Medicinal Chemistry 2004;4:859-871.
26 27		52	
28 29	905	53.	Shaikh SR, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells,
30	906		and antigen presentation. The American Journal of Clinical Nutrition 2006;84:1277-
31 32 33	907		1289.
33 34 35	908	54.	Lajtha A, Toth J, Fujimoto K, Agrawal CH. Turnover of Myelin Proteins in Mouse
36 37	909		Brain in vivo. Biochem J 1977;164:323-329.
38 39	910	55.	LeBaron FN, Sanyal S, Jungalwala FB. Turnover rate of molecular species of
40 41	911		sphingomyelin in rat brain. Neurochemical Research 1981;6:1081-1089.
42 43	912	56.	Yao JK. Increased polyunsaturated fatty acids in developing and regenerating
44 45	913		peripheral nerve. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid
46 47 48	914		Metabolism 1982;712:542-546.
49 50	915	57.	Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a
51 52	916		narrative review. Complement Ther Med 2011;19:228-237.
53 54	917	58.	Farinotti M, Simi S, Di Pietrantonj C, McDowell N, et al. Dietary interventions for
55 56			
57	918		multiple sclerosis (Review), the Cohrane Library 2007, issue I.
58 59			
60			

Figure legends

 Figure 1. Omega-6 and omega-3 PUFA, their respective metabolic derivatives and theirpossible effects on inflammation.

922 After consumption, the PUFAs are metabolized via several pathways (not shown) to active

- 923 compounds that mediate inflammation and products that promote resolution of inflammation.
- 924 Abbreviations: PL, phospholipid; IFN- γ , interferon γ ; IL-2, interleukin 2; NF κ B, nuclear
- 925 factor kappa B; PGE2, prostaglandin E2; PPARγ, peroxisome proliferator-activated receptor
- γ ; PUFAs, polyunsaturated fatty acids; TGF β , transforming growth factor β ; TNF, tumor
- 927 necrosis factor; COX, cyclooxygenase; hydroxyeicosatetraenoic acid; HPETE,
- 928 hydroperoxyeicosatetraenoic acid; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin;
- 929 TX, thromboxane; RXR- γ , retinoid X receptor-gamma; Nrf2, nuclear respiratory factor;
- 930 MMP, metalloproteinase.
- **Figure 2.** Study Flowchart

Figure 3. Panel A demonstrates the ARR of all-time on-study patients during the 24mo pretreatment (baseline ARR) and at different on-study intervals (6, 12, 18, 24 mo) per treatment
arm. **

- Panel B demonstrates the ARR of all-time on-study population between 0-6, 6-12, 6-18, and
- 936 6-24 mo period intervals, of PLP10 vs. placebo group. **
- Panel C demonstrates the ARR of all-time on-study population of PLP10 vs. placebo group at
- 938 baseline, during 1st year, and during the 2-year on-treatment. **
- Panel D demonstrates the dispersion of relapses throughout the 2-year period of all-time on-
- study (excluding patients on natalizumab) of PLP10 (n=10) vs. placebo (n=10). Placebo

BMJ Open

941	shows an irregular dispersion of relapses in relation to PLP10 group with linear increasing
942	trend wile PLP10 shows a stabilized linear trend. By using the per-protocol model where
943	patients on natalizumab were excluded, we could compare the number of relapses on a same
944	number of patients.
945	** Including the patients on natalizumab.
946	Figure 4. Panel 4A demonstrates the Kaplan–Meier plot of the time to sustained progression
947	of disability among all-time on-study patients, excluding patients on natalizumab, receiving
948	intervention A, PLP10 and C as compared with placebo. PLP10 reduced the risk of sustained
949	progression of disability by 86% over two years (p=0.006). Intervention formula A reduced
950	the risk of sustained progression of disability by 53% (p=0.266) and intervention formula C
951	by 67% (p=0.061).
952	Panel 4B demonstrates the Kaplan–Meier plot of the time to sustained progression of
953	disability among ITT population receiving intervention A, PLP10 and C as compared with
954	placebo. PLP10 reduced the risk of sustained progression of disability by 71% over two years
955	(p=0.052, trend). Intervention formula A reduced the risk of sustained progression of
956	disability by 22% (p=0.727) and intervention formula C by 40% (p=0.447).
957	Figure 5. Mean change in expanded disability status scale score as a function of visit
958	number. Values are expressed as mean \pm s.e.m.
959	¶ Including patients on natalizumab
960	¶¶ Excluding patients on natalizumab
961	

Page 48 of 110

A novel oral nutraceutical formula (PLP10) for the treatment of relapsing remitting multiple sclerosis: a randomized, double-blind, placebo-controlled proof-ofconcept clinical trial

Marios C. Pantzaris, George N. Loukaides, Evangelia E. Ntzani, Ioannis S. Patrikios

7 The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus Marios C.

8 Pantzaris Senior Consultant Neurologist Neurology Clinic C and PALUPA Medical Ltd., The

9 Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus George N.

10 Loukaides Clinical Dietitian/Nutritionist Neurology Clinic and PALUPA Medical Ltd.,

11 University of Ioannina School of Medicine (UISM) 45110 Ioannina, Greece Evangelia E.

12 Ntzani Assistant Professor Clinical and Molecular Epidemiology Unit, Department of

13 Hygiene and Epidemiology, PALUPA Medical Ltd at The Cyprus Institute of Neurology and

14 Genetics (CING) 1683 Nicosia, Cyprus Ioannis S. Patrikios Senior Research Scientist,

15 visiting Professor at European University Cyprus Nicosia, Cyprus, Department of Health and

16 Science. Correspondence should be addresses to e-mail: <u>I.Patrikios@euc.ac.cy</u> or

17 <u>pantzari@cing.ac.cy</u>

Correspondence to:

20 Ioannis Patrikios

- 21 The Cyprus Institute of Neurology and Genetics (CING)
- 22 Neurology Clinic C (PALUPA Medical),

1		
2 3	23	6 International Airport Av.
4 5 6	24	P.O.Box 23462, 1683 Ayios Dometios. Nicosia, Cyprus
7 8	25	Tel: +357 22 358 600, +357 99 097 856;
9 10	26	i.patrikios@euc.ac.cy
11 12	27	patrikiosioannis@gmail.com
13 14 15	28	
16 17	29	AND
18 19	30	
20 21 22	31	Marios Pantzaris
23 24	32	The Cyprus Institute of Neurology and Genetics (CING)
25 26	33	Neurology Clinic C (PALUPA Medical),
27 28 29	34	6 International Airport Av.
30 31	35	P.O.Box 23462, 1683 Ayios Dometios, Nicosia Cyprus
32 33	36	Tel: +357 22 358 600;
34 35 36	37	pantzari@cing.ac.cy
37 38	38	Tel: +357 22 358 600; pantzari@cing.ac.cy
39 40	39	Keywords: antioxidant vitamins, polyunsaturated fatty acids, multiple sclerosis, systems
41 42 43	40	medicine, randomized clinical trial.
43 44 45	41	medicine, randomized clinical trial.
46 47	42	Word Count: <mark>6415</mark>
48 49 50	43	
50 51 52	44	
53 54	45	
55 56 57	46	
58	40	
59 60		

2	
3	
4	
5	
6	
7	
0	
8	
9	
10	
9 10 11 12 13 14 15	
12	
13	
1/	
14	
10	
16	
17 18	
18	
19	
20	
21	
22	
22 23	
24	
24 25	
26	
26 27	
28	
29	
30	
20	
31	
32	
33	
32 33 34	
35	
36	
37	
36 37 38 39	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
55	
56	
57	
58	
59	
60	

Abstract

47

Objective To assess whether our three novel interventions, formulated based on systems 48 medicine therapeutic concept reduce disease activity in patients with relapsing remitting 49 50 multiple sclerosis who were either treated with disease modifying treatment or untreated. 51 52 **Design** 30-month randomized double-blind, placebo-controlled, parallel design, phase II 53 proof-of-concept clinical study. 54 55 Settings Cyprus Institute of Neurology and Genetics (CING) 56 Participants and Interventions 80 subjects were randomized into four groups of 20. The 57 58 first intervention (A) was composed of omega-3 and omega-6 polyunsaturated fatty acids at 59 1:1 wt/wt. Specifically, the omega-3 fatty acids were docosahexaenoic acid (DHA) and 60 eicosapentaenoic acid (EPA) at 3:1 wt/wt and the omega-6 fatty acids were linoleic acid (LA) 61 and gamma (γ) -linolenic acid (GLA) at 2:1 wt/wt. This intervention also included minor 62 quantities of other specific polyunsaturated, monounsaturated and specific saturated fatty 63 acids as well as vitamin A and vitamin E (alpha-tocopherol). The third intervention (C) was γ -tocopherol alone. The second intervention (PLP10) was a combination of A and C. A fourth 64 65 group of 20 received a vehicle placebo. The interventions were administered per os once 66 daily. 67 68 Main outcome measures The primary endpoint was the annualized relapse rate (ARR) of the 69 three interventions versus placebo at two years. The secondary end point was the time to

70 confirmed disability progression at two years.

71

Page 51 of 110

Page 51 of 110		BMJ Open		
1				
2 3 4	72	Results The per-protocol, proof-of-concept, analysis demonstrated a 64% adjusted relative		
5 6	73	reduction in ARR at two years for PLP10 versus placebo (P=0.024). Regarding the secondary		
7 8	74	endpoint, a relative reduction of 86% in the risk of sustained progression of disability was		
9 10	75	observed within the PLP10 group (p=0.047). No adverse events were reported. Interventions		
11 12 13	76	A and C showed no significant efficacy.		
14 15	77			
16 17	78	Conclusions PLP10 treatment significantly reduced the ARR, and the risk of sustained		
18 19 20	79	disability progression without any adverse or severe side effects.		
20 21 22	80			
23 24	81	Trial registration International Standard Randomized Controlled Trial, number		
25 26	82	ISRCTN87818535.		
27 28 29	83			
30 31 32 33	84			
33 34 35 36 37	85			
38 39 40 41	86			
42 43 44	87			
45 46 47 48	88			
49 50 51 52	89			
53 54 55 56	90			
57 58 59 60	91			

Multiple sclerosis (MS) is a complex multifactorial disease that results from interplay between as vet unidentified environmental factors and susceptibility genes.¹⁻³ Together, these factors trigger a cascade of events, involving engagement of the immune system, inflammatory injury of myelin, axons and glia, functional recovery and structural repair, gliosis, and neurodegeneration.⁴ The bio-mechanisms involved are: immune-mediated inflammation, oxidative stress and excitotoxicity.⁵⁻⁹ These mechanisms may all contribute to oligodendrocyte and neuronal damage and even cell death, hence promoting disease progression. The increasing prevalence of MS, the limited efficacy and the side effects of the existing treatments urge the clinical need for the development of new, innovative, more effective, safe, and preventive treatment strategies. Research has shown that multiple variables dynamically interact and many different complex interrelated processes are simultaneously orchestrated for MS pathogenesis. The fundamental distinctiveness of systems medicine (SM) is not just the recognition that different specific complex factors are important in disease management, but that they need to be incorporated in some meaningful way to treatment selection and delivery.¹⁰ The primary challenge tackled by systems scientific approach is the elucidation of how these multiple variables dynamically interact and how one can apply this understanding to affect the system and achieve a desirable end.¹⁰ The answer might be the simultaneous interference with all involved perturbed mechanisms, by using a cocktail of different specific ingredients, potentially able through synergistic effect to give a long, holistic and effective treatment (Supplementary Information Methods 1).

BMJ Open

116	The polyunsaturated fatty acids (PUFA) composition of membrane phospholipids plays a
117	direct role in immune and non-immune related inflammation. PUFA and antioxidant
118	deficiencies along with decreased cellular antioxidant defense mechanisms have been
119	reported for MS patients. ¹¹ The cause of these PUFA deficiencies is not entirely clear and may
120	involve metabolic and nutritional alterations. ¹¹
121	
122	Increased or uncontrolled inflammation contributes to several different acute and chronic
123	diseases and it is characterized by the production of inflammatory cytokines, arachidonic acid
124	(AA)-derived eicosanoids (prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs),
125	and other oxidized derivatives), other inflammatory agents such as reactive oxygen species
126	(ROS), nitric oxide (NO), and adhesion molecules (Fig 1). ¹² During inflammation glutamate
127	homeostasis is altered by activated immune cells releasing increased quantities of glutamate
128	that can result in over activation of glutamate receptors and in return excitotoxic
129	oligodendroglial death. ^{7, 13} As such, among others, membrane-related pathology, immune-
130	mediated inflammation, oxidative stress and excitotoxicity provide potentially useful
131	combined targets for intervention in MS.
132	
133	In vitro and in vivo studies have demonstrated that dietary EPA, DHA, LA, and GLA can be
134	implicated and modulate almost all known complex network of events and pathways
135	repertoire in MS pathophysiology. Brain membrane fatty acid composition can be modified
136	with dietary supplementation, but the process has been showed to be age dependent (it takes
137	much longer in adults versus developing brains) as well as possibly dependent on the
138	quantities of the dietary/supplemented PUFAs. ¹⁴ Both human and animal studies proved that
139	diets high in DHA and EPA increase the proportion of these PUFA in the membranes of
140	inflammatory cells and reduce the levels of AA. ^{12, 15} The anti-inflammatory properties of

141	omega-3 include production of PGs and TXs of the 3-series and LTs of the 5-series (Fig 1). ^{14,}
142	¹⁶ Resolvins and protectins are biosynthesized from omega-3 fatty acids via cyclooxygenase-
143	2/lipoxygenase (COX-2/LOX) pathways and they promote control of inflammation in neural
144	tissues (Fig 1). ¹⁷⁻²¹ T-cell proliferation in acute and chronic inflammation can be reduced by
145	supplementation with either omega-6 or omega-3 PUFA. ²² Furthermore, vitamin E is an
146	important antioxidant that can interrupt the propagation of free radical chain reactions. ²³
147	Vitamin E (alpha-tocopherol, an isoform of vitamin E) efficiently detoxifies hydroxyl,
148	perhydroxyl and superoxide free radicals. ²⁴ However γ -tocopherol (another isoform of
149	vitamin E) seems to be more efficiently implicated in trapping NO radicals. ²⁵ In addition
150	alpha-tocopherol exerts non-antioxidant properties, including modulation of cell signaling
151	and immune function, regulation of transcription, and induction of apoptosis. ²⁶
152	
153	Moreover, omega-3 fatty acids electrophilic derivatives formed by COX-2, in activated
154	macrophages can stimulate the nuclear respiratory factor (Nrf2) inducing the transcription of
155	neuroprotective and antioxidant related genes, and can activate the peroxisome proliferator-
156	activated receptor (PPAR) γ for anti-inflammatory response. ²⁷⁻²⁹ In animal studies, EPA and
157	DHA proved to be endogenous ligands of RXRs, with positive effect on neurogenesis. ³⁰
158	Additionaly, in 2008 Salvati and coworkers reported evidense of accelerated myelination in
159	DHA- and EPA-treated animals. ³² Moreover, DHA and EPA are reported to significantly
160	decrease the levels of metalloproteinases (MMP) -2, -3, -9, and -13 with a significant role in
161	the migration of lymphocytes into the CNS by inducing disruption of the blood brain barrier
162	(BBB), an important step in the formation of MS lesions. ³³⁻³⁹
163	
164	Based on the above, specific PUFA and antioxidant vitamins fulfill the criterion of biologic

165 plausibility and have the potential to diminish MS symptoms severity and activity, even

BMJ Open

166	promoting recovery (remyelination). ¹¹ Overall, PLP10 includes multiple ingredients
167	interacting with key interconnected components within functional network modules, each
168	contributing a fraction of the effects of perturbations that cause the disease. ⁴⁰
169	
170	In our phase II, single-center, randomized, double-blind, placebo-controlled, proof-of-
171	concept clinical trial we intended to evaluate the therapeutic ability of PLP10 and of two
172	other interventions (A and C) consisting of PLP10 constituent partial fractions versus
173	placebo, when used on RRMS patients.
174	
175	
176	Methods
177	Patients
178	Eligibility criteria were an age of 18 to 65; a diagnosis of RRMS according to the McDonald
179	criteria; a score of 0.0 to 5.5 on the EDSS, a rating that ranges from 0 to 10, with higher
180	scores indicating more severe disability; MRI showing lesions consistent with MS; and at
181	least one documented clinical relapse either receiving or not disease modifying treatment
182	(DMT) within the 24 months period before beginning (enrollment) of the study. Patients were
183	excluded because of a recent (<30 days) relapse, prior immunosuppressant or monoclonal
184	antibodies therapy, pregnancy or nursing, other severe disease compromising organ function,
185	progressive MS, history of recent drug or alcohol abuse, use of any additional food
186	supplement, vitamin, or any form of PUFA, history of severe allergic or anaphylactic
187	reactions or known specific nutritional hypersensitivity. No monitor or limitations on
188	patients' daily diet habits were included in the study design since the quantities of the
189	ingredients within the formulas daily-dosage could not be significantly affected or spoiled by

3	
4	
5	
6	
7	
γ Q	
8	
9	
10	
11	
11 12 13	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
14 15 16 17 18 19 20 21 22 23 24	
23	
24	
25	
· /h	
20 27	
28	
29	
30	
30	
31	
32 33 34	
33	
34 35	
35	
36 37 38	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

any confounding factors within any known global daily food diet (see procedures, treatmentregimen and end-points).

192

1 2

> The study was conducted in accordance with the standards of the International Conference of Harmonization Guidelines for Good Clinical Practice. The protocol was developed by the investigators and it was approved by the Cyprus National Bioethics Committee and was overseen by an independent safety-monitoring committee evaluating the safety and over-all benefit-risk profiles. The adherence of care providers with the protocol was assessed by an external committee assigned by the funder of the project through reviews of case report forms. All patients gave written informed consent at the time of enrolment.

200

201 Randomization and masking

202 Patients were randomly assigned to four intervention groups in a 1:1:1:1 ratio stratified by 203 gender (women to men, 3:1). Randomization was facilitated by a lottery-type pool of 204 numbered balls. Patients were randomly assigned to treatment in blocks of four by flipping a 205 coin as follows: for the first two drawn balls heads stratified them to the groups A/B and tails 206 stratified them to the groups C/D. The other two balls were stratified accordingly. A second 207 toss of the coin assigned the two patients to group A (head)/B (tail) or group C (head)/D 208 (tail). The randomization scheme was generated, performed and securely stored by Helix 209 Incubator Organization of Nicosia University (HIONU).

210

The interventions had identical appearance and smell in dark bottles (15 daily-dose

212 portions/bottle) under nitrogen bed and labeled by HIONU with code numbers, unidentifiable

for both patients and investigators. Study data were collected by the investigators and saved

by the HIONU that also held the blinded codes of the study. All study personnel involved in

BMJ Open

215	the conduct of the study were blinded throughout the study. Treating/examining physician,
216	other investigators, pharmacist, neuroradiologist and patients were masked to treatment
217	allocation.
218	
219	Procedures and end points
220	The specific omega-3 (re-esterified glycerides) and omega-6 (glycerides) raw materials were
221	purchased according to the required interventions' PUFA-fraction specification (molecular
222	structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant
223	stabilizer by the supplier. The vitamins and masking aroma were purchased separately. The
224	mixing of fractions to the final required intervention-composition specification was always
225	performed by the same team of scientists under the supervision of the involved medical
226	biochemist and lipidology specialist, under appropriate conditions every six months.
227	Interventions were stored refrigerated in dark until use. See Table 1 and Supplementary
228	Information Methods 1 and 2 for intervention specification detailed description and
229	study/intervention rational.
230	
231	Participants were randomly assigned to receive a daily dose of a mixture of EPA (1,650mg) /
232	DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg) / total
233	MUFA (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E
234	(22mg) (intervention A, group A); or composed mixture of pure γ-tocopherol (760mg)
235	dispersed in pure virgin olive oil (16,137 mg) as delivery vehicle (intervention C, group C);
236	or a mixture of intervention formula A with intervention C without the pure virgin olive oil
237	(intervention B, named PLP10, group B); or placebo composed of pure virgin olive oil
238	(16,930mg) (intervention D, group D) (Table 1). Citrus-aroma was used as masking agent of
239	the taste and odor and added in each one of the intervention for a total of 19.5ml dosage of

1 2 3
4 5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
2 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
30 31 32 33
34 35 36 37
39 40 41
42 43 44 45
46 47 48 49 50
50 51 52 53 54
55 56 57 58
59 60

240	solution per day. The institution's pharmacist was responsible for the appropriate storage and
241	handling of the interventions to the individual participants. The interventions were taken
242	orally once daily 30 minutes before dinner by a dosage calibrated cup for 30 months. The
243	ingredients, ratio and dose have been selected based on their biophysical interrelation to the
244	total known multiple MS causing factors, their biochemical importance and the role expected
245	to play in the normalisation and treatment of the involved complex network of events in the
246	disease pathophysiology. Moreover, the high intake dosage was used to overcome any
247	abnormal dietary accumulation of related agents as a result of patients' food intake habits,
248	irrespective of geographical origin, in relation to the daily consumption ratio of the total fatty
249	acid intake; in order to end-up with omega-3 to omega-6 PUFA indicated physiological body
250	ratio composition of 1:1 wt/wt.
251	
252	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry
253	baseline) was used for normalization period. This six-month normalization period would
254	allow the interventions' agents to exert their beneficial effect (for the
255	incorporation/normalization of cell membranes by oral PUFA, since they need four to six
256	months to exert pivotal action on immune and neural cells, correction of antioxidant
257	deficiency and body PUFA, and optimal normalization of EPA and DHA levels/ratio). ⁴¹⁻⁴³
258	The study was completed on December 31 st 2009 and the recording of relapses continued
259	until December 31 st 2010. More clearly the study included the "normalization period" (July
260	1 st 2007 to Dec 31 st 2007), the "on treatment" period (Jan 1 st 2008 to Dec 31 st 2009) and the
261	12-month "extended period" (Jan 1 st 2010– Dec 31 st 2010).
262	

263 Depending on their clinical status and in accordance with the ethical issues governing clinical

trials participants continued receiving the indicative regular available treatments, according to

BMJ Open

3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
10 11 12 13 14 15 16 17 18 19	
16	
17	
10	
10	
19	
20	
21	
20 21 22	
23 24	
24	
25 26 27	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
00	

international guidelines with persistent evaluation of any side-effects and adverse events.
The study was designed to end 30 months after enrolment and clinical assessments were
scheduled at entry baseline, 3, 9, 15, 21 and 24 months on-treatment. Patients were also
clinically examined by the treating neurologist within 48 hours after the onset of new or
recurrent neurologic symptoms.

270

271 The primary end point was the ARR at two years. A relapse was defined as new or recurrent 272 neurologic symptoms not associated with fever or infection that lasted for at least 24 hours 273 and accompanied by new neurologic signs. Relapses were treated with methyl-prednisolone 274 at a dose of 1g intravenous per day, for three days followed by prednisone orally at a dose of 275 1mg/kg of weight per day on a tapering scheme for three weeks. The secondary end point at 276 two years was the time to confirmed disability progression, defined as an increase of 1.0 or 277 more on EDSS, confirmed after six months (progression could not be confirmed during a 278 relapse). The final EDSS score was confirmed six months after the end of the study. A post-279 hoc analysis was performed assessing the proportion of patients free from new or enlarging 280 T2 lesions on brain MRI scans at the end of the study for the per-protocol participants of the 281 group receiving the highest effective intervention versus placebo. Comparison was made only 282 versus the available archival MRI scans up to three months before the enrolment date. MRI 283 scans were performed and blindly analyzed at an MRI evaluation centre. The patients 284 continued to be followed for additional 12 months after completion of the trial and relapses 285 were recorded. Finally, patients were strongly encouraged to remain in the study for follow-286 up assessments even if they had discontinued the study drug.

287

60

Blood samples were collected from all randomized patients at the time of enrolment, at every
scheduled clinical assessment and during relapses. To check individual compliance with

290	intake, the fatty acids composition of patients' red blood cells' membranes was determined,
291	by gas chromatography, according to a standard protocol. The fatty acid analyses were
292	performed after study termination and thus did not influence the blinding.
293	
294	The involved neurologist was experienced with more than 20 years in practice and trained to
295	standardise EDSS scoring procedures, examined patients, made all medical decisions,
296	determined the EDSS score and reviewed adverse or side-effects. The medical biochemist,
297	specialist on lipidology and immunology and the registered clinical dietitian, members of the
298	investigator team were experienced with more than 25 years in practice. Patients were able to
299	contact the neurologist at any time if there was any adverse event, side-effect or allergic
300	reaction. The study drug was not suspected to have any clinical or laboratory adverse effects
301	different from placebo that could disturb the double-blind nature of the trial. Therefore, the
302	same study-neurologist functioned as both the treating and evaluating physician.
303	
304	Safety measures were assessed from the time of enrollment until 12 months following study
305	completion. Haematological and biochemical tests were performed at enrolment and at every
306	12 months, including full blood count, renal and liver function tests, proteins, cholesterol,
307	triglycerides, glucose and electrolytes.
308	
309	The whole procedure followed the clinical trial guidelines as required by the USA Food and
310	Drug Administration, European Medicines Agency, and the Committee for Medicinal
311	Products for Human Use. ⁴⁴
312	
313	Statistical analysis

BMJ Open

314	Power calculations could not be done before the study because of the lack of information
315	from previous studies on potential effect sizes. In 2005 the prevalence of MS in Cyprus
316	(600,000 population) was 120/100.000. Based on the aforementioned MS patients' numbers
317	of our country and the centre of reference, the CING, we were able to enrol the 20% of the
318	total RRMS patients eligible for treatment in the trial. Sample size was strictly based on this
319	subjects' availability parameter and the novelty of the assessed intervention.
320	
321	Baseline characteristics were compared across all intervention groups by ANOVA or
322	Kruskal-Wallis rank test for continuous variables and by mean Fisher's exact test for
323	categorical variables, as appropriate.
324	
325	For the primary outcome, the ARR was analysed in a pair-wise fashion for the active
326	interventions compared to placebo using negative binomial regression models adjusted for
327	number of relapses within two years before baseline, EDSS score at baseline and DMT. The
328	relapse rate was calculated as the total number of relapses divided by the total number of
329	patient-years followed for each treatment group. ARR differences were also calculated
330	among all comparable parameters and reported as percent difference.
331	
332	For the secondary end-point outcome, the time to disability progression, Kaplan-Meier
333	curves were constructed. Progression to disability and time thereof was compared in a pair-
334	wise fashion for the active interventions versus placebo by the log-rank test in the main
335	analysis and by Cox proportional-hazards models with adjustment for baseline EDSS score,
336	age and DMT in the supportive analysis. Each test was performed with a significance level of
337	0.05. Multivariate models considered all variables with $P < 0.1$ on univariate models. There
338	was no overt violation of the proportionality assumption.

339	
340	Both, per-protocol and intention to treat (ITT) analyses were performed, for different sets of
341	research questions to be answered, and both are reported. Missing data of the five lost to
342	follow patients were imputed by use of the last-observation-carried-forward (LOCF)
343	approach. Due to the proof-of-concept design of the study, the considerable non-adherence
344	rate (49%) and the interpretation issues caused thereof regarding the ITT analysis, the per-
345	protocol analysis considered being more informative and appropriate method approach to
346	answer the research addressed questions of efficacy of the interventions when subjects were
347	continuously following the protocol. All statistical analyses were well defined a priori. All
348	analyses were performed with STATA SE 10.0 (College Station, TX, USA). P-values are
349	two-tailed.
350	
351	Role of the funding source
352	The funders had no role in study design, data collection and analysis, decision to publish, or
353	preparation of the manuscript. All members of the writing group had full access to all study
354	data and contributed to its interpretation and prepared, reviewed, and approved the
355	manuscript for submission. All authors had final responsibility for the decision to submit the
356	paper for publication.
357	Posults
358	Results
359	Study population
360	From July 2007 through December 2010 (including the 12-month extended period), a total of
361	80 MS patients were randomly assigned to a study group at the CING (tertiary neurological
362	center).
363	

BMJ Open

Among the 80 patients, 20 patients were randomly assigned to each of the three groups to receive the interventions and 20 to receive placebo (Fig 2). Baseline characteristics of both the ITT and the per-protocol populations were similar across groups (Table 2A and 2B). Total drop-out patients completed follow-up until study completion and were included in the ITT analyses (Table 4). Five patients were totally lost to follow before their first scheduled visit and two patients dropped-out before their first scheduled visit progressed to secondary progressive MS. Fifteen patients dropped-out without successfully completing the "normalization" period including five pregnancies. Another 17 patients dropped-out early after entry baseline. Seven patients that dropped out were given monoclonal antibody treatment (natalizumab). Overall, a total of 41 (51%) patients completed the 42-month study (July 2007 through December 31st 2010, including the 12-month extended period) where one patient from group A and two from the placebo group transferred on natalizumab, and 39 (49%) patients either withdrew (drop-out) or lost to follow. Reasons for study-interventions discontinuation are listed in Figure 2.

379 Efficacy

380 Relapses

As a proof-of-concept trial we primarily needed to answer whether the interventions were effective for those MS patients who adhere to the assigned treatment, the per-protocol analysis.⁴⁵ For the sake of methodological comprehensiveness we also present the ITT analysis as a secondary analysis, to answer a different question, complementary to our core hypothesis; like what happened to MS patients who were placed on the interventions (the effect of assignment).⁴⁵ Otherwise, as a result of a high drop-out rate, an ITT analysis will not likely be able to show the superiority of an intervention even if it is effective.⁴⁵ In any instance, the proper approach of evaluating a study data is to understand what question

2
3
3 4
5 6 7 8
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
∠ I 22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
27
20
38
39
$\begin{array}{c} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 21\\ 22\\ 23\\ 24\\ 25\\ 27\\ 28\\ 29\\ 31\\ 32\\ 33\\ 34\\ 35\\ 37\\ 38\\ 39\\ 40\\ \end{array}$
41
42
43
44
44
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

1

prompted the research and assure that the analysis is appropriate for providing the answer whatever it is called. Both analyses can be performed for a study, using the results from the different analyses to answer different research questions.⁴⁵ These interventions are original, composed by a different treatment rational, the SM, never tested before and the important main concern was to evaluate their efficacy and safety based on the per-protocol treated MS patients, without any peripheral noise. The question that had to be answered was: "what happens to the patients that are placed and stick on the specific treatment".

396

397 Regarding the per-protocol analysis, during the first year of treatment, the ARR was 0.80, 398 0.40, 0.78 and 0.83 for the four intervention groups respectively. During the second year, the 399 ARR was 0.90, 0.40, 0.67 and 1.25 for the four intervention groups respectively. Overall, for 400 the two-year primary end point, 8 relapses were recorded for the 10 patients in PLP10 group 401 (0.40 ARR) versus 25 relapses for the 12 patients in placebo (1.04 ARR), a 64% adjusted 402 relative rate reduction (RRR) for the PLP10 group (RRR 0.36, 95% confidence interval (CI) 403 0.15 to 0.87, p=0.024) (Tables 3A, 5 and Fig 3A and 3C). Excluding patients on monoclonal 404 antibody (natalizumab) treatment, the observed adjusted RRR became stronger (72%) over 405 the two years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016, Tables 3B and 5). Pair-wise 406 comparisons for the other two groups against placebo did not yield statistically significant 407 results (Tables 3A, 3B). The proportion of patients with ≤ 1 relapse for the two years on-study was higher in the PLP10 group than in the placebo group (90% versus 42%, p=0.030, Table 408 409 5). Seeking to investigate further the observed difference, we compared the relapse rate 410 during the 24 months before entry to the study to the 24 months on-treatment for each 411 intervention group. We observed a statistically significant relative reduction in the ARR 412 (70%) only in the PLP10 group (RRR 0.30; 95% CI 0.14 to 0.65, p=0.003, Table 3A); 413 within-group comparisons for the three other groups ARR reduction was not significant and

Page 65 of 110

. . . .

1.

1

BMJ Open

0 .1

1 1 1 0

1
2
3 4 5 6 7 8
4
5
6
7
8
9
10
11
12
13
1/
15
10
10
17
9 10 11 12 13 14 15 16 17 18 19
19
20
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
22
23
24
25
26
27
28
29
30
31
22
32 22
33 24
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40
49 50
51 52
53
54
55
56
57
58
59
60
-

414	remained not significant when natalizumab treated patients were further excluded from the
415	analysis. The effect of PLP10 through time at different time-windows versus placebo for all-
416	time on-study patients is shown in Figures 3A to 3D. The ARR analysis, within time-
417	windows, was not an assigned endpoint, but it could help in the process of evaluating parallel
418	information as the time needed for a specific treatment intervention activity to be evident, as
419	well as the efficacy profile through time. PLP10 reached maximum effect within a year on-
420	treatment (counting from the entry baseline) and remained stable at an ARR of 0.4,
421	displaying a steadily reduced ARR with long free-relapse time-windows. These group B
422	characteristics are considered important parameters of a successful MS treatment where the
423	rule than the exception is the heterogeneity among patients' disease evolution. Specifically,
424	Figure 3D demonstrates the dispersion of relapses throughout the 2-year period of all-time
425	on-study (excluding patients on natalizumab) of PLP10 (n=10) versus placebo (n=10).
426	Placebo, in line with the existing knowledge of how relapse history works in relation to future
427	relapses on MS patients (contagion phenomenon) indicates the expected linearly increased
428	trend of the relapse incidence. ⁴⁶ The same phenomenon was true for the groups A and C.
429	Finally, during the 12 month post-study extended period (January 1 st 2010 to December 31 st
430	2010) all-time on-study patients that received PLP10, showed persistent benefit in the ARR
431	compared to placebo (six relapses for the 10 subjects within PLP10, 0.6 ARR versus 19 for
432	the 12 subjects within placebo group, 1.58 ARR) indicating a statistically significant 62%
433	adjusted relative rate reduction in the ARR for the PLP10 group (RRR 0.38, 95% CI 0.12 to
434	0.99, p=0.046).
435	
100	

Regarding the ITT analysis, within PLP10 group, none of the nine drop-out patients changed
to natalizumab and two out of nine discontinued because of pregnancy, whereas two out of
seven drop-out patients from the placebo group changed to natalizumab (a total of four

2		
3		
4		
5		
6		
7		
8		
ი ი		
9 1	~	
1	0	
1	1	
1	2	
1	1 2 3	
1	4	
1	- 5 6 7 8	
1	6	
1	7	
1	8	
1	9	
2	0	
2 2	9 0 1 2 3 4	
イ つ	2	
~	2	
2	3	
2	4	
2	S	
2	6	
2	7	
2	8	
2 2 2 2	9	
2332	0	
3	1	
3	2	
3 3 3 3 3 3 3 3	2	
2	1	
ა ი	4 5	
ა ი	0	
3	0	
3	1	
3	8	
3	9	
	0	
4		
4	2	
4	3	
4	4	
4		
	6	
4		
4		
4		
4 5		
ว 5		
5 5	2	
5	3	
5		
5		
5	6	
5	7	
5	8	
5		
6		
5	5	

1

439	patients within the placebo arm population were on natalizumab, including the two patients
440	that transferred while all-time on-study versus none within PLP10 group (Supplementary
441	Information Fig 1). As reported, natalizumab reduces ARR by 68%, decreases the possibility
442	of disability progression by 43% with 57% of patients free of new or enlarging T2 lesions on
443	MRI scans compared to 15% on placebo. ⁴⁷ The relapses of the drop-out patients are reported
444	in Table 4A. As expected no statistically significant differences in the ARR were calculated
445	for the comparison of any group versus placebo for the 24 months on-treatment, with a 0.75
446	ARR within PLP10 (30 relapses) and 1.03 ARR within placebo (41 relapses) group, a 27%
447	ARR reduction (Table 4B). Interestingly, despite the high non-adherence rate, there was a
448	statistically significant difference for the comparison of the ARR in the 24 months before
449	entry baseline to the 24 months on-treatment for the PLP10 group (RRR 0.45, 95% CI 0.26 to
450	0.78, p=0.005).

451

452 **Disability progression**

453 Regarding the per-protocol analysis, at two years, the time to disability progression, with 454 confirmation after six months (secondary end-point) was significantly longer only with 455 PLP10. The cumulative probability of disability progression was 10% in the PLP10 group 456 and 58% in the placebo group (p=0.019) (Supplementary Information Fig 2). After excluding patients on natalizumab, there was an increased statistically significant difference between 457 458 the PLP10 and the placebo group for the same analysis (p=0.006) (Fig 4A). At two years, the 459 cumulative probability of progression was 10% in the PLP10 group and 70% in the placebo 460 group, which represents a decrease of 60 percentage points or a relative 86% decrease in the 461 risk of sustained progression of disability within PLP10 group (adjusted hazard ratio, 0.11; 462 95% CI 0.01 to 0.97, p=0.047). One versus seven out of ten patients progressed to confirmed 463 disability in the PLP10 and the placebo groups respectively when patients on natalizumab

BMJ Open

2
3
4
4
3 4 5 6 7 8
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
9 9 10 11 12 13 14 15 16 7 18 9 21 22 32 4 52 6 7 8 9 0 12 33 34 35 6 7 8 9 0 12 23 4 52 6 7 8 9 0 31 23 33 34 53 6 7 8 9 0 21 22 34 25 26 27 28 29 20 31 22 33 32 33 34 35 36 37 38 37 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 37 38 37 38 37 37 38 37 37 38 37 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37
23
24
24
25
26
27
28
29
30
24
31
32
33
34
35
36
27
31
38
39
40
41
42
43
43 44
45
46
47
48
49
49 50
51
52
53
54
55
56
50
57
58
59
60

464	were excluded. No statistically significant difference was observed for any comparison of the
465	other two groups compared to placebo (Fig 4A and Supplementary Information Fig 2).
466	
467	Regarding the ITT analysis, at two years, the cumulative probability of progression was 10%
468	in the PLP10 group and 35% in the placebo group (p=0.052, a trend for an effect), which
469	represents a decrease of 25 percentage points or a relative 71% decrease of the PLP10 for the
470	risk of sustained progression of disability (adjusted hazard ratio 0.22, 95% CI 0.04 to 1.07,
471	p=0.06) (Fig 4B). Two versus seven out of the total randomized patients progressed to
472	confirmed disability in the PLP10 and the placebo groups respectively. No significant
473	differences were observed for groups A or C against placebo (Fig 4B). The mean change in
474	Expanded Disability Status Scale (EDSS) score as a function of visit number is shown in
475	Figure 5.
475 476	
	Figure 5. MRI
476	
476 477	MRI
476 477 478	MRI Over two years, the MRI results support the overall conclusion from the study that PLP10 has
476 477 478 479	MRI Over two years, the MRI results support the overall conclusion from the study that PLP10 has a positive effect on disease activity since only 29% from the PLP10 group as opposed to 67%
476 477 478 479 480	MRI Over two years, the MRI results support the overall conclusion from the study that PLP10 has a positive effect on disease activity since only 29% from the PLP10 group as opposed to 67% from the placebo group developed new or enlarging T2 lesions (57% relative risk reduction).
476 477 478 479 480 481	MRI Over two years, the MRI results support the overall conclusion from the study that PLP10 has a positive effect on disease activity since only 29% from the PLP10 group as opposed to 67% from the placebo group developed new or enlarging T2 lesions (57% relative risk reduction). Excluding patients on natalizumab there is an increased relative risk reduction (64%) between
476 477 478 479 480 481 482	MRI Over two years, the MRI results support the overall conclusion from the study that PLP10 has a positive effect on disease activity since only 29% from the PLP10 group as opposed to 67% from the placebo group developed new or enlarging T2 lesions (57% relative risk reduction). Excluding patients on natalizumab there is an increased relative risk reduction (64%) between PLP10 as opposed to placebo with 29% of patients on PLP10 and 80% on placebo with

486 Over the course of the 30 month study no significant adverse events were reported from any487 group. According to a questioner procedure the only aetiology for drop-outs was the

488 palatability and smell of the formula preparations. Nausea was reported by two patients. No

489 abnormal values observed on any of the biochemical and haematological blood tests. No490 allergic reactions reported.

Discussion

In this proof-of-concept clinical trial assessing the safety and efficacy of three cocktail intervention formulas in RRMS, we observed a significant benefit for the novel PLP10 intervention compared to placebo for both the ARR and the progression to disability. Our results include analyses pertaining to a total of 42 months study collected data, including the 12-month, free of intervention treatment, extension period. We focused on the per-protocol data analysis since it is the appropriate method to best provide the answer to the proof-of-concept trial-addressed question. The high drop-out rate was solely the result of formulas palatability, a common phenomenon in trials using oily interventions where a lot of patients tend to drop-out soon after first dosage. We thus present our main per-protocol analysis, as well as a subgroup analysis excluding patients on natalizumab. We have found a statistically significant reduction in the ARR and the disability progression comparing not only patients on PLP10 versus placebo but also comparing the ARR of the PLP10 patients in the 24-month period prior to the study to the ARR of the 24 months on-study; the observed differences became larger when patients that received natalizumab (the most potent disease modifier) were excluded. The ARR decreased within a year on PLP10 and significantly remained stable until study completion. Statistically significant difference of ARR between patients on PLP10 versus placebo continued for the additional 12 month extended period (persistent effect) without significant difference on DMT. These clinical findings are supported by the results regarding the MRI analysis where the proportion of patients free from new or enlarging brain T2 lesions was also higher in PLP10 group versus placebo. The persistent effect within the extended period it is considered of major importance and supportive of the results since it is

BMJ Open

2	
3	
4 5	
5	
6	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
9 10 11 12 13 14 15 16 17	
18	
18	
19	
20	
21	
22 23	
23	
23 24 25	
27 25	
25	
27	
28	
29	
30	
30	
31	
32	
33 34 35 36 37 38 39	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
55	
56	
57	
58	
59	
60	

in agreement with the very long washouts, reported necessary, for omega-3 fatty acids and 514 515 especially DHA to return towards pretreatment values within the fatty acids of plasma, platelets, monocytes and red blood cells.⁴² This study also provides important 30-month, 516 placebo-controlled information about the safety of PLP10, A and C interventions, where no 517 any adverse or severe side effects have been reported. 518 519 As medications used to treat MS become increasingly highly specific and potent, attention to 520 521 safety is paramount. Current available treatments are products of reductionism, partially 522 effective, associated with severe side effects without (re)myelinating or neuroprotective 523 abilities. Interferons and glatiramer acetate, the most widely used first-line MS drugs 524 available today, are associated with the least severe side-effects among MS therapies but they 525 are reported with only 29-33% ARR reduction and with no significant effects on the 526 progression of disability. Natalizumab as previously discussed and Fingolimod with 54% 527 ARR reduction (without significant benefit on the progression of disability) are second-line drugs associated with severe side-effects.^{47,48} 528 529 530 No existing MS treatment has ever been designed as a result of SM concept approach or with

531 a potential to effectively stimulate intrinsic remyelinating and neuroprotecting mechanisms or 532 exert such an action. Now we propose that a holistic SM model approach has to be applied by 533 synchronized action on all involved perturbed mechanisms. PLP10 has innovative 534 characteristics like no any other intervention or medication tried before for MS treatment, 535 with unique efficacy abilities through different mechanisms of action, probably by the 536 synergistic effect of its constituent ingredients. PLP10 has all the characteristics of a medical 537 food with the action to feed a normal metabolic process by supplying nutritional structural 538 membrane precursors, building blocks, and vitamins from dietary sources that enhance

3	
4	
5	
4 5 6 7 8 9 10 11 12 13 14 15	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
14 15 16 17 18 19 20 21 22 23 24 25 26 27	
23	
24	
25	
26	
27	
28	
27 28 29 30 31 32 33 34 35 36 37 38 39	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
55	
56	
57	
58	
59 60	
OU	

1 2

remyelination and neuroprotection and simultaneously promote normalization of all cellular
membranes lipid content. The intention is to normalize the specific nutritional requirements
of the MS patients.

542

Different factors and molecular entities appear to be part of the possible aetiology for MS
with specific PUFA and antioxidants found to be key substances related to all known
pathogenic and recovery mechanisms. But, it is well established that MS patients are
characterized with significant deficiencies in antioxidant efficiency as well as in PUFA levels
in blood and cellular membranes.^{11, 49-51}

548

549 According to one hypothesis, the change in the ratio of omega-3 to omega-6, due to 550 increasing consumption of omega-6 PUFA, meaning high accumulation of AA, in the 551 Western diet, may be one of the major factors responsible for the increasing incidence of 552 inflammatory diseases relative to populations. In the Western diet, the ratio of omega-3 to omega-6 is about 1:20-30; in populations that consume fish-based diets, the ratio is about 553 1:1-2.^{52, 53} The intervention daily dose was aiming and believed to be high enough to 554 555 restore/amplify body efficient antioxidant activity and ensure cellular membranes lipid profile 556 normalization (PUFA content) and simultaneously potentiate involvement of the ingredients 557 in the anti-inflammatory and recovery mechanisms. Diet fatty acid molecules need about six 558 months period to exert their beneficial effect and this essential parameter was for the first time under consideration in our study design (normalization period).⁴² This chronotherapy 559 560 parameter it is of major importance in line with the SM treatment philosophy and if it is not 561 included in the trial design the possibility of misleading result evaluation greatly increases. In 562 fact, considering that omega-3 supplementation can release and replace excess AA within the

BMJ Open

563	cellular membranes, we can speculate that an increased inflammatory activity can possibly
564	result during the first six months of supplementation (during normalization period).
565	
566	The maintenance of myelin requires continued turnover of its components throughout life. ^{54,55}
567	In addition to the EPA, DHA, LA, and GLA, PLP10 was containing limited quantities of
568	other structural PUFA, specific MUFA (mostly oleic acid) and SFA (palmitic and stearic
569	acid), specifically to provide a direct source for neuronal cell membranes rehabilitation and
570	for (re)myelination and neuroprotection since they are all major components, precursors and
571	building blocks of any new physiological myelin and cellular membranes in general.
572	Assembly of the correct molecules into myelin membrane may be especially critical during
573	active synthesis. Possibly, if critical constituents aren't available or are metabolically
574	blocked, amyelination, dysmyelination or demyelination may ensue. ⁵⁶
575	
576	The well known and established safety of the ingredients used and the protocol guidelines
577	were supportive reasons for us to proceed with the clinical study even though with limitation
578	on the pre-estimation of required trial sample size as it was discussed in method section. The
579	adherence of the subjects is another issue but the duration of the study (42 months) is adding
580	power to the results; ⁴⁴ having the research questions been consciously and carefully
581	approached and answered. Furthermore, the statistical methodologies used along with the
582	appropriate adjustments, broadly accepted for MS clinical trials, power the findings, results,
583	and significance. The baseline characteristics of the treatment arms could possibly be
584	considered indicative of four very active groups of patients but that was the result of the
585	limited number of RRMS population eligible for the study within Cyprus. On the other hand
586	the balanced baseline characteristics without statistical differences, the statistical adjustments
587	(for all important baseline parameters i.e. relapses, EDSS, age and DMT) and the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 72 of 110

BMJ Open

1 2	
$\begin{array}{c}2&3&4&5\\6&7&8&9\\1&1&1&2&1&1\\1&1&1&1&1&1\\1&1&1&1&1&1&1\\2&2&2&2&$	
5 6	
7 8	
9 10	
11	
12	
14 15	
16 17	
18 19	
20 21	
22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37	
39	
40 41	
42 43	
44 45	
46 47	
48	
49 50 51	
52	
53 54	
55 56	
57 58	
59 60	

1

588	randomization within four different groups are the safety valves against data
589	misinterpretation. Yet, in small randomized control trials with a high drop-out rate, the per-
590	protocol analysis could be affected by the characteristics of the patients dropping out. In
591	order to safeguard our findings in the best possible way under the circumstances, we
592	proceeded to adjusting for confounders. Moreover, we cannot discard our finding as a false
593	positive, given that this is a randomized, double-blind, placebo-controlled clinical trial and,
594	despite its small sample size, represents a piece of evidence that only a larger randomized
595	controlled trial can replicate or refute. It is possible to question why DMTs efficacy cannot
596	be emerged out of the data analysis, of the four treatment arms, and in accordance to their
597	published values. We believe that the limited efficacy of the DMTs, the sample size and the
598	statistical adjustments were strong limiting determining factors for such an indication to be
599	countable. An additional argument is that the efficacy reported for the analysis of pre-
600	treatment (24 months before entry baseline) versus on-trial ARR could be considered as
601	potentially biased due to differences of how relapses were defined during the course of a
602	study compared to pre-treatment period; or due to regression to the mean or placebo effect.
603	This analysis was performed as an additional exploratory analysis that we were able to do due
604	to the availability of data. The relapses of the two pre-treatment years were drawn out of the
605	patients' archival records by the same treating neurologist involved in the study (MP), and
606	according to the patients' hospitalization date for receiving intravenous methyl-prednisolone.
607	This analysis was not used as a primary or a secondary end-point under investigation
608	although it is usually reported by many clinical studies. As a matter of fact many early phase
609	trials are based only on such an analysis (before versus after treatment results). In almost all
610	MS trials the number of relapses within the two years before baseline is a factor under
611	adjustment for the statistical analyses. ⁴⁸ The inclusion of the post-hoc MRI analysis is another
612	limiting factor that needs attention since it was used as an additional aside exploratory

BMJ Open

approach (due to study budget limitations it was not possible to be used as a formal
endpoint); but the MRI evaluation was blinded and can be considered as representative of the
randomized subjects within the treatment arms. As far as the regression to the mean and the
placebo effect concerns we believe that the 6-month normalization period is an accountable
and valuable eliminating factor of the possible effect; as well as the presence of four groups,
where only the PLP10 treatment arm is associated with statistically significant efficacy versus
placebo. It is a placebo-controlled study after all.

Our observations are consistent with the idea that simultaneous availability of specific PUFA along with other major membrane and myelin building blocks in combination with specific antioxidants, within optimum quantity, quality, ratio and structural form can possibly result to a more appropriate holistic therapy reducing MS disease activity. This is probably succeeded through synergistic and/or simultaneous effect on the interactions and dynamics of the most probable environmental and biological disease causing factors that induce complex biological network of events for disease pathogenesis and evolution; as well as on the protective and reparative mechanisms. We can additionally speculate that the nature of the intervention formula cannot be prohibitive for its use as preventive regimen and does not preclude probable positive efficacy on the other types of MS, but has to be further investigated. A larger size multicenter clinical trial will better establish PLP10 place in the armamentarium of treatments for MS.

It is commonly accepted that nutrition is one of the possible environmental factors involved
in the pathogenesis of MS, but its role as complementary MS treatment is unclear and largely
disregarded.⁵⁷ It is well known that the majority of the patients suffering from MS they do
use dietary supplements for a variable length of time and they prefer supplement type of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

638	"help" over conventional drugs. ⁵⁸ Dietary antioxidants and fatty acids may influence the
639	disease process in MS by reducing immune-mediated inflammation, oxidative stress and
640	excitotoxic damage. ¹¹ Present data reveal that healthy dietary molecules have a pleiotropic
641	role and are able to change cell metabolism from anabolism to catabolism and down-regulate
642	inflammation by interacting with enzymes, nuclear receptors and transcriptional factors. ⁵⁷
643	The present study, for the first time provides strong link evidence between dietary, metabolic,
644	immunological, and neurobiological aspects of MS after three quarters of a century of
645	unsuccessful scientific efforts. This might probably be the beginning of opening new
646	horizons and new avenues in the approach of MS prevention and treatment, and possibly of
647	other multifactorial chronic diseases, including neurodegenerative and autoimmune as well.
648	other multifactorial chronic diseases, including neurodegenerative and autoimmune as well.
649	
650	
651	
652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	

٨		ent Arms C	Placebo			
A Intervention: EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg)* / tota MUFA** (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg)	MUFA** (1,714mg) + total SFA (18:0 160mg,	Intervention: pure γ-tocopherol (760mg) dispersed in pure virgin olive oil (16,137 mg) as delivery vehicle	Intervention: Olive oil (pure virgin)			
* Other omega-3: C18: ** MUFA: 18:1 1300mg	3n-3 37mg, C18:4n-3 73mg, C g, 20:1 250mg, 22:1 82mg, 24:1	20:4n-3 98mg, C22:5n-3 392 l 82mg	2mg			
glycerides from fish boo International GmbH, Ed triglycerides. The pure	Aalesund, Norway; was used y oils; Borage seed oil (orgar ling, Germany, was used as th γ-tocopherol was purchased f -carotene from HealthAid Ltd., Dubendorf, Switzerland.	tic, cold pressed) "Borago of the source for the omega-6 b from Tama Biochemical Co	officinalis" Goerlich Pharr PUFA, MUFA and SFA, p. Ltd., Shinjuku-ku Toky			
Table 1. Intervention	n ingredients per treatmen	t arm. Citrus-aroma was	s used as masking age			
of the taste and odor and added in each one of the intervention for a total of 19.5ml dosage						
			Star Of 17.5mi dosage			
solution per day.			star of 19.5mi dosage			
solution per day.			far of 19.5mi dosage			
solution per day.						
solution per day.		4				
solution per day.		4				
solution per day.		4				
solution per day.		4				
solution per day.		4				
solution per day.		4				
solution per day.		4				
solution per day.		4				

2A.					
Characteristics	Group A (n=20)	Group B† (n=20)	Group C (n=20)	Placebo (n=20)	P- value
Sex					
Female - no. (%)	15 (75)	15 (75)	15 (75)	15 (75)	1.000
Age (yr)					
Mean ± Standard Deviation (SD)	38.0±11.9	36.9±8.4	37.7±8.7	38.1±10.9	0.982
Median (Range)	38.0 (22 - 65)	37.0 (25 –61)	36.5 (24 - 54)	36.0 (21–58)	
Treatment history					
Patients on DMT- no. (%)	11 (55)	9 (45)	12 (60)	10 (50)	0.875
Pre-treatment disease duration (yr)					
Mean ± SD	9.0±7.6	8.6±4.8	8.6±5.3	7.7±5.7	0.909
Median (Range)	7.5 (2 – 37)	8.0 (2 – 20)	8.0 (3 – 24)	6.5 (2 – 25)	
Pre-treatment relapses‡					
Mean ± SD	2.33±1.68	2.41±1.73	2.31±1.66	2.10±1.32	0.946
Median (Range)	2.0 (1 – 6)	2.0 (1 – 7)	2.0 (1 – 6)	2.0 (1 – 4)	
ARR	1.17	1.21	1.16	1.05	0.946
Patients -% with ≤ 1 relapse	40	45	40	35	
Baseline EDSS score‡					
Mean ± SD	2.52±1.23	2.15±1.05	2.42±1.21	2.39± 0.93	0.775
Median (Range)	2.5 (1.0-5.5)	2.0 (1.0-4.0)	2.5 (0.0-5.0)	2.5 (1.0-4.0)	
A D					
2B. Characteristics	Group A (n=10)	Group B† (n=10)	Group C (n=9)	Placebo (n=12)	P- value
Sex	(11-10)	(11-10)	<u>(II-)</u>	(11-12)	value
Female - no. (%)	5 (50)	7 (70)	6 (66.6)	10 (83.3)	0.419
Age (yr)					
Mean ± SD	36.6±13.5	34.80±5.4	40.9±8.1	39.8±13.2	0.572
Median (Range)	34.5 (22–65)	34.5 (26–43)	40.0 (29–54)	37.5 (21–58)	
Treatment history					
Patients on DMT- no. (%)	6 (60)	4 (40)	6 (67)	6 (50)	0.949
Pre-treatment disease duration (yr)					
Mean ± SD	9.7±10.0	8.3±5.3	11.3±6.1	8.7± 7.1	0.807
Median (Range)	7.5 (2 – 37)	8.0 (2 – 20)	8.0 (4 – 24)	5.5 (2 – 25)	
Pre-treatment relapses					

1 2							
3		Mean ± SD	2.20±1.47	2.70±1.25	1.78±0.66	1.67±1.37	0.241
4 5		Median (Range)	2.0 (1 - 6)	2.5 (1 – 4)	2.0 (1 – 3)	1.5 (1 – 4)	
6 7		ARR	1.10	1.35	0.89	0.83	
8		Patients -% with ≤1 relapse	30	20	33	50	
9 10		Baseline EDSS score					
10		Mean ± SD	2.65±1.37	2.40±1.12	2.11±1.02	2.16±0.96	0.698
12 13		Median (Range)	3.0 (1.0-5.5)	2.5 (1.0-4.0)	2.0 (1.0-4.0)	2.0 (1.0-3.5)	
13 14 15 16		† PLP10 group ‡ Available data at Entry Baseline (n=	=18 for group A, n=	17 for group B, n	=19 for group C,	n=19 for group D))
17 18 19		Table 2. The table section 2A residue		raphics and ba	aseline disease	characteristics	for
20 21 22		total randomized population by	treatment arm.				
23 24 25		The table section 2B reports the	e demographics a	and baseline di	sease characte	eristics of all-tir	ne on-
26 27		study population by treatment a	arm. There were	no significant	between study	-group differer	ices at
28 29		baseline for any characteristic.					
30 31	674		<u> </u>				
32 33	675						
34 35 36	676						
37 38	677						
39 40	678						
41	679						
42 43 44	680						
45	681						
46 47 48	682						
49	683						
50 51	684						
52 53	685						
54 55							
56	686						
57 58 59	687						
60							

				Group C (N =9)		Placebo (N =12)	
Х	Y	Х	Y	Х	Y	Х	Y
22	17	27	8	16	13	20	25
1.10	0.85	1.35	0.40	0.88	0.72	0.83	1.04
	-18		-62		-30		N/A
	0.468		0.024		0.578		
-23		-70		- 18		+ 25	
0.425		0.003		0.578		0.500	
	(N = X 22 1.10	22 17 1.10 0.85 -18 0.468 -23	(N = 10) (N = X Y X 22 17 27 1.10 0.85 1.35 -18 0.468 -23 -7	(N = 10) $(N = 10)$	(N = 10) $(N = 10)$	(N = 10) (N = 10) (N = 9) X Y X Y X Y 22 17 27 8 16 13 1.10 0.85 1.35 0.40 0.88 0.72 -18 -62 -30 0.468 0.024 0.578 -23 -70 -18	(N = 10) $(N = 10)$ $(N = 9)$ $(N = 9)$ X Y X Y X Y X 22 17 27 8 16 13 20 1.10 0.85 1.35 0.40 0.88 0.72 0.83 -18 -62 -30 -30 -30 -30 -30 -30 -23 -70 -18 +30 -18 +30

¶ Unadjusted estimate

3B.								
<u>Excluding patients on</u> <u>natalizumab</u>	Group A (N =9)		Group B† (N=10)		Group C (N =9)		Placebo (N =10)	
End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	16	15	27	8	16	13	13	19
Annual Relapse Rate (ARR)	0.88	0.83	1.35	0.40	0.88	0.72	0.65	0.95
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-13		-58		-24		N/A
P Value against placebo		0.493		0.016		0.412		
ARR change -% (Y to X)¶		-6	-7	/0	- 1	8	+-	46
P value against baseline	0.	857	0.0	003	0.5	78	0.3	354

X: Total number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

¶ Unadjusted estimate

Table 3. The table section 3A reports the two year primary end points of ARR of all-time on-study

population by treatment arm and percent difference with placebo. During the 24mo period on-treatment

[†] PLP10 group

BMJ Open

2		
3		the ARR of the group A was 0.85 with 18% decrease compared to placebo (p=0.468), of PLP10 group
4 5		0.40 with 62% decrease (p=0.024), and of group C 0.72 with 30% decrease (p=0.578) and reports the
6 7		comparison of the 24mo pre-treatment ARR (baseline ARR) to 24mo on-treatment ARR of all-time on-
8 9		
10		study population including patients on natalizumab.
11		
12		
13 14		
14 15		The table section 3B reports comparison of the 24mo pre-treatment ARR to 24mo on-treatment ARR of
16		all time on study nonvelotion availables notionts on notalizymak, and the commonizon of the ADD during
17		all-time on-study population excluding patients on natalizumab; and the comparison of the ARR during
18		the 24mo period on-treatment (primary end point) between each one of the groups against placebo.
19		the 24mb period on-treatment (primary end point) between each one of the groups against placebo.
20 21	688	the 24mo period on-treatment (primary end point) between each one of the groups against placebo.
22	000	
23	689	
24		
25	690	
26 27	CO1	
28	691	
29	692	
30		
31	693	
32		
33 34	694	
35	695	
36	095	
37	696	
38		
39 40	697	
40		
42	698	
43	699	
44	035	
45	700	
46 47		
48	701	
49	702	
50	702	
51	703	
52 53		
53 54	704	
55		
56	705	
57		
58 50		
59 60		
50		

2	
3	
1	
7	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
11	
18	
19	
20	
21	
20	
2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 3 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 3 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 3 5 6 7 8 9 10 1 2 3 3 4 3 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
23	
24	
25	
20	
20	
27	
28	
29	
20	
30	
31	
32	
33	
24	
34	
35	
36	
37	
30	
50	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
4/	
48	
49	
FΟ	
51	
50	
52	
53	
54	
50 51 52 53 54 55	
55	
56	
57	
58	
59	
60	
nu	

4A.								
Characteristics	Group A (N =8)		Group B† (N=7)		Group C (N=10)		Placebo (N =7)	
	Х	Y	Х	Y	Х	Y	Х	Y
No. of Relapses	20	14	14	14	27	26	20	13
Annual Relapse Rate (ARR)	1.25	0.88	1.00	1.00	1.35	1.30	1.42	0.92

X: Total number of relapses of 24 months pre-treatment

Y: Total number of relapses of 24 months on-treatment

4B.									
Characteristics		Group A (N=20)		Group B† (N=20)		Group C (N=20)		Placebo (N =20)	
End Point	Х	Y	Х	Y	Х	Y	Х	Y	
No. of Relapses	45	34	49	30	46	41	43	41	
Annual Relapse Rate (ARR)	1.13	0.85	1.23	0.75	1.15	1.03	1.08	1.03	
ARR Reduction -% (Y to X)¶	-2	-25		-39		-10		-5	
P value against baseline	0.120		0.005		0.475		0.652		
% Reduction of the ARR Compared to Placebo (Ys)¶		-18		-27		0.0		N/A	
P Value against placebo		0.447		0.121		0.996			

X: Total number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

¶ Unadjusted estimate

† PLP10 group

Table 4. The table section 4A reports the two year primary end point of relapses based on study design as reported by drop-out patients by Treatment Arm. The most drop-out patients that went on disease modified therapy (DMT) were from the group A and placebo with three and two patients respectively on natalizumab. These parameters justify the decreased number of relapses recorded within group A and placebo drop-outs; and this could affect the ITT analysis in favor of placebo when the total two-year recorded data are used. For PLP10 group, 14 relapses were reported at baseline and remained the same during the two-year study. For placebo, 20 relapses were reported at baseline and decreased to 13 during the two-

1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 20 21 22 23 24 5 26 27 28 9 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 30 31 22 3 24 25 26 27 28 29 30 31 22 3 24 25 26 27 28 29 30 31 22 3 24 25 26 27 28 29 30 31 22 33 33 33 33	706
36 37 38	708
39 40 41 42	709
43 44 45	710
46 47 48 49	711
49 50 51 52	712
53 54 55	713
56 57 58 59 60	714

year study. This is expected since, for PLP10 group 43% of the drop-outs were under DMT at entry baseline and remained the same until the end of the study with no patient on natalizumab; but 57% of the placebo group drop-outs that were under DMT at entry baseline increased to 86% at the end of the study including two patients on natalizumab.

The table section 4B reports comparison of 24 months pre-treatment ARR (baseline) to 24 months on-treatment ARR of total randomized population, by treatment arm. The ARR of PLP10 group was 1.23 at baseline and 0.75 at the end of the study (39% reduction p=0.005), and for placebo 1.08 at baseline and 1.03 at the end of the study (5% reduction p=0.652). No statistical difference was calculated for the other two treatment arms. During the 24 months on-treatment, PLP10 group presented a 27% reduction of ARR versus placebo (p=0.121), with all groups without statistically significant results.

706	
707	
708	
709	
710	
711	
712	
713	
714	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Characteristics*	Group A (n=10)	Group B PLP10 (n=10)	Group C (n=9)	Placebo (n=12)	P-value Group B vs. Placebo
Annual relapse rate over 1 year**	0.80	0.40	0.78	0.83	
Total number of relapses**	8	4	7	10	
Primary end points					
Annual relapse rate over 2 years (95% CI)**	0.85	0.40 (0.15-0.87)	0.72	1.04	0.024
Total number of relapses**	17	8	13	25	
Excluding patients on natalizumab	(n=9)	(n=10)	(n=9)	(n=10)	
Annual relapse rate over 2 years (95% CI)	0.83	0.40 (0.10-0.79)	0.72	0.95	0.016
Total number of relapses	15	8	13	19	
Secondary end points					
Cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -% **	43	10 (1/10)	24	58 (7/12)	0.019
Excluding patients on natalizumab cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -%	33	10 (1/10)	24	70 (7/10)	0.006
Exploratory Results					
Patients proportion with ≤1 relapse over 2 years -% **	50 (5/10)	90 (9/10)	56 (5/9)	42 (5/12)	0.030
MRI Patients proportion with new or enlarging T2					
lesions-% **		29 (2/7)		67 (4/6)	
Excluding patients on natalizumab Patients proportion with no new or enlarging T2 lesions-%		29 (2/7)		80 (4/5)	
DMT (interferons, glatiramer acetate) and natalizumab					
Patients proportion on DMT and natalizumab at the end of 2 years-% **	80 (8/10)†	60 (6/10)	67 (6/9)	75 (9/12)‡	0.747
 CI denotes confidence interval. Including patients on natalizumab 1out of 10 on natalizumab 2 out of 12 on natalizumab 					

Page 83 of 110

BMJ Open

1 2
3 4 5 6 7
6 7 8
9 10 11
12 13 14
8 9 10 11 12 13 14 15 16 17 18
18 19 20
21 22 23
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
27 28 29
30 31 32 33
34 35 36
37 38 39
40 41 42
43 44 45
46 47 48
49 50 51
52 53 54
55 56 57 58
58 59 60

74.0	A stream lademonta, We thank all participant notionts. We thank Thurses Desperis MD and the
716	Acknowledgments: We thank all participant patients. We thank Thyrsos Posporis MD and the
717	central reading centre (Ayios Therissos Medical Diagnostic Centre, Nicosia, Cyprus), and
718	Eleni Eracleous, MD (neuroradiologist) for the contribution on the MRI scans and their team
719	for the MRI reading. Special thanks to Elena Kkolou the pharmacist involved in the study and
720	Eftychia Gaglia for her nursing contribution and collection of blood from the patients. We
721	also thank Demetris Hadjisofoklis and Ioanna Leontiou (University of Nicosia, Helix
722	Business incubator) for their contribution on randomization process, data collection, filing
723	and blind codes keeping. Additionally we would like to thank the CING for hosting the
724	project. Moreover, we thank the Cyprus Ministry of Commerce, Industry and Tourism for
725	funding the project; and Yasoo Health Ltd., for providing some of the raw materials in
726	exchange of investigating, on their behalf, the efficacy and safety of γ -tocopherol.
727	
727 728	Contributors: All authors interpreted the data. I.S.P drafted the report and figures and all
	Contributors: All authors interpreted the data. I.S.P drafted the report and figures and all authors critically revised and approved the final version. M.C.P and I.S.P were responsible
728	
728 729	authors critically revised and approved the final version. M.C.P and I.S.P were responsible
728 729 730	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs
728 729 730 731	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic
728 729 730 731 732	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L
728 729 730 731 732 733	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the
728 729 730 731 732 733 734	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the composition procedure of the interventions and the fatty acid profile analysis of the red blood
728 729 730 731 732 733 734 735	authors critically revised and approved the final version. M.C.P and I.S.P were responsible for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the composition procedure of the interventions and the fatty acid profile analysis of the red blood cell membranes. E.E.N and I.S.P performed the statistical analyses. E.E.N was an

739	Funding: Supported by a grand from the Cyprus Ministry of Commerce, Industry and
740	Tourism, program for the creation of new high technology and innovation enterprises through
741	the business incubator.
742	
743	Competing interest: M.C.P, G.N.L, I.S.P received grand support from the Cyprus Ministry of
744	Commerce, Industry and Tourism, Program for the Creation of New High Technology and
745	Innovation Enterprises through the Business Incubator. PALUPA Medical Ltd. is a research
746	company formed and registered for completion of the study, as required by the Governments'
747	funding grand program. M.C.P, G.N.L, I.S.P, and CING are all stockholders of the PALUPA
748	Medical Ltd. M.C.P is an employee at the CING. I.S.P is a senior research collaborator
749	hosted by the CING. G.N.L is a CING collaborator. E.E.N declares no-competing interest.
750	No pharmaceutical companies were involved in this phase II clinical trial. The intervention is
751	under a USA provisional patent; Application Number 61469081.
751 752	under a USA provisional patent; Application Number 61469081.
	under a USA provisional patent; Application Number 61469081. Ethical approval: Cyprus National bioethics committee (reference EEBK/EП/2005/10).
752	
752 753	
752 753 754	Ethical approval: Cyprus National bioethics committee (reference EEBK/EП/2005/10).
752 753 754 755	Ethical approval: Cyprus National bioethics committee (reference EEBK/EП/2005/10). All authors have completed the Unified Competing Interest form at
752 753 754 755 756	Ethical approval: Cyprus National bioethics committee (reference EEBK/EП/2005/10). All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and
752 753 754 755 756 757	Ethical approval: Cyprus National bioethics committee (reference EEBK/EП/2005/10). All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare that (1) M.C.P, G.N.L, I.S.P have support from Cyprus Ministry of Commerce,
752 753 754 755 756 757 758	Ethical approval: Cyprus National bioethics committee (reference EEBK/EII/2005/10). All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare that (1) M.C.P, G.N.L, I.S.P have support from Cyprus Ministry of Commerce, Industry and Tourism, Program for the Creation of New High Technology and Innovation
752 753 754 755 756 757 758 759	Ethical approval: Cyprus National bioethics committee (reference EEBK/EII/2005/10). All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare that (1) M.C.P, G.N.L, I.S.P have support from Cyprus Ministry of Commerce, Industry and Tourism, Program for the Creation of New High Technology and Innovation Enterprises through the Business Incubator for the submitted work; (2) E.E.N has no

BMJ Open

BMJ Open

3	
4	
5	
5 6 7	
0	
1	
8	
9	
10	
11	
12	
13	
14	
9 10 11 12 13 14 15 16 17 18 19	
10	
10	
17	
18	
19	
20	
21	
20 21 22 23 24	
23	
24	
25	
23 24 25 26 27 28 29 30	
20	
21	
28	
29	
30	
31	
32 33 34 35 36	
33	
3/	
25	
30	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
55	
56	
57	
58	
59	
60	

submitted work; and (4) E.E.N has a non-financial interests that may be relevant to thesubmitted work.

765

The Corresponding Author has the right to grant on behalf of all authors and does grant on
behalf of all authors, an exclusive license on a worldwide basis to the BMJ Publishing Group
Ltd and its Licensees to permit this article (if accepted) to be published in BMJ editions and
any other BMJPGL products and sublicences to exploit all subsidiary rights, as set out in our
licence (http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication)."

771

Article Summary

Article focus:

- The increasing prevalence of Multiple Sclerosis (MS), the limited efficacy and the side effects of the existing treatments urge the clinical need for the development of new, innovative, more effective, safe, and preventive treatment strategies.
- For the first time we propose three original nutraceutical treatment intervention-cocktails, formulated based on systems medicine through nutritional systems biology rational; with PLP10 representing the complete composition of the formulation and the other two treatments represent partial formulations.
- We have studied the proposed interventions on 80 relapsing remitting MS patients (four groups of 20 each) for a total of 42 months, in a randomized, double-blind, placebo-controlled, phase II proof-of-concept clinical trial.

Key messages:

- The per-protocol data analyses indicated that PLP10 is associated with significant efficacy versus placebo on both reducing the annualized relapse rate and disease progression without any adverse or severe side effects.
- PLP10 has probably the ability to interfere with the total known repertoire of mechanisms involved in MS pathogenesis as well as with the recovery mechanisms, neuroprotection and remyelination.; it is potentially able to manipulate global perturbed networks of the disease causing factors rather than focusing only on unique failing components.
- This proof-of-concept clinical study might be indicative and the beginning of new avenues in MS prevention and treatment and of new epoch of novel drug development with dynamic therapeutic potential for chronic complex multifactorial diseases.

Strengths and limitations of this study:

- The strength of this study is the systems medicine therapeutic approach, the length of the study the inclusion of the six months normalization (chronotherapy) period, and the study protocol following all indicated appropriate guidelines with definite inclusion/exclusion criteria and primary/secondary end points.
- The sample size and the high rate of drop-outs (palatability of the formula) are the limitations associated with the present study.
- A phase III multi-center clinical trial will establish the present intervention regime among the best choices among neurodegenerative diseases prophylaxis and MS treatment drugs faretra.

BMJ Open

2 3 4 5	773	Refer	·ences
6 7	774	1.	Baranzini SE, Oksenberg JR, Hauser SL. New insights into the genetics of multiple
8 9	775		sclerosis. Journal of Rehabilitation Research and Development 2002;39:201-210.
10 11 12	776	2.	Goni J, Esteban FJ, de Mendizabal NV, et al. A computational analysis of protein-
13 14	777		protein interaction networks in neurodegenerative diseases. BMC Syst Biol
15 16	778		2008;2:52.
17 18	779	3.	Lobo I. Multifactorial inheritance and genetic disease. Nature Education 2008; 1.
19 20	780	4.	Compston A, Coles A. Multiple sclerosis. Lancet 2002;359:1221.
21 22 23	781	5.	Evans PH. Free radicals in brain metabolism and pathology. British Medical Bulletin
24 25	782		1993;49:577-587.
26 27	783	6.	Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab
28 29	784		Sci 1997;27:11-25.
30 31 32	785	7.	Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez
32 33 34	786		MV. The link between excitotoxic oligodendroglial death and demyelinating diseases.
35 36	787		Trends in Neurosciences 2001;24:224-230.
37 38	788	8.	Owens T. The enigma of multiple sclerosis: inflammation and neurodegeneration
39 40	789		cause heterogeneous dysfunction and damage. Current Opinion in Neurology
41 42 43	790		2003;16:259-265.
44 45	791	9.	Smith KJ, Kapoor R, Felts PA. Demyelination: The role of reactive oxygen and
46 47	792		nitrogen species. Brain Pathology 1999;9:69-92.
48 49	793	10.	Ahn AC, Tewari M, Poon C-S, Phillips RS. The Clinical Applications of a Systems
50 51 52	794		Approach. PLoS Med 2006;3:e209.
52 53 54	795	11.	van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF. Antioxidants and
55 56 57 58 59 60	796		polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 2005;59:1347-1361.

1 2 2	
2 3 4 5 6 7	
6 7	
8 9	
10 11	
12 13	
14 15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28 29 20	
30 31 32	
35 36	
37 38	
40	
41 42	
43 44	
45 46 47	
47 48 49	
50	
51 52 53	
54 55	
56 57	
58 59	
60	

797	12.	Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases.
798		The American Journal of Clinical Nutrition 2006;83:S1505-1519S.
799	13.	Piani D, Fontana A. Involvement of the cystine transport system xc- in the
800		macrophage- induced glutamate-dependent cytotoxicity to neurons. The Journal of
801		Immunology 1994;152:3578-3585.
802	14.	Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health
803		implications. International Journal of Developmental Neuroscience 2000;18:383-399.
804	15.	Calder PC. Dietary modification of inflammation with lipids. Proceedings of the
805		Nutrition Society 2002;61:345-358.
806	16.	Gil Á. Polyunsaturated fatty acids and inflammatory diseases. Biomedecine &
807		Pharmacotherapy 2002;56:388-396.
808	17.	Ariel A, Serhan CN. Resolvins and protectins in the termination program of acute
809		inflammation. Trends in Immunology 2007;28:176-183.
810	18.	Arita M, Ohira T, Sun Y-P, Elangovan S, Chiang N, Serhan CN. Resolvin E1
811		selectively interacts with leukotriene B4 receptor BLT1 and chemR23 to regulate
812		inflammation. The Journal of Immunology 2007;178:3912-3917.
813	19.	Janakiram NB, Rao CV. Role of Lipoxins and Resolvins as Anti-Inflammatory and
814		Proresolving Mediators in Colon Cancer. Current Molecular Medicine 2009;9:565-
815		579.
816	20.	Serhan C, Arita M, Hong S, Gotlinger K. Resolvins, docosatrienes, and
817		neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-
818		triggered epimers. Lipids 2004;39:1125-1132.
819	21.	Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-
820		inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008;8:349-361.

60

BMJ Open

2			
3	821	22.	Rossetti RG, Seiler C, DeLuca P, Laposata M, Zurier R. Oral administration of
4 5 6	822		unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation.
7 8	823		Journal of Leukocyte Biology 1997;62:438-443.
9 10	824	23.	Vatassery G. Vitamin E and other endogenous antioxidants in the central nervous
11 12	825		system. Geriatrics 1998a;53:S25-S27.
13 14 15	826	24.	Fukuzawa K, Gebicki JM. Oxidation of [alpha]-tocopherol in micelles and liposomes
16 17	827		by the hydroxyl, perhydroxyl, and superoxide free radicals. Archives of Biochemistry
18 19	828		and Biophysics 1983;226:242-251.
20 21	829	25.	Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames
22 23 24	830		BN. γ -Tocopherol traps mutagenic electrophiles such as NOx and complements α -
24 25 26	831		tocopherol: Physiological implications. Proceedings of the National Academy of
27 28	832		Sciences of the United States of America 1997;94:3217-3222.
29 30	833	26.	Brigelius-Flohé R, Kelly FJ, Salonen JT, Neuzil J, Zingg J-M, Azzi A. The European
31 32 22	834		perspective on vitamin E: current knowledge and future research. The American
33 34 35	835		Journal of Clinical Nutrition 2002;76:703-716.
36 37	836	27.	Calder P. Polyunsaturated fatty acids, inflammatory processes and inflammatory
38 39	837		bowel diseases Mol Nutr Food Res 2008;52:885–897
40 41	838	28.	Edwards IJ, O'Flaherty JT. Omega-3 Fatty Acids and PPAR γ in Cancer. PPAR
42 43 44	839		Research 2008;2008:1-15.
45 46	840	29.	Groeger AL, Cipollina C, Cole MP, et al. Cyclooxygenase-2 generates anti-
47 48	841		inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 2010;6:433-441.
49 50	842	30.	Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related
51 52 53	843		decreases in nuclear receptors and increase neurogenesis in old rats. Journal of
54 55	844		Neuroscience Research 2010;88:2091-2102.
56 57			
58			
59 60			

2 3 4	845	31.	McNamara RK. DHA Deficiency and Prefrontal Cortex Neuropathology in Recurrent
5	846		Affective Disorders. The Journal of Nutrition 2010;140:864-868.
7 8	847	32.	Salvati S, Natali F, Attorri L, et al. Eicosapentaenoic acid stimulates the expression of
9 10	848		myelin proteins in rat brain. Journal of Neuroscience Research 2008;86:776-784.
11 12	849	33.	Abraham M, Shapiro S, Karni A, Weiner HL, Miller A. Gelatinases (MMP-2 and
13 14 15	850		MMP-9) are preferentially expressed by Th1 vs. Th2 cells. Journal of
16 17	851		Neuroimmunology 2005;163:157-164.
18 19	852	34.	C ffrench-Constant. Pathogenesis of multiple sclerosis. The Lancet 1994;343:271-
20 21	853		275.
22 23	854	35.	Leppert D, Lindberg RLP, Kappos L, Leib SL. Matrix metalloproteinases:
24 25 26	855		multifunctional effectors of inflammation in multiple sclerosis and bacterial
27 28	856		meningitis. Brain Research Reviews 2001;36:249-257.
29 30	857	36.	Curtis CL, Rees SG, Cramp J, et al. Effects of n-3 fatty acids on cartilage metabolism.
31 32	858		Proceedings of the Nutrition Society 2002;61:381-389.
33 34 35	859	37.	Harris MA, Hansen RA, Vidsudhiphan P, et al. Effects of conjugated linoleic acids
36 37	860		and docosahexaenoic acid on rat liver and reproductive tissue fatty acids,
38 39	861		prostaglandins and matrix metalloproteinase production. Prostaglandins, Leukotrienes
40 41	862		and Essential Fatty Acids 2001;65:23-29.
42 43 44	863	38.	McCabe A, Wallace J, Gilmore W, Strain J, McGlynn H. The effect of
44 45 46	864		eicosapentanoic acid on matrix metalloproteinase gene expression. Lipids
47 48	865		1999;34:S217-S218.
49 50	866	39.	Shinto L, Marracci G, Bumgarner L, Yadav V. The Effects of Omega-3 Fatty Acids
51 52	867		on Matrix Metalloproteinase-9 Production and Cell Migration in Human Immune
53 54 55	868		Cells: Implications for Multiple Sclerosis. Autoimmune Diseases 2011;2011.
56 57			
58 59			
60			

Page 91 of 110

BMJ Open

2 3 4	869	40.	Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and
5 6	870		healthcare. Genome Med 2009;1:2.
7 8	871	41.	Huang WL, King VR, Curran OE, et al. A combination of intravenous and dietary
9 10	872		docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain
11 12	873		2007;130:3004-3019.
13 14 15	874	42.	Marangoni F, Angeli MT, Colli S, et al. Changes of $n - 3$ and $n - 6$ fatty acids in
16 17	875		plasma and circulating cells of normal subjects, after prolonged administration of 20:5
18 19	876		(EPA) and 22:6 (DHA) ethyl esters and prolonged washout. Biochimica et Biophysica
20 21	877		Acta (BBA) - Lipids and Lipid Metabolism 1993;1210:55-62.
22 23 24	878	43.	Martínez M, Vázquez E, García-Silva MT, et al. Therapeutic effects of
25 26	879		docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders1.
27 28	880		The American Journal of Clinical Nutrition 2000;71:376S-385S.
29 30	881	44.	Committee for medicinal products for human use. Guideline on clinical trials in small
31 32	882		populations In: European Medicines Agency, 2006: 1-10.
33 34 35	883	45.	Gerard E Dallal. The Little Handbook of Statistical Practice. [online]. Available at
36 37	884		URL . Accessed Date Accessed, Year .
38 39	885	46.	Wang YC, Meyerson L, Tang YQ, Qian N. Statistical methods for the analysis of
40 41	886		relapse data in MS clinical trials. Journal of the Neurological Sciences 2009;285:206-
42 43 44	887		211.
45 46	888	47.	Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial
47 48	889		of natalizumab for relapsing multiple sclerosis. The New England Journal of
49 50	890		Medicine 2006;354:899-910.
51 52 53	891	48.	Kappos L, Radue E-W, O'Connor P, et al. A Placebo-Controlled Trial of Oral
53 54 55	892		Fingolimod in Relapsing Multiple Sclerosis. New England Journal of Medicine
56 57	893		2010;362:387-401.
58 59 60			

3
4
5
6
5 6 7 8 9 10 11 12 13 14 15 16 7
8
9
10
11
12
13
14
10
10
18
19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 40
40 41
41
42 43
43 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2

894	49.	Cunnane S, Ho S, Dore-Duffy P, Ells K, Horrobin D. Essential fatty acid and lipid
895		profiles in plasma and erythrocytes in patients with multiple sclerosis. The American
896		Journal of Clinical Nutrition 1989;50:801-806.
897	50.	Harbige LS, Sharief MK. Polyunsaturated fatty acids in the pathogenesis and
898		treatment of multiple sclerosis. British Journal of Nutrition 2007;98:S46-S53.
899	51.	Wilson R, Tocher D. Lipid and fatty acid composition is altered in plaque tissue from
900		multiple sclerosis brain compared with normal brain white matter. Lipids 1991;26:9-
901		15.
902	52.	Rafat AS, Saame RS, Laura AS, Heidi RY, William S, Gary PZ. Omega 3-Fatty
903		Acids: Health Benefits and Cellular Mechanisms of Action. Mini Reviews in
904		Medicinal Chemistry 2004;4:859-871.
905	53.	Shaikh SR, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells,
906		and antigen presentation. The American Journal of Clinical Nutrition 2006;84:1277-
907		1289.
908	54.	Lajtha A, Toth J, Fujimoto K, Agrawal CH. Turnover of Myelin Proteins in Mouse
909		Brain in vivo Biochem I 1977:164:323-329

909 Brain in vivo. Biochem J 1977;164:323-329.

- 910 55. LeBaron FN, Sanyal S, Jungalwala FB. Turnover rate of molecular species of
 911 sphingomyelin in rat brain. Neurochemical Research 1981;6:1081-1089.
- 912 56. Yao JK. Increased polyunsaturated fatty acids in developing and regenerating
- 913 peripheral nerve. Biochimica et Biophysica Acta (BBA) Lipids and Lipid
- 914 Metabolism 1982;712:542-546.
- 915 57. Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a
 916 narrative review. Complement Ther Med 2011;19:228-237.
 - 917 58. Farinotti M, Simi S, Di Pietrantonj C, McDowell N, et al. Dietary interventions for
- 918 multiple sclerosis (Review), the Cohrane Library 2007, issue I.

Figure legends

1

BMJ Open

2
3
4
, ,
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 2
6
7
1
8
9
10
10
11
12
12
13
14
45
15
16
17
17
18
19
20
20 21 22 23 24 25 26 27 28 29 30 31 32 33
22
22
23
24
24
25
26
27
27
28
20
29
30
31 32 33 34 35 36 37 38
51
32
33
00
34
35
26
30
37
38
50
39
40
41
42
43
44
45
40
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

920	Figure 1. Omega-6 and omega-3 PUFA, their respective metabolic derivatives and their
921	possible effects on inflammation.
922	After consumption, the PUFAs are metabolized via several pathways (not shown) to active
923	compounds that mediate inflammation and products that promote resolution of inflammation.
924	Abbreviations: PL, phospholipid; IFN- γ , interferon γ ; IL-2, interleukin 2; NF κ B, nuclear
925	factor kappa B; PGE2, prostaglandin E2; PPARγ, peroxisome proliferator-activated receptor
926	γ ; PUFAs, polyunsaturated fatty acids; TGF β , transforming growth factor β ; TNF, tumor
927	necrosis factor; COX, cyclooxygenase; hydroxyeicosatetraenoic acid; HPETE,
928	hydroperoxyeicosatetraenoic acid; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin;
929	TX, thromboxane; RXR-γ, retinoid X receptor-gamma; Nrf2, nuclear respiratory factor;
930	MMP, metalloproteinase.
931	Figure 2. Study Flowchart
932	Figure 3. Panel A demonstrates the ARR of all-time on-study patients during the 24mo pre-
933	treatment (baseline ARR) and at different on-study intervals (6, 12, 18, 24 mo) per treatment
934	arm. **
935	Panel B demonstrates the ARR of all-time on-study population between 0-6, 6-12, 6-18, and
936	6-24 mo period intervals, of PLP10 vs. placebo group. **
937	Panel C demonstrates the ARR of all-time on-study population of PLP10 vs. placebo group at
938	baseline, during 1 st year, and during the 2-year on-treatment. **
939	Panel D demonstrates the dispersion of relapses throughout the 2-year period of all-time on-
940	study (excluding patients on natalizumab) of PLP10 (n=10) vs. placebo (n=10). Placebo

941 shows an irregular dispersion of relapses in relation to PLP10 group with linear increasing
942 trend wile PLP10 shows a stabilized linear trend. By using the per-protocol model where
943 patients on natalizumab were excluded, we could compare the number of relapses on a same
944 number of patients.

945 ** Including the patients on natalizumab.

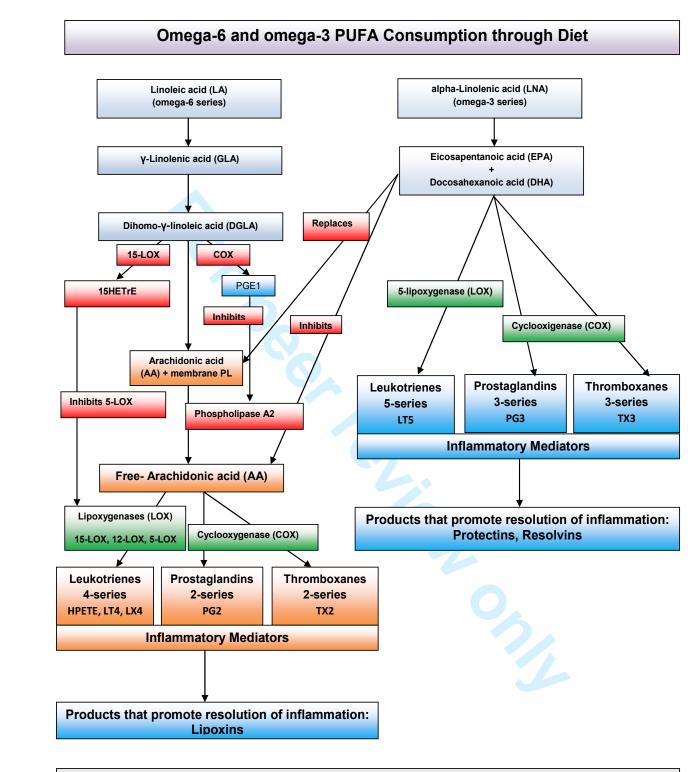
Figure 4. Panel 4A demonstrates the Kaplan–Meier plot of the time to sustained progression
of disability among all-time on-study patients, excluding patients on natalizumab, receiving
intervention A, PLP10 and C as compared with placebo. PLP10 reduced the risk of sustained
progression of disability by 86% over two years (p=0.006). Intervention formula A reduced
the risk of sustained progression of disability by 53% (p=0.266) and intervention formula C
by 67% (p=0.061).

952 Panel 4B demonstrates the Kaplan–Meier plot of the time to sustained progression of

disability among ITT population receiving intervention A, PLP10 and C as compared with

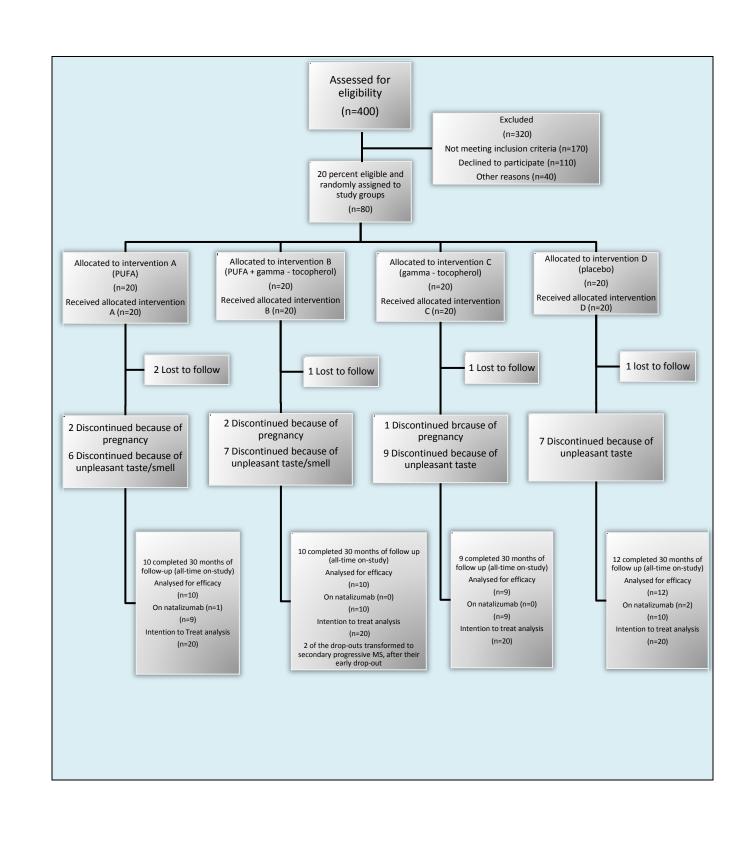
954 placebo. PLP10 reduced the risk of sustained progression of disability by 71% over two years

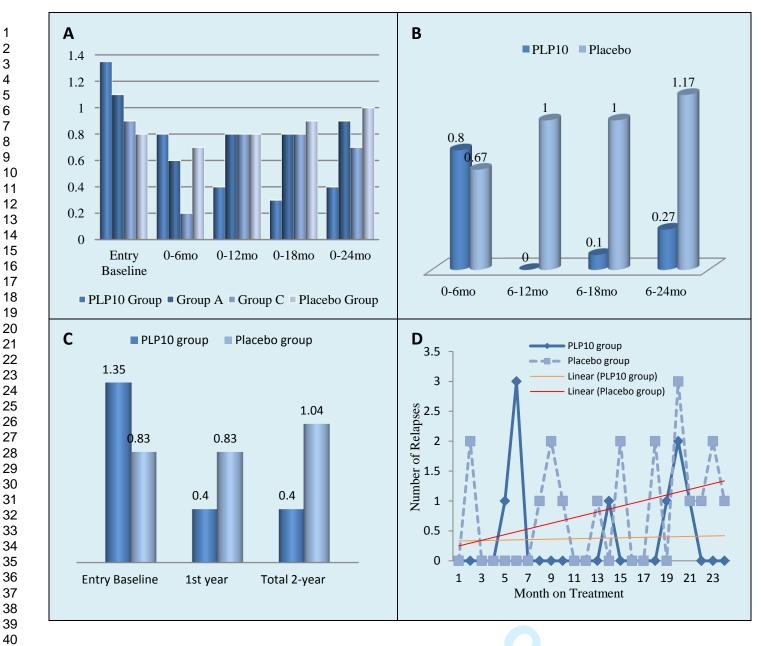
955 (p=0.052, trend). Intervention formula A reduced the risk of sustained progression of

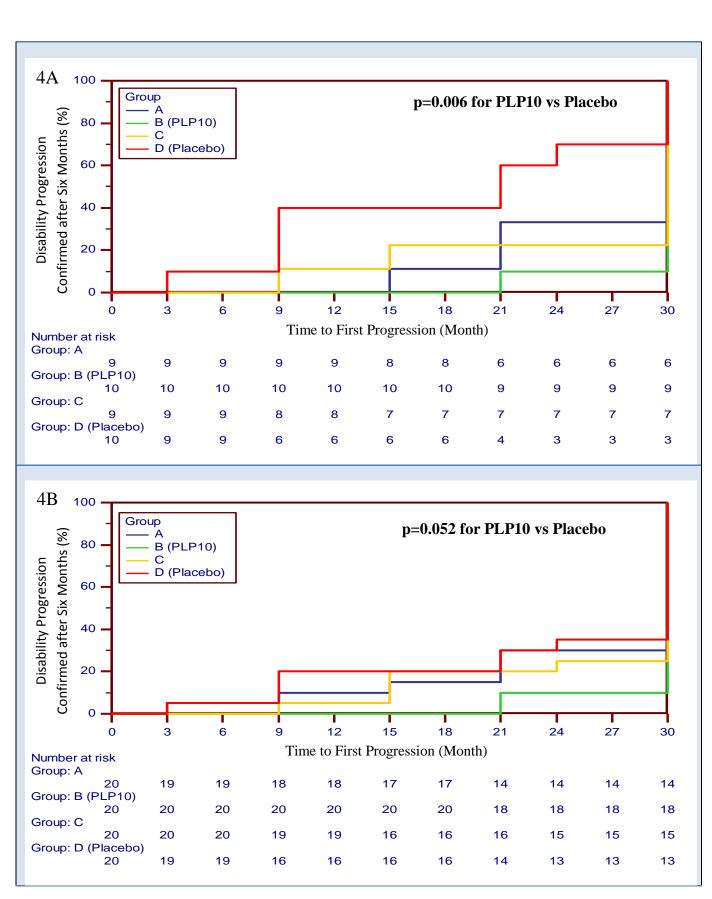

956 disability by 22% (p=0.727) and intervention formula C by 40% (p=0.447).

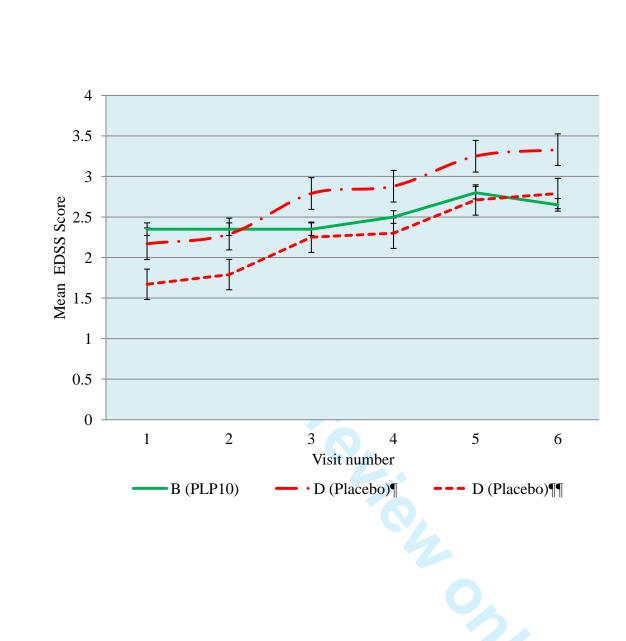
957 Figure 5. Mean change in expanded disability status scale score as a function of visit

958 number. Values are expressed as mean \pm s.e.m.


959 ¶ Including patients on natalizumab


960 ¶ Excluding patients on natalizumab


Possible effects on inflammation:


Reduce IFN- γ production; Reduce IL-2 production; Increase TGF β activity; Increase PGE2 activity; Inhibit arachidonic acid; Reduce TNF levels; RXR- γ and PPAR γ agonist; NF κ B expression; stimulate Nrf2; reduce MMP-2, -3, -9, and -13

Supplementary Information

2 Table of Content

Supplementary Section	Page
Supplementary Information Methods 1	2-4
Supplementary Information Methods 2	5-6
Supplementary Information Figure 1	7
Supplementary Information Figure 2	8

-	
5	
6	
7	
8	
6 7 8 9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

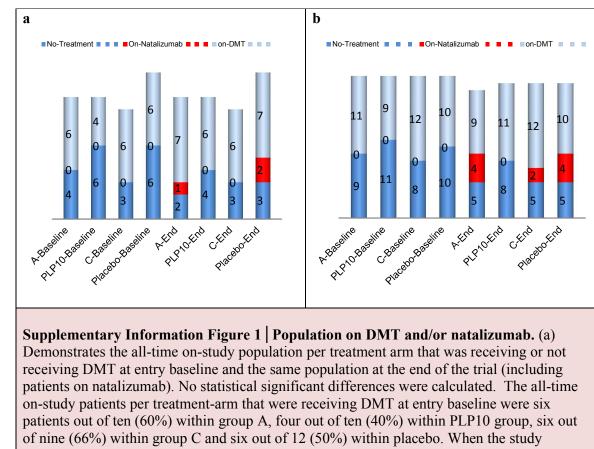
Page 101 of 110

BMJ Open

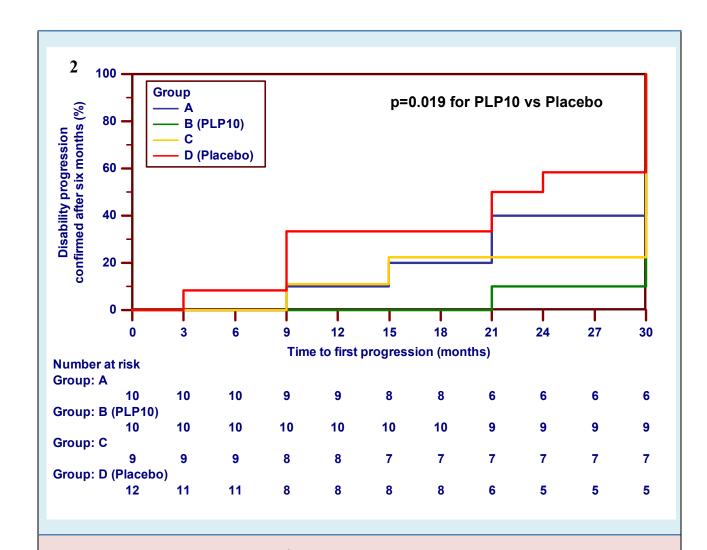
Supplementary Information Methods 1 Intervention and study rational. We are using high dosage of 1:1 omega-3:omega-6 polyunsaturated (PUFA) aiming to overpass and normalize global diet regional traditions and habits in relation to abnormal PUFA/saturated fatty acids (SFA)/monounsaturated fatty acids (MUFA) daily ratio consumption irrespective of the quantities consumed; and enough to equilibrate patients' diet in line with the recommended more physiologic omega-3:omega-6 ratio of about 1:1-4 wt/wt as reported by Simopoulos, 2002. In addition to correct existing deficiencies, cell membrane abnormalities, specifically of the immunopathological system and blood mononuclear peripheral cells, and high enough for availability and immediate ongoing modulation of the involved pathogenic mechanisms and network of events in MS. The high dosage is also required to overpass the quantity limitations, previously discussed, of diet-consumed PUFAs for cellular incorporation, especially in the central nervous system (CNS) of adults. Additionally, fatty acids (FAs) must first cross the intestinal epithelium before reaching the different tissues, where digestion and absorption constitute further problems in their availability (Carlier, H, 1991). Omega-3 PUFA are used in re-esterified form to eliminate unwanted disturbances, at the sides of action, by other fatty acids and molecules present in crude fish oils but also to increase the bioavailability of the FA since triglycerides have been shown to be associated with much higher bioavailability (Dyerberg et al, 2010). Linoleic (LA) and gamma linolenic acid (GLA) are essential structure molecules and important for any physiological (re)generation of cell membrane. GLA quantity is doubled to LA to ensure high direct production of dihomo-gamma-linolenic acid (DGLA), from GLA when LA cannot be metabolized, due to desaturase deficiency or malfunction. Such a reduced capacity to convert LA to GLA has been associated with aging, diabetes, alcoholism, atopic dermatitis, premenstrual syndrome, rheumatoid arthritis, cancer and cardiovascular diseases (Bolton-Smith et al, 1997; Horrobin, 1990; Leventhal et al, 1993). This is going to result in the increase of DGLA relative to arachidonic acid (AA) with DGLA promoting production of prostaglandin (PG)E1 but also inhibition of phospholipase (PL)A2: two major reasons and rational for their use. If other metabolic problems are involved within the omega-6 series and the normal metabolites are not produced then the eicosapentaenoic acid EPA available in PLP10 will substitute the function of DGLA, as a competitive inhibitor of AA for PLA2. In both cases the pro-inflamatory leucotrienes, prostaglandines of the 2series (PG2) and thromboxanes of the 2 series including the platelet-activator factor (PAF) will be attenuated. The synthesis of AA from DGLA by $\Delta 5$ desaturase promoted by LA/GLA supplementation is very limited in humans as a result of limited activity of the enzyme (Yang-Yi & Robert, 1998). AA in the body is mostly available through diet. EPA and docosahexaenoic acid (DHA) are both physiologically important and crucial structured molecules able to substitute excess AA and SFA within the cell membranes. EPA will contribute to the inhibition (competitive to AA) of PLA2, joining the co-supplied omega-6 PUFA but will also participate in the production of anti-inflammatory leukotrienes, prostaglandins of the 3-series (PG3) and thromboxane (TX3) along with DHA, both found in the PLP10 intervention. Moreover EPA will replace AA of the membrane phospholipids and both omega-3 PUFA will contribute replacing abnormal quantities of SFA and excess AA. DHA is used in 3:1 ratio to EPA to cover any possible inabilities of EPA to be metabolized, high enough to strongly promote high production of the aforementioned anti-inflammatory

eicosanoids and cytokines and to be incorporated into CNS cell membranes where DHA should be the major PUFA present, replacing other FA, probably saturated and excess of AA. EPA, DHA, LA and GLA along with the rest of the other ingredients used ("other" omega-3 PUFA, SFA and MUFA that are usually found in the cell membranes of healthy people in limited quantities) in the intervention regimen are for their availability as minor structural constituents of physiological cellular membranes integrity, fluidity and overall function as building blocks for myelin repair and/or myelination. Furthermore the PUFA used within the cocktail intervention aimed to manipulate all other pathophysiological pathways that are reported to be able to: as previously discussed including gene transcription for neuroprotection and remyelination. Furthermore, PUFA are used to ensure the integrity of blood brain barrier (BBB) and to modulate the gelatinases responsible for the T cell migration within the CNS. Three different antioxidant vitamins (vitamin E, mostly as alpha-tocopherol, gamma (γ)-tocopherol (vitamin E isoform) and vitamin A) are used in the regimen preparation to support the cellular antioxidant defenses but also to protect peroxidation of the supplied increased amounts of PUFA. Alpha-tocopherol low-molecular-weight antioxidants will contribute to radical scavenging, interfering with gene transcription, protein expression, enzyme activity and metal chelation (van Meeteren et al, 2005). Vitamin E (alpha tocopherol) and vitamin A are used as antioxidants for the protection of the excess supplemented PUFA, with alpha-tocopherol been demonstrated to protect against peroxynitrite-induced oxidative damage, as well as able to efficiently detoxify hydroxyl, perhydroxyl and superoxide free radicals (the elevated reactive oxygen species (ROS)); each one with different mechanism of action, increasing the effect capability (Vatassery et al, 1998b; van Meeteren, 2005). Gamma-tocopherol is used in high dosage since its half life is very short compared to alpha-tocopherol and has been demonstrated to specifically protect against nitro-radicals. Tocopherols can also exert non-antioxidant properties, including modulation of cell signaling and immune function, regulation of transcription, and induction of apoptosis as previously discussed (van Meeteren et al, 2005). PLP10 is the first preparation ever developed for MS therapy that is composed by the use of all different previously discussed PUFA, MUFA, SFA in a cocktail preparation mixed with the specific aforementioned antioxidant vitamins that have never been all together used before within a specific formulation. The ingredients ratio, quality, structural form and mostly the high dosage has never been before tested. Furthermore, the knowledge and chronotherapy as well as other unique limitations associated with the individual molecules used, have never been accounted, discussed, proposed or reported for any previous therapeutic regimen. Through systems medicine therapeutic philosophy, by the use of PLP10, potentially MS patients have the opportunity to be treated holistically, by natural source isolated molecules,

- demonstrated as able of affecting and modulating all known pathophysiological,
- immunopathological, habitual, gene related factors; thus the dynamic interconnected complex
- 117 network of events simultaneously. Possibly synergistic effects between PLP10 ingredients are
- also feasible. Moreover we can speculate that treatment efficacy of PLP10, when used as


BMJ Open

2		
3 4	119	adjunct to existing pharmaceuticals produced by reductionism, can be proven therapeutically
4 5	120	superior to any available treatment for MS.
6	121	
7		
8	122	Bolton-Smith C, Woodward M, Tavendale R (1997) Evidence for age-related differences in
9 10	123	the fatty acid composition of human adipose tissue, independent of diet. European Journal of
11	124	Clinical Nutrition 51: 619-624
12	125	
13	125	Carlier H, Bernard A, Caselli C (1991) Digestion and absorption of polyunsaturated fatty
14	120	acids. <i>Reproduction, nutrition, development</i> 31: 475-500
15	127	delas. Reproduction, nutrition, development 51. (15 500
16 17	128	
18	129	Dyerberg J, Madsen P, Møller JM, Aardestrup I, Schmidt EB (2010) Bioavailability of
19	130	marine n-3 fatty acid formulations. Prostaglandins, leukotrienes, and essential fatty acids 83:
20	131	137-141
21	422	
22	132	Herrohin DE (1000) Commo linglonia acid Ray Contomn Dhusial 1, 1 41
23	133	Horrobin DF (1990) Gamma-linolenic acid. Rev Contemp Physiol 1: 1-41
24 25	134	
26	135	Leventhal LJ, Boyce EG, Zurier RB (1993) Treatment of rheumatoid arthritis with
27	136	gammalinolenic acid. Annals of Internal Medicine 119: 867-873
28		
29	137	
30	138	Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids.
31 32	139	Biomedecine & Pharmacotherapy 56: 365-379
32 33	140	
34	141	van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF (2005) Antioxidants and
35	142	polyunsaturated fatty acids in multiple sclerosis. <i>Eur J Clin Nutr</i> 59: 1347-1361
36		
37	143	
38 39	144	Yang-Yi F, Robert SC (1998) Importance of Dietary g-Linolenic acid in human health and
39 40	145	nutrition. The Journal of Nutrition 128: 1411-1414
40	146	
42	140	Vatassery GT, Smith WE, Quach HT (1998b) Alpha-tocopherol in rat brain subcellular
43	147	fractions is oxidized rapidly during incubations with low concentrations of peroxynitrite.
44	149	Journal of Nutrition128:152–157.
45	150	<i>bournal of trainition</i> 120.152 157.
46 47	151	
48		
49	152	
50	153	
51	154	
52 53	155	
53 54	156	
55	157	
56	158	
57	159	
58		
59 60		
00		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


Supplementary Information Methods 2 Interventions specifications. The specific omega-3 (re-esterified glycerides) and omega-6 (glycerides) raw materials were purchased according to the required interventions' PUFAfraction specification (molecular structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant stabilizer by the supplier. The vitamins and masking aroma were purchased separately. The mixing of fractions to the final required intervention-composition specification was always performed by the same team of scientists under the supervision of the involved medical biochemist and lipidology specialist, under appropriate conditions every six months. Interventions were stored refrigerated in dark until use. The ratios of the different ingredients used were as follows: omega-3, EPA to DHA (about 1 to 3 wt/wt), omega-6, LA to GLA (about 2 to 1 wt/wt), omega-3 (EPA + DHA) to omega-6 (LA + GLA) (about 1 to 1 wt/wt). The total omega-3 (EPA + DHA + "other" omega-3 PUFA) used as re-esterified triglycerol (minimum value 60%), diglyceride (about 33%), monoglyceride (about 2%) structural form mixture and about 2% ethyl ester structural form, with no less than 80% re-esterified triglycerol content to be DHA and EPA as a result of PUFA triglycerides re-esterification of fish body oils. The "other" group of omega-3 on the re-esterified glycerols included the 18:3 (alpha-linolenic acid), 18:4 (stearidonic acid), 20:4 (eicosatetraenoic acid) and 22:5 (docosapentaenoic acid) PUFA. The fraction of omega-6 (LA + GLA) used as triglycerides with no less than 50-65% triglycerol content to be LA and GLA in a ratio of 2 to 1 with 18:1 (oleic acid) 14-20% and 20:1 (eicosenoic acid), 22:1 (docosenoic acid), 24:1 (tetracosenic acid) as additional monounsaturated fatty acids and minor quantities of 16:0 (palmitic acid) 4-16%, 18:0 (stearic acid) 2-5% saturated fatty acids from Borage oil source. The vitamins used were vitamin A as beta-carotene, vitamin E (alpha-tocopherol) and pure gamma-tocopherol (vitamine E isoform). Citrus extract was used as masking aroma and pure virgin olive oil as delivery vehicle. The daily intervention formula agent dosages were: Intervention formula A daily dosage: EPA (1650mg) / DHA (4650mg) / GLA (2000mg) / LA (3850mg) / total other omega-3 (600mg) / total monounsaturated fatty acids (MUFA) (18:1 1300mg, 20:1 250mg, 22:1 82mg, 24:1 82mg) + total saturated fatty acids (SFA) (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg). Intervention formula B (PLP10) daily dosage: EPA (1650mg) / DHA (4650mg) / GLA (2000mg) / LA (3850mg) / total other omega-3 (600mg) / total MUFA (18:1 1300mg, 20:1 250mg, 22:1 82mg, 24:1 82mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) / gamma- tocopherol (γ -tocopherol) (760 mg). **Intervention formula C** daily dosage: γ -tocopherol (760 mg) (in 16137 mg pure virgin olive oil as a vehicle). **Intervention formula D** daily dosage: pure virgin olive oil (16930mg). Citrus aroma was added in each intervention formula to make up a total dosage of 19.5ml of solution per day.

BMJ Open

2		
2	201	The specific omega-3 related fraction, according to specifications required for the
4	202	interventions was prepared and purchased from EPAX AS, Aalesund, Norway; as re-
5	203	esterified glycerides from fish body oils as a source. The specific omega-6 PUFA, MUFA
6		
7	204	and SFA related fraction, according to required specifications, was prepared and purchased
8 9	205	from Goerlich Pharma International GmbH, Edling, Germany, as triglycerides from Borage
10	206	seed oil (organic, cold pressed) "Borago officinalis" as a source. Both omega-3 and omega-6
11	207	fractions were delivered stabilized by the producer (vitamine E (alpha-tocopherol) \sim 4.5 mg/g
12	208	was used as antioxidant).
13		
14 15	209	Vitamins: vitamin A as beta-carotene (HealthAid Ltd., Middlesex, United Kingdom) and pure
16	210	gamma-tocopherol (Tama Biochemical Co. Ltd., Shinjuku-ku Tokyo, Japan).
17		
18	211	Citrus aroma (Givaudan Schwaiz AG, Dubendorf, Switzerland).
19		
20	212	
21 22	212	
22		
24	213	
25		
26		
27	214	
28 29		
30		
31	215	
32		
33		Citrus aroma (Givaudan Schwaiz AG, Dubendorf, Switzerland).
34 35	216	
36		
37		
38	217	
39		
40 41	210	
41	218	
43		
44	219	
45	215	
46		
47 48	220	
40 49	220	
50		
51	221	
52		
53 54		
54 55	222	
56		
57		
58	223	
59 60		
60		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

on-study patients per treatment-arm that were receiving DMT at entry baseline were six patients out of ten (60%) within group A, four out of ten (40%) within PLP10 group, six out of nine (66%) within group C and six out of 12 (50%) within placebo. When the study completed, 80% of the patients in group A, 60% in PLP10 group, 66% in group C and 75% of the patients in placebo ended up on treatment. Within group A one out of eight and within placebo two out of nine patients on DMT transferred on natalizumab. (b) Demonstrates the total randomized population per treatment arm that was receiving or not receiving DMT at entry baseline and the same population at the end of the trial without lost to follow (including patients on natalizumab). A total of 61% of group A patients were on DMT at entry baseline and became 72% at the end; for PLP10 group 41% and became 53%; for group C 73% and became 74% and for placebo 53% and became 74% at study completion. At the end: for group A, four out of 13 patients on DMT transferred on natalizumab; for PLP10 group no patient was on natalizumab; for Group C two out of 14 patients on DMT transferred on natalizumab; and for placebo group four out of the 14 patients on DMT transferred on natalizumab. No significant differences measured at entry baseline between the groups.

Supplementary Information Figure 2 | Kaplan–Meier estimates for the time to disability

progression. Kaplan–Meier plot of the time to sustained progression of disability among all-time onstudy patients, including patients on natalizumab, receiving intervention A, PLP10 and C vs. placebo. Intervention PLP10 reduced the risk of sustained progression of disability by 83% over two years (p=0.019). The cumulative probability of progression was 10% in the intervention B group and 58% in the placebo group. Intervention formula A reduced the risk of sustained progression of disability by 32% (p=0.301) and intervention formula C by 62% (p=0.109).

Checklist of Items for Reporting Trials of Nonpharmacologic Treatments*

Section	Item	Standard CONSORT Description	Extension for Nonpharmacologic Trials	Reported on Page No.
Title and abstract†	1	How participants were allocated to interventions (e.g., "random allocation," "randomized," or "randomly assigned")	In the abstract, description of the experimental treatment, comparator, care providers, centers, and blinding status	1,3,4
Introduction		, , , , ,	e e	
Background	2	Scientific background and explanation of rationale		5 to 8
Methods				
Participants†	3	Eligibility criteria for participants and the settings and locations where the data were collected	When applicable, eligibility criteria for centers and those performing the interventions	8, 13,15
Interventions ⁺	4	Precise details of the interventions intended for each group and how and when they were actually administered	Precise details of both the experimental treatment and comparator	9,10,11, Table 1 p.28, Appendix p. 5,6
	4A		Description of the different components of the interventions and, when applicable, descriptions of the procedure for tailoring the interventions to individual participants	10, Table 1 p.28, Appendix p.5
	4B		Details of how the interventions were standardized	9,10, Table 1 p.28 Appendix p.5
	4C		Details of how adherence of care providers with the protocol was assessed or enhanced	9
Objectives	5	Specific objectives and hypotheses	L	7,8
Outcomes	6	Clearly defined primary and secondary outcome measures and, when applicable, any methods used to enhance the quality of measurements (e.g., multiple observations, training of assessors)		12
Sample size†	7	How sample size was determined and, when applicable, explanation of any interim analyses and stopping rules	When applicable, details of whether and how the clustering by care providers or centers was addressed	14
	F	or peer review only - http://bmjopen.bmj.co	om/site/about/guidelines.xhtml	

Randomization– sequence generation†	8	Method used to generate the random allocation sequence, including details of any restriction (e.g., blocking, stratification)	When applicable, how care providers were allocated to each trial group	9
Allocation concealment	9	Method used to implement the random allocation sequence (e.g., numbered containers or central telephone), clarifying whether the sequence was concealed until interventions were assigned		9
Implementation	10	Who generated the allocation sequence, who enrolled participants, and who assigned participants to their groups		9
Blinding (masking)†	11A	Whether or not participants, those administering the interventions, and those assessing the outcomes were blinded to group assignment	Whether or not those administering co- interventions were blinded to group assignment	9,10
	11B		If blinded, method of blinding and description of the similarity of interventions [†]	9,10,Appendix
Statistical methods†	12	Statistical methods used to compare groups for primary outcome(s); methods for additional analyses, such as subgroup analyses and adjusted analyses	When applicable, details of whether and how the clustering by care providers or centers was addressed	13, 14, 15
lesults	10			
Participant flow†	13	Flow of participants through each stage (a diagram is strongly recommended) specifically, for each group, report the numbers of participants randomly assigned, receiving intended treatment, completing the study protocol, and analyzed for the primary outcome; describe deviations from study as planned, together with reasons	The number of care providers or centers performing the intervention in each group and the number of patients treated by each care provider or in each center	15 Fig 2
Implementation of intervention [†]	New item		Details of the experimental treatment and comparator as they were implemented	10,15,16 Apper p5,
Recruitment	14	Dates defining the periods of recruitment and follow-up		11,15
Baseline data†	15	Baseline demographic and clinical characteristics of each group	When applicable, a description of care providers (case volume, qualification, expertise, etc.) and centers (volume) in each group	16,Table 2

15,16

15 to 20

22 to 26

3 4				
4 5 6 7 8 9	Numbers analyzed	16	Number of participants (denominator) in each group included in each analysis and whether analysis was by "intention-to-treat"; state the results in absolute numbers when feasible (e.g., 10/20, not 50%)	
10 11 12 13	Outcomes and estimation	17	For each primary and secondary outcome, a summary of results for each group and the estimated effect size and its precision (e.g., 95% confidence interval)	
14 15 16 17	Ancillary analyses	18	Address multiplicity by reporting any other analyses performed, including subgroup analyses and adjusted analyses, indicating those prespecified and those exploratory	
18 19	Adverse events Discussion	19	All important adverse events or side effects in each intervention group	
20 21 22 23 24	Interpretation [†]	20	Interpretation of the results, taking into account study hypotheses, sources of potential bias or imprecision, and the dangers associated with multiplicity of analyses and outcomes	In addition, take into account the choice of the comparator, lack of or partial blinding, and unequal expertise of care providers or centers in each group
25 26 27 28	Generalizability†	21	Generalizability (external validity) of the trial findings	Generalizability (external validity) of the trial findings according to the intervention, comparators, patients, and care providers and centers involved in the trial
29 30	Overall evidence	22	General interpretation of the results in the context of current evidence	
31 32 33 34 35 36 37 38			he CONSORT checklist. CONSORT = Co 2007 revised version of the CONSORT ch	

A novel oral nutraceutical formula (PLP10) for the treatment of relapsing remitting multiple sclerosis: a randomized, double-blind, placebo-controlled proof-ofconcept clinical trial.

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002170.R2
Article Type:	Research
Date Submitted by the Author:	04-Feb-2013
Complete List of Authors:	Pantzaris, Marios; The Cyprus Institute of Neurology and Genetics (CING), Clinic C and PALUPA Medical Ltd Loukaides, George; The Cyprus Institute of Neurology and Genetics (CING), Neurology Clinic and PALUPA Medical Ltd Ntzani, Evangelia; University of Ioannina School of Medicine (UISM), Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology Patrikios, Ioannis; The Cyprus Institute of Neurology and Genetics (CING), Clinic C and PALUPA Medical Ltd; European University Cyprus, Health Science
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Neurology, Complementary medicine, Pharmacology and therapeutics
Keywords:	Multiple sclerosis < NEUROLOGY, NUTRITION & DIETETICS, Neurophysiology < NEUROLOGY, COMPLEMENTARY MEDICINE, Neurobiology < BASIC SCIENCES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
3 4 5 6 7 8 9 10 1 12 3 4 5 16 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 2 3 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59
60
N 11

A novel oral nutraceutical formula of omega-3 and omega-1 6 fatty acids with vitamins (PLP10) in relapsing remitting 2 multiple sclerosis: a randomized, double-blind, placebo-3 controlled proof-of-concept clinical trial 4 Marios C. Pantzaris*, George N. Loukaides, Evangelia E. Ntzani, Ioannis 5 S. Patrikios* 6 * Both M.C.P and I.S.P are the first authors and both are the corresponding authors 7 8 The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus Marios C. 9 10 Pantzaris Senior Consultant Neurologist Neurology Clinic C and PALUPA Medical Ltd., The 11 Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus George N. Loukaides Clinical Dietitian/Nutritionist Neurology Clinic and PALUPA Medical Ltd., 12 13 University of Ioannina School of Medicine (UISM) 45110 Ioannina, Greece Evangelia E. 14 Ntzani Assistant Professor Clinical and Molecular Epidemiology Unit, Department of 15 Hygiene and Epidemiology, PALUPA Medical Ltd at The Cyprus Institute of Neurology and 16 Genetics (CING) 1683 Nicosia, Cyprus Ioannis S. Patrikios Senior Research Scientist, visiting Professor at European University Cyprus Nicosia, Cyprus, Department of Health and 17 18 Science. Correspondence should be addresses to e-mail: <u>I.Patrikios@euc.ac.cy</u> or pantzari@cing.ac.cy 19 20 21

3
4
5
6
6 7 8
8
ğ
9 10
11
12
12 13 14
13
14
15
16
17 18
18
19
20
21
21 22 23
23
14
25
26
25 26 27 28 29 30
28
20
20
24
51
32
33
32 33 34 35 36 37 38
35
36
37
38
39
40
41
42
43
44
45
46
40 47
47
48
49
50
51
52
53
54 55
55
56
57
58
59
60

22 Correspondence to:

- 23 Ioannis Patrikios
- 24 The Cyprus Institute of Neurology and Genetics (CING)
- 25 Neurology Clinic C (PALUPA Medical),
- 26 6 International Airport Av.
- 27 P.O.Box 23462, 1683 Ayios Dometios. Nicosia, Cyprus
- 28 Tel: +357 22 358 600, +357 99 097 856;
- 29 <u>i.patrikios@euc.ac.cy</u>
- 30 <u>patrikiosioannis@gmail.com</u>
- 31
- 32 AND
- 33
- 34 Marios Pantzaris
- 35 The Cyprus Institute of Neurology and Genetics (CING)
- 36 Neurology Clinic C (PALUPA Medical),
- 37 6 International Airport Av.
- 38 P.O.Box 23462, 1683 Ayios Dometios, Nicosia Cyprus
- 39 Tel: +357 22 358 600; +357 99 677 067
- 40 <u>pantzari@cing.ac.cy</u>
- 41
- 42 Keywords: antioxidant vitamins, polyunsaturated fatty acids, multiple sclerosis, systems
- 43 medicine, randomized clinical trial.

44

45 **Word Count: 6299**

BMJ Open

46	Abstract
47	Objective To assess whether our three novel interventions, formulated based on systems
48	medicine therapeutic concept reduce disease activity in patients with relapsing remitting
49	multiple sclerosis who were either treated with disease modifying treatment or untreated.
50	
51	Design 30-month randomized double-blind, placebo-controlled, parallel design, phase II
52	proof-of-concept clinical study.
53	
54	Settings Cyprus Institute of Neurology and Genetics (CING)
55	
56	Participants and Interventions 80 subjects were randomized into four groups of 20. The
57	first intervention (A) was composed of omega-3 and omega-6 polyunsaturated fatty acids at
58	1:1 wt/wt. Specifically, the omega-3 fatty acids were docosahexaenoic acid (DHA) and
59	eicosapentaenoic acid (EPA) at 3:1 wt/wt and the omega-6 fatty acids were linoleic acid (LA)
60	and gamma (γ)-linolenic acid (GLA) at 2:1 wt/wt. This intervention also included minor
61	quantities of other specific polyunsaturated, monounsaturated and specific saturated fatty
62	acids as well as vitamin A and vitamin E (alpha-tocopherol). The third intervention (C) was
63	γ -tocopherol alone. The second intervention (PLP10) was a combination of A and C. A fourth
64	group of 20 received a vehicle placebo. The interventions were administered per os once
65	daily.
66	
67	Main outcome measures The primary endpoint was the annualized relapse rate (ARR) of the
68	three interventions versus placebo at two years. The secondary end point was the time to
69	confirmed disability progression at two years.
70	

י ר		
2		
3		
4		
5		
6		
6 7		
8		
ი ი		
9	~	
1	0	
1	1	
1	01234567	
1	3	
1	Δ	
4	 	
1	0	
1	6	
I	1	
1	8	
A	2	
ົ	n	
$\frac{1}{2}$	1	
~	0123456780	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
- 2	۰ ۵	
2 2	0	
2	9	
3	0	
3	1	
3	2	
3	3	
3	90123456789	
3	5	
ž	6	
2	7	
ა ი	1	
3	8	
3	9	
4	0	
4	1	
4		
4		
4		
4 4		
4		
4		
4	8	
4	9 0	
5	0	
5	1	
5	י ר	
о г	2	
5	3	
5	4	
5	5	
5	6	
5		
5	Ŕ	
5	0 0	
6	υ	

1

71	Results A total of 41 (51%) patients completed the 42-month trial. Overall, for the per-
72	protocol analysis of the two-year primary end point, 8 relapses were recorded in the PLP10
73	group (n=10) (0.40 ARR) versus 25 relapses in the placebo group (n=12) (1.04 ARR), a 64%
74	adjusted relative rate reduction for the PLP10 group (RRR 0.36, 95% CI 0.15 to 0.87,
75	p=0.024). In a subgroup analysis that excluded patients on monoclonal antibody
76	(natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two
77	years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016). Per-protocol analysis for the secondary
78	outcome at two years, time to disability progression, was significantly longer only with
79	PLP10. The cumulative probability of disability progression at two years was 10% in the
80	PLP10 group and 58% in the placebo group (unadjusted log-rank p=0.019). In a subgroup
81	analysis that excluded patients on natalizumab the cumulative probability of progression was
82	10% for the 10 patients in the PLP10 group and 70% for the 12 patients in the placebo group,
83	a relative 86% decrease in the risk of sustained progression of disability in the PLP10 group
84	(unadjusted log-rank p=0.006; adjusted hazard ratio, 0.11; 95% CI 0.01 to 0.97, p=0.047). No
85	adverse events were reported. Interventions A (10 patients) and C (9 patients) showed no
86	significant efficacy.
87	
88	Conclusions In this small proof-of-concept randomized double-blind clinical trial, PLP10
89	treatment significantly reduced the ARR, and the risk of sustained disability progression
90	without any reported serious adverse events. Larger studies are needed to further assess the
91	safety and efficacy of PLP10.
92	

93 Trial registration International Standard Randomized Controlled Trial, number
94 ISRCTN87818535.

95

BMJ Open

2
4
3 4 5
6
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
21 22
22
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
24
25
26 27
27
28
20
29 30
30
31
32
33
34 35
35
36
36 37
20
38
39
40
41
42
43
44
45
43 46
47
48
49
50
51
52
53
54
54
55
56
57
58
59
60

96	Introduction
97	Multiple sclerosis (MS) is a complex multifactorial disease that results from interplay
98	between as yet unidentified environmental factors and susceptibility genes. ¹⁻³ Together, these
99	factors trigger a cascade of events, involving engagement of the immune system,
100	inflammatory injury of myelin, axons and glia, functional recovery and structural repair,
101	gliosis, and neurodegeneration. ⁴ The bio-mechanisms involved are: immune-mediated
102	inflammation, oxidative stress and excitotoxicity. ⁵⁻⁹ These mechanisms may all contribute to
103	oligodendrocyte and neuronal damage and even cell death, hence promoting disease
104	progression. The increasing prevalence of MS, the limited efficacy and the side effects of the
105	existing treatments urge the clinical need for the development of new, innovative, more
106	effective, safe, and preventive treatment strategies.
107	
108	Research has shown that multiple variables dynamically interact and many different complex
109	interrelated processes are simultaneously orchestrated for MS pathogenesis. The fundamental

interrelated processes are simultaneously orchestrated for MS pathogenesis. The fundamental 109 distinctiveness of systems medicine (SM) is not just the recognition that different specific 110 111 complex factors are important in disease management, but that they need to be incorporated in some meaningful way to treatment selection and delivery.¹⁰ The primary challenge tackled 112 by systems scientific approach is the elucidation of how these multiple variables dynamically 113 interact and how one can apply this understanding to affect the system and achieve a 114 desirable end.¹⁰ The answer might be the simultaneous interference with all involved 115 116 perturbed mechanisms, by using a cocktail of different specific ingredients, potentially able 117 through synergistic effect to give a long, holistic and effective treatment (Supplementary 118 Information Methods 1).

119

60

120	The polyunsaturated fatty acids (PUFA) composition of membrane phospholipids plays a
121	direct role in immune and non-immune related inflammation. PUFA and antioxidant
122	deficiencies along with decreased cellular antioxidant defense mechanisms have been
123	reported for MS patients. ¹¹ The cause of these PUFA deficiencies is not entirely clear and may
124	involve metabolic and nutritional alterations. ¹¹
125	
126	Increased or uncontrolled inflammation contributes to several different acute and chronic
127	diseases and it is characterized by the production of inflammatory cytokines, arachidonic acid
128	(AA)-derived eicosanoids (prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs),
129	and other oxidized derivatives), other inflammatory agents such as reactive oxygen species
130	(ROS), nitric oxide (NO), and adhesion molecules (Fig 2). ¹² During inflammation glutamate
131	homeostasis is altered by activated immune cells releasing increased quantities of glutamate
132	that can result in over activation of glutamate receptors and in return excitotoxic
133	oligodendroglial death. ^{7, 13} As such, among others, membrane-related pathology, immune-
134	mediated inflammation, oxidative stress and excitotoxicity provide potentially useful
135	combined targets for intervention in MS.
136	
137	In vitro and in vivo studies have demonstrated that dietary EPA, DHA, LA, and GLA can be
138	implicated and modulate almost all known complex network of events and pathways
139	repertoire in MS pathophysiology. Brain membrane fatty acid composition can be modified
140	with dietary supplementation, but the process has been showed to be age dependent (it takes
141	much longer in adults versus developing brains) as well as possibly dependent on the
142	quantities of the dietary/supplemented PUFAs. ¹⁴ Both human and animal studies proved that
143	diets high in DHA and EPA increase the proportion of these PUFA in the membranes of
144	inflammatory cells and reduce the levels of AA. ^{12, 15} The anti-inflammatory properties of

BMJ Open

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2 3 4 5 6 7 8 9 10 1 12 3 4 15 16 7 8 9 10 1 12 3 4 15 16 7 8 9 10 1 12 3 4 15 16 7 8 9 20 1 22 3 24 25 27 8 9 30 1 32 33 4 35 6 7 8 9 30 1 32 3 34 35 6 7 8 9 30 1 32 3 3 4 5 6 7 8 9 30 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1
22
23
24
25
26
27
28
29
30
31
32
33
34
30 26
27
31 20
20
39 40
40
42
43
44
45
46
47
48
49
50
50 51 52 53 54 55 56 57 58
52
53
54
55
56
57
58
59
60

145	omega-3 include production of PGs and TXs of the 3-series and LTs of the 5-series (Fig 2). ^{14,}
146	¹⁶ Resolvins and protectins are biosynthesized from omega-3 fatty acids via cyclooxygenase-
147	2/lipoxygenase (COX-2/LOX) pathways and they promote control of inflammation in neural
148	tissues (Fig 2). ¹⁷⁻²¹ T-cell proliferation in acute and chronic inflammation can be reduced by
149	supplementation with either omega-6 or omega-3 PUFA. ²² Furthermore, vitamin E is an
150	important antioxidant that can interrupt the propagation of free radical chain reactions. ²³
151	Vitamin E (alpha-tocopherol, an isoform of vitamin E) efficiently detoxifies hydroxyl,
152	perhydroxyl and superoxide free radicals. ²⁴ However γ -tocopherol (another isoform of
153	vitamin E) seems to be more efficiently implicated in trapping NO radicals. ²⁵ In addition
154	alpha-tocopherol exerts non-antioxidant properties, including modulation of cell signaling
155	and immune function, regulation of transcription, and induction of apoptosis. ²⁶
156	
157	Moreover, omega-3 fatty acids electrophilic derivatives formed by COX-2, in activated
158	macrophages can stimulate the nuclear respiratory factor (Nrf2) inducing the transcription of
159	neuroprotective and antioxidant related genes, and can activate the peroxisome proliferator-
160	activated receptor (PPAR) γ for anti-inflammatory response. ²⁷⁻²⁹ In animal studies, EPA and
161	DHA proved to be endogenous ligands of RXRs, with positive effect on neurogenesis. ³⁰
160	Additionaly in 2008 Salvati and any arkars reported avidance of appalarated myslination in

Additionaly, in 2008 Salvati and coworkers reported evidense of accelerated myelination in
 DHA- and EPA-treated animals.³² Moreover, DHA and EPA are reported to significantly

decrease the levels of metalloproteinases (MMP) -2, -3, -9, and -13 with a significant role in
the migration of lymphocytes into the CNS by inducing disruption of the blood brain barrier
(BBB), an important step in the formation of MS lesions.³³⁻³⁹

167

Based on the above, specific PUFA and antioxidant vitamins fulfill the criterion of biologicplausibility and have the potential to diminish MS symptoms severity and activity, even

promoting recovery (remyelination).¹¹ Overall, PLP10 contains multiple ingredients (omega-3, omega-6 and other fatty acids and vitamins) potentially able to modulate key interconnected components (i.e. genes, proteins) and structural molecules (i.e. cellular membrane lipids, receptors) within the functional network of events of MS pathogenesis.⁴⁰ This is a randomized phase II, single-center, double-blind, placebo-controlled, proof-of-concept clinical trial evaluating the therapeutic ability of PLP10 and of two other interventions (A and C) consisting of PLP10 constituent partial fractions (Table 1) versus placebo on RRMS patients. Methods Patients Eligibility criteria were an age of 18 to 65; a diagnosis of RRMS according to the McDonald criteria; a score of 0.0 to 5.5 on the EDSS, a rating that ranges from 0 to 10, with higher scores indicating more severe disability; MRI showing lesions consistent with MS; and at least one documented clinical relapse either receiving or not disease modifying treatment (DMT) within the 24 months period before beginning (enrollment) of the study. Patients were excluded because of a recent (<30 days) relapse, prior immunosuppressant or monoclonal antibodies therapy, pregnancy or nursing, other severe disease compromising organ function, progressive MS, history of recent drug or alcohol abuse, use of any additional food supplement, vitamin, or any form of PUFA, history of severe allergic or anaphylactic reactions or known specific nutritional hypersensitivity. No monitor or limitations on patients' daily diet habits were included in the study design since the quantities of the ingredients within the formulas daily-dosage could not be significantly affected or spoiled by

BMJ Open

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
12	
10	
14	
15	
16	
17	
18	
9 10 11 12 13 14 15 16 17 19 20 22 22 22 22 22 22 22 22 22 22 22 22	
20	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
21	
28 29 30 31 32 33 34 35	
32	
33	
34	
35	
36	
36 37 38 39 40	
20	
38	
39	
40	
41	
42	
43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

any confounding factors within any known global daily food diet (see procedures, treatmentregimen and end-points).

197

The study was conducted in accordance with the standards of the International Conference of Harmonization Guidelines for Good Clinical Practice. The protocol was developed by the investigators and it was approved by the Cyprus National Bioethics Committee and was overseen by an independent safety-monitoring committee evaluating the safety and over-all benefit-risk profiles. The adherence of care providers with the protocol was assessed by an external committee assigned by the funder of the project through reviews of case report forms. All patients gave written informed consent at the time of enrolment.

205

206 Randomization and masking

207 Patients were randomly assigned to four intervention groups in a 1:1:1:1 ratio stratified by 208 gender (women to men, 3:1). Randomization was facilitated by a lottery-type pool of 209 numbered balls. Patients were randomly assigned to treatment in blocks of four by flipping a 210 coin as follows: for the first two drawn balls heads stratified them to the groups A/B and tails 211 stratified them to the groups C/D. The other two balls were stratified accordingly. A second 212 toss of the coin assigned the two patients to group A (head)/B (tail) or group C (head)/D 213 (tail). The randomization scheme was generated, performed and securely stored by Helix 214 Incubator Organization of Nicosia University (HIONU).

215

The interventions had identical appearance and smell in dark bottles (15 daily-dose

217 portions/bottle) under nitrogen bed and labeled by HIONU with code numbers, unidentifiable

for both patients and investigators. Study data were collected by the investigators and saved

by the HIONU that also held the blinded codes of the study. All study personnel involved in

BMJ Open

220	the conduct of the study were blinded throughout the study. Treating/examining physician,
221	other investigators, pharmacist, neuroradiologist and patients were masked to treatment
222	allocation.
223	
224	Procedures and end points
225	The specific omega-3 (re-esterified glycerides) and omega-6 (glycerides) raw materials were
226	purchased according to the required interventions' PUFA-fraction specification (molecular
227	structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant
228	stabilizer by the supplier. The vitamins and masking aroma were purchased separately. The
229	mixing of fractions to the final required intervention-composition specification was always
230	performed by the same team of scientists under the supervision of the involved medical
231	biochemist and lipidology specialist, under appropriate conditions every six months.
232	Interventions were stored refrigerated in dark until use. See Table 1 and Supplementary
233	Information Methods 1 and 2 for intervention specification detailed description and
234	study/intervention rational.
235	
236	Participants were randomly assigned to receive: in group A, a daily dose of a 19.5ml
237	mixture of EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other
238	omega-3 (600mg) / total MUFA (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin
239	A (0.6mg) / vitamin E (22mg) plus citrus-aroma (intervention A); in group B PLP10, a daily
240	dose of a 19.5ml mixture of EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA
241	(3,850mg) / total other omega-3 (600mg) / total MUFA (1,714mg) + total SFA (18:0 160mg,
242	16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) plus pure γ -tocopherol (760mg) plus
243	citrus-aroma (intervention B); in group C, a daily dose of a 19.5ml mixture of pure γ -
244	tocopherol (760mg) dispersed in pure virgin olive oil (16,137 mg) plus citrus-aroma

BMJ Open

2	
2 3 4	
4	
5	
5 6	
7	
8	
9	
10	
11	
12 13	
14	
14 15	
16	
16 17	
18	
19	
20	
21	
22	
24	
25	
26	
 18 19 20 21 22 23 24 25 26 27 28 29 	
28	
29 30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49	
50	
51 52	
53	
54	
55	
56	
57	
58 59	
59 60	
00	

268

245	(intervention C) and in group D placebo, a daily dose of a 19.5ml mixture of pure virgin
246	olive oil (16,930mg) plus citrus-aroma (intervention D) (Table 1). The institution's
247	pharmacist was responsible for the appropriate storage and handling of the interventions to
248	the individual participants. The interventions were taken orally once daily 30 minutes before
249	dinner by a dosage calibrated cup for 30 months. The ingredients, ratio and dose have been
250	selected based on their biophysical interrelation to the total known multiple MS causing
251	factors, their biochemical importance and the role expected to play in the normalisation and
252	treatment of the involved complex network of events in the disease pathophysiology.
253	Moreover, the high intake dosage was used to overcome any abnormal dietary accumulation
254	of related agents as a result of patients' food intake habits, irrespective of geographical origin,
255	in relation to the daily consumption ratio of the total fatty acid intake; in order to end-up with
256	omega-3 to omega-6 PUFA indicated physiological body ratio composition of 1:1 wt/wt.
200	
257	
	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry
257	
257 258	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry
257 258 259	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry baseline) was used for normalization period. This six-month normalization period would
257 258 259 260	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry baseline) was used for normalization period. This six-month normalization period would allow the interventions' agents to exert their beneficial effect (for the
257 258 259 260 261	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry baseline) was used for normalization period. This six-month normalization period would allow the interventions' agents to exert their beneficial effect (for the incorporation/normalization of cell membranes by oral PUFA, since they need four to six
257 258 259 260 261 262	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry baseline) was used for normalization period. This six-month normalization period would allow the interventions' agents to exert their beneficial effect (for the incorporation/normalization of cell membranes by oral PUFA, since they need four to six months to exert pivotal action on immune and neural cells, correction of antioxidant
257 258 259 260 261 262 263	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry baseline) was used for normalization period. This six-month normalization period would allow the interventions' agents to exert their beneficial effect (for the incorporation/normalization of cell membranes by oral PUFA, since they need four to six months to exert pivotal action on immune and neural cells, correction of antioxidant deficiency and body PUFA, and optimal normalization of EPA and DHA levels/ratio). ⁴¹⁻⁴³
257 258 259 260 261 262 263 264	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry baseline) was used for normalization period. This six-month normalization period would allow the interventions' agents to exert their beneficial effect (for the incorporation/normalization of cell membranes by oral PUFA, since they need four to six months to exert pivotal action on immune and neural cells, correction of antioxidant deficiency and body PUFA, and optimal normalization of EPA and DHA levels/ratio). ⁴¹⁻⁴³ The study was completed on December 31 st 2009 and the recording of relapses continued

Depending on their clinical status and in accordance with the ethical issues governing clinical trials participants continued receiving the indicative regular available treatments, according to international guidelines with persistent evaluation of any side-effects and adverse events. The study was designed to end 30 months after enrolment and clinical assessments were scheduled at entry baseline, 3, 9, 15, 21 and 24 months on-treatment. Patients were also clinically examined by the treating neurologist within 48 hours after the onset of new or recurrent neurologic symptoms.

The primary end point was the ARR at two years. A relapse was defined as new or recurrent neurologic symptoms not associated with fever or infection that lasted for at least 24 hours and accompanied by new neurologic signs. Relapses were treated with methyl-prednisolone at a dose of 1g intravenous per day, for three days followed by prednisone orally at a dose of 1mg/kg of weight per day on a tapering scheme for three weeks. The secondary end point at two years was the time to confirmed disability progression, defined as an increase of 1.0 or more on EDSS, confirmed after six months (progression could not be confirmed during a relapse). The final EDSS score was confirmed six months after the end of the study. A posthoc analysis was performed assessing the proportion of patients free from new or enlarging T2 lesions on brain MRI scans at the end of the study for the per-protocol participants of the group receiving the highest effective intervention versus placebo. Comparison was made only versus the available archival MRI scans up to three months before the enrolment date. MRI scans were performed and blindly analyzed at an MRI evaluation centre. The patients continued to be followed for additional 12 months after completion of the trial and relapses were recorded. Finally, patients were strongly encouraged to remain in the study for follow-up assessments even if they had discontinued the study drug.

BMJ Open

294	Blood samples were collected from all randomized patients at the time of enrolment, at every
295	scheduled clinical assessment and during relapses. To check individual compliance with
296	intake, the fatty acids composition of patients' red blood cells' membranes was determined,
297	by gas chromatography, according to a standard protocol. The fatty acid analyses were
298	performed after study termination and thus did not influence the blinding.
299	
300	The involved neurologist was experienced with more than 20 years in practice and trained to
301	standardise EDSS scoring procedures, examined patients, made all medical decisions,
302	determined the EDSS score and reviewed adverse or side-effects. The medical biochemist,
303	specialist on lipidology and immunology and the registered clinical dietitian, members of the
304	investigator team were experienced with more than 25 years in practice. Patients were able to
305	contact the neurologist at any time if there was any adverse event, side-effect or allergic
306	reaction. The study drug was not suspected to have any clinical or laboratory adverse effects
307	different from placebo that could disturb the double-blind nature of the trial. Therefore, the
308	same study-neurologist functioned as both the treating and evaluating physician.
309	
310	Safety measures were assessed from the time of enrollment until 12 months following study
311	completion. Haematological and biochemical tests were performed at enrolment and at every
312	12 months, including full blood count, renal and liver function tests, proteins, cholesterol,
313	triglycerides, glucose and electrolytes.
314	
315	The whole procedure followed the clinical trial guidelines as required by the USA Food and
316	Drug Administration, European Medicines Agency, and the Committee for Medicinal
317	Products for Human Use. ⁴⁴
318	

1 2	
3 4 5 6	
5	
6 7	
8	
9 10	
11 12	
13	
14 15	
16 17	
18	
19 20	
21	
22 23	
24 25	
26	
9 10 11 12 13 14 15 16 17 18 20 21 22 24 25 26 27 28 20 31	
29 30	
31	
31 32 33 34 35	
34 25	
36 37	
37 38	
39	
40 41	
42 43	
44	
45 46	
47 48	
49	
50 51	
52 53	
54	
55 56	
57 58	
59	
60	

319 Statistical analysis

320	Power calculations could not be done before the study because of the lack of information
321	from previous studies on potential effect sizes. In 2005 the prevalence of MS in Cyprus
322	(600,000 population) was 120/100.000. Based on the aforementioned MS patients' numbers
323	of our country and the centre of reference, the CING, we were able to enrol the 20% of the
324	total RRMS patients eligible for treatment in the trial. Sample size was strictly based on this
325	subjects' availability parameter and the novelty of the assessed intervention.
326	
327	Baseline characteristics were compared across all intervention groups by ANOVA or
328	Kruskal-Wallis rank test for continuous variables and by mean Fisher's exact test for
329	categorical variables, as appropriate.
330	
331	For the primary outcome, the ARR was analysed in a pair-wise fashion for the active
332	interventions compared to placebo using negative binomial regression models adjusted for
333	number of relapses within two years before baseline, EDSS score at baseline and DMT. The
334	relapse rate was calculated as the total number of relapses divided by the total number of
335	patient-years followed for each treatment group. ARR differences were also calculated
336	among all comparable parameters and reported as percent difference.
337	
338	For the secondary end-point outcome, the time to disability progression, Kaplan-Meier
339	curves were constructed. Progression to disability and time thereof was compared in a pair-
340	wise fashion for the active interventions versus placebo by the log-rank test in the main
341	analysis and by Cox proportional-hazards models with adjustment for baseline EDSS score,
342	age and DMT in the supportive analysis. Each test was performed with a significance level of

BMJ Open

3
4
4
5 6 7 8
6
7
8
õ
9 10 11
10
11
12 13 14 15 16
13
1/
14
15
16
17
18
19
20
20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 83 9 40
21
22
23
24
24
25
26
27
28
20
23
30
31
32
33
31
0 -
30
36
37
38
30
40
40
41
42
43
44
45
46
47
48
49
51
52
53
54
55
56
57
58
59

60

343 0.05. Multivariate models considered all variables with P <0.1 on univariate models. There 344 was no overt violation of the proportionality assumption.

345

346 Both, per-protocol and intention to treat (ITT) analyses were performed, for different sets of 347 research questions to be answered, and both are reported. Missing data of the five lost to 348 follow patients were imputed by use of the last-observation-carried-forward (LOCF) 349 approach. Due to the proof-of-concept design of the study, the considerable non-adherence 350 rate (49%) and the interpretation issues caused thereof regarding the ITT analysis, the per-351 protocol analysis considered being more informative and appropriate method approach to 352 answer the research addressed questions of efficacy of the interventions when subjects were 353 continuously following the protocol. All statistical analyses were well defined a priori. All 354 analyses were performed with STATA SE 10.0 (College Station, TX, USA). P-values are 355 two-tailed.

356

357 Role of the funding source

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. All members of the writing group had full access to all study data and contributed to its interpretation and prepared, reviewed, and approved the manuscript for submission. All authors had final responsibility for the decision to submit the paper for publication.

363

364 **Results**

365 Study population

From July 2007 through December 2010 (including the 12-month extended period), a total of
80 MS patients were randomly assigned to a study group at the CING (tertiary neurological
center).

Among the 80 patients, 20 patients were randomly assigned to each of the three groups to receive the interventions and 20 to receive placebo (Fig 1). Baseline characteristics of both the ITT and the per-protocol populations were similar across groups (Table 2A and 2B). All patients that drop-out completed follow-up until study completion and were included in the ITT analyses (Table 4). Five patients were lost to follow before their first scheduled visit and two other patients that dropped-out before their first scheduled visit progressed to secondary progressive MS. Fifteen patients dropped-out without successfully completing the "normalization" period including five pregnancies. Another 17 patients dropped-out early after entry baseline. Seven patients that dropped out were given monoclonal antibody treatment (natalizumab). Overall, a total of 41 (51%) patients completed the 42-month study (July 2007 through December 31st 2010, including the 12-month extended period) where one patient from group A and two from the placebo group transferred on natalizumab, and 39 (49%) patients either withdrew (drop-out) or lost to follow. Reasons for study-interventions discontinuation are listed in Figure 2. Efficacy

Relapses

As a proof-of-concept trial we primarily needed to answer whether the interventions were effective for those MS patients who adhere to the assigned treatment, the per-protocol analysis.⁴⁵ For the sake of methodological comprehensiveness we also present the ITT analysis as a secondary analysis, to answer a different question, complementary to our core

BMJ Open

Regarding the per-protocol analysis, during the first year of treatment, the ARR was 0.80, 0.40, 0.78 and 0.83 for the four intervention groups respectively. During the second year, the ARR was 0.90, 0.40, 0.67 and 1.25 for the four intervention groups respectively. Overall, for the two-year primary end point, 8 relapses were recorded for the 10 patients in PLP10 group (0.40 ARR) versus 25 relapses for the 12 patients in placebo (1.04 ARR), a 64% adjusted relative rate reduction (RRR) for the PLP10 group (RRR 0.36, 95% confidence interval (CI) 0.15 to 0.87, p=0.024) (Tables 3A, 5 and Fig 3A and 3C). Excluding patients on monoclonal antibody (natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016, Tables 3B and 5). Pair-wise comparisons for the other two groups against placebo did not yield statistically significant results (Tables 3A, 3B). The proportion of patients with ≤ 1 relapse for the two years on-study was higher in the PLP10 group than in the placebo group (90% versus 42%, p=0.030, Table 5). Seeking to investigate further the observed difference, we compared the relapse rate during the 24 months before entry to the study to the 24 months on-treatment for each intervention group. We observed a statistically significant relative reduction in the ARR (70%) only in the PLP10 group (RRR 0.30; 95% CI 0.14 to 0.65, p=0.003, Table 3A); within-group comparisons for the three other groups ARR reduction was not significant and remained not significant when natalizumab treated patients were further excluded from the analysis. The effect of PLP10 through time at different time-windows versus placebo for all-time on-study patients is shown in Figures 3A to 3D. The ARR analysis, within time-windows, was not an assigned endpoint, but it could help in the process of evaluating parallel information as the time needed for a specific treatment intervention activity to be evident, as

2	
3	
4	
5	
3 4 5 6 7 8	
0	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
8 9 10 11 12 13 14 16 7 8 9 0 11 23 24 26 27 29 0 12 33 34 35 67 8 9 0 21 22 24 26 27 28 9 0 12 33 34 35 67 8 9 0 20 20 20 20 20 20 20 20 20 20 20 20 2	
20	
20	
21	
22	
23	
24	
25	
20	
26	
27	
28	
29	
30	
24	
31	
32	
33	
34	
35	
26	
07	
37	
38	
39	
40	
41	
42	
44	
45	
46	
47	
48	
49	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
59 60	

12

416	well as the efficacy profile through time. PLP10 reached maximum effect within a year on-
417	treatment (counting from the entry baseline) and remained stable at an ARR of 0.4,
418	displaying a steadily reduced ARR with long free-relapse time-windows. These group B
419	characteristics are considered important parameters of a successful MS treatment where the
420	rule than the exception is the heterogeneity among patients' disease evolution. Specifically,
421	Figure 3D demonstrates the dispersion of relapses throughout the 2-year period of all-time
422	on-study (excluding patients on natalizumab) of PLP10 (n=10) versus placebo (n=10).
423	Placebo, in line with the existing knowledge of how relapse history works in relation to future
424	relapses on MS patients (contagion phenomenon) indicates the expected linearly increased
425	trend of the relapse incidence. ⁴⁶ The same phenomenon was true for the groups A and C.
426	Finally, during the 12 month post-study extended period (January 1 st 2010 to December 31 st
427	2010) all-time on-study patients that received PLP10, showed persistent benefit in the ARR
428	compared to placebo (six relapses for the 10 subjects within PLP10, 0.6 ARR versus 19 for
429	the 12 subjects within placebo group, 1.58 ARR) indicating a statistically significant 62%
430	adjusted relative rate reduction in the ARR for the PLP10 group (RRR 0.38, 95% CI 0.12 to
431	0.99, p=0.046).
432	

Regarding the ITT analysis, within PLP10 group, none of the nine drop-out patients changed 433 to natalizumab and two out of nine discontinued because of pregnancy, whereas two out of 434 435 seven drop-out patients from the placebo group changed to natalizumab (a total of four 436 patients within the placebo arm population were on natalizumab, including the two patients 437 that transferred while all-time on-study versus none within PLP10 group (Supplementary 438 Information Fig 1). As reported, natalizumab reduces ARR by 68%, decreases the possibility 439 of disability progression by 43% with 57% of patients free of new or enlarging T2 lesions on MRI scans compared to 15% on placebo.⁴⁷ The relapses of the drop-out patients are reported 440

BMJ Open

in Table 4A. As expected no statistically significant differences in the ARR were calculated
for the comparison of any group versus placebo for the 24 months on-treatment, with a 0.75
ARR within PLP10 (30 relapses) and 1.03 ARR within placebo (41 relapses) group, a 27%
ARR reduction (Table 4B). Interestingly, despite the high non-adherence rate, there was a
statistically significant difference for the comparison of the ARR in the 24 months before
entry baseline to the 24 months on-treatment for the PLP10 group (RRR 0.45, 95% CI 0.26 to
0.78, p=0.005).

Disability progression

Regarding the per-protocol analysis, at two years, the time to disability progression, with confirmation after six months (secondary end-point) was significantly longer only with PLP10. The cumulative probability of disability progression was 10% in the PLP10 group and 58% in the placebo group (p=0.019) (Supplementary Information Fig 2). After excluding patients on natalizumab, there was an increased statistically significant difference between the PLP10 and the placebo group for the same analysis (p=0.006) (Fig 4A). At two years, the cumulative probability of progression was 10% in the PLP10 group and 70% in the placebo group, which represents a decrease of 60 percentage points or a relative 86% decrease in the risk of sustained progression of disability within PLP10 group (adjusted hazard ratio, 0.11; 95% CI 0.01 to 0.97, p=0.047). One versus seven out of ten patients progressed to confirmed disability in the PLP10 and the placebo groups respectively when patients on natalizumab were excluded. No statistically significant difference was observed for any comparison of the other two groups compared to placebo (Fig 4A and Supplementary Information Fig 2). Regarding the ITT analysis, at two years, the cumulative probability of progression was 10%

in the PLP10 group and 35% in the placebo group (p=0.052, a trend for an effect), which

466	represents a decrease of 25 percentage points or a relative 71% decrease of the PLP10 for the
467	risk of sustained progression of disability (adjusted hazard ratio 0.22, 95% CI 0.04 to 1.07,
468	p=0.06) (Fig 4B). Two versus seven out of the total randomized patients progressed to
469	confirmed disability in the PLP10 and the placebo groups respectively. No significant
470	differences were observed for groups A or C against placebo (Fig 4B). The mean change in
471	Expanded Disability Status Scale (EDSS) score as a function of visit number is shown in
472	Figure 5.
473	
474	MRI
475	Over two years, the MRI results support the overall conclusion from the study that PLP10 has
476	a positive effect on disease activity since only 29% from the PLP10 group as opposed to 67%
477	from the placebo group developed new or enlarging T2 lesions (57% relative risk reduction).
478	Excluding patients on natalizumab there is an increased relative risk reduction (64%) between
479	PLP10 as opposed to placebo with 29% of patients on PLP10 and 80% on placebo with
480	development of new or enlarging T2 lesions (Table 5).
481	
482	Safety
483	Over the course of the 30 month study no significant adverse events were reported from any
484	group. According to a questioner procedure the only aetiology for drop-outs was the
485	palatability and smell of the formula preparations. Nausea was reported by two patients. No
486	abnormal values observed on any of the biochemical and haematological blood tests. No
487	allergic reactions reported.
488	
489	Discussion

Page 21 of 112

1 2

BMJ Open

2
5
4 5 6
7
8
9
10
9 10 11 12 13 14 15
13
14
15
16 17 18
17
18
19
20
19 20 21 22 23 24 25
22
24
25
26 27
27
28 29
29
30
31 32
১∠ २२
33 34 35 36 37 38 39 40
35
36
37
38
39
40 41
41 42
42 43
44
45
46
47
48
49
50
51 52
52 53
53 54
55
56
57
58
59
60

490	In this proof-of-concept clinical trial assessing the safety and efficacy of three cocktail
491	intervention formulas in RRMS, we observed a significant benefit for the novel PLP10
492	intervention compared to placebo for both the ARR and the progression to disability. Our
493	results include analyses pertaining to a total of 42 months study collected data, including the
494	12-month, free of intervention treatment, extension period. We focused on the per-protocol
495	data analysis since it is the appropriate method to best provide the answer to the proof-of-
496	concept trial-addressed question. The high drop-out rate was mostly the result of formulas
497	palatability, a common phenomenon in trials using oily interventions where a lot of patients
498	tend to drop-out soon after first dosage. We thus present our main per-protocol analysis, as
499	well as a subgroup analysis excluding patients on natalizumab. We have found a statistically
500	significant reduction in the ARR and the disability progression comparing not only patients
501	on PLP10 versus placebo but also comparing the ARR of the PLP10 patients in the 24-month
502	period prior to the study to the ARR of the 24 months on-study; the observed differences
503	became larger when patients that received natalizumab (the most potent disease modifier)
504	were excluded. The ARR decreased within a year on PLP10 and significantly remained stable
505	until study completion. Statistically significant difference of ARR between patients on PLP10
506	versus placebo continued for the additional 12 month extended period (persistent effect)
507	without significant difference on DMT. These clinical findings are supported by the results
508	regarding the MRI analysis where the proportion of patients free from new or enlarging brain
509	T2 lesions was also higher in PLP10 group versus placebo. The persistent effect within the
510	extended period it is considered of major importance and supportive of the results since it is
511	in agreement with the very long washouts, reported necessary, for omega-3 fatty acids and
512	especially DHA to return towards pretreatment values within the fatty acids of plasma,
513	platelets, monocytes and red blood cells. ⁴² This study also provides important 30-month,

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
11	
13 14 15	
15	
16	
17	
18	
19	
20	
21 22 23	
22	
22	
24	
25	
26	
27	
26 27 28	
29	
30	
32	
33	
34	
35	
36 37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53	
55	
56	
57	
58	
58 59	
58 59 60	

placebo-controlled information about the safety of PLP10, A and C interventions. No severeside effects have been reported.

516

1 2

> 517 As medications used to treat MS become increasingly highly specific and potent, attention to 518 safety is paramount. Current available treatments are products of reductionism, partially 519 effective, associated with severe side effects without (re)myelinating or neuroprotective 520 abilities. Interferons and glatiramer acetate, the most widely used first-line MS drugs 521 available today, are associated with the least severe side-effects among MS therapies but they 522 are reported with only 29-33% ARR reduction and with no significant effects on the 523 progression of disability. Natalizumab as previously discussed and Fingolimod with 54% 524 ARR reduction (without significant benefit on the progression of disability) are second-line drugs associated with severe side-effects.47,48 525 526

527 No existing MS treatment has ever been designed as a result of SM concept approach or with 528 a potential to effectively stimulate intrinsic remyelinating and neuroprotecting mechanisms or 529 exert such an action. Now we propose that a holistic SM model approach has to be applied by 530 synchronized action on all involved perturbed mechanisms. PLP10 has innovative 531 characteristics with a postulated efficacy attained through different mechanisms of action and 532 probably by the synergistic effect of its constituent ingredients. PLP10 has all the 533 characteristics of a medical food with the action to feed a normal metabolic process by 534 supplying nutritional structural membrane precursors, building blocks, and vitamins from 535 dietary sources that enhance remyelination and neuroprotection and simultaneously promote 536 normalization of all cellular membranes lipid content. The intention is to normalize the 537 specific nutritional requirements of the MS patients.

538

BMJ Open

539	Different factors and molecular entities appear to be part of the possible aetiology for MS
540	with specific PUFA and antioxidants found to be key substances related to all known
541	pathogenic and recovery mechanisms. But, it is well established that MS patients are
542	characterized with significant deficiencies in antioxidant efficiency as well as in PUFA levels
543	in blood and cellular membranes. ^{11, 49-51}
544	
545	According to one hypothesis, the change in the ratio of omega-3 to omega-6, due to
546	increasing consumption of omega-6 PUFA, meaning high accumulation of AA, in the
547	Western diet, may be one of the major factors responsible for the increasing incidence of
548	inflammatory diseases relative to populations. In the Western diet, the ratio of omega-3 to
549	omega-6 is about 1:20–30; in populations that consume fish-based diets, the ratio is about
550	1:1–2. ^{52, 53} The intervention daily dose was aiming and believed to be high enough to
551	restore/amplify body efficient antioxidant activity and ensure cellular membranes lipid profile
552	normalization (PUFA content) and simultaneously potentiate involvement of the ingredients
553	in the anti-inflammatory and recovery mechanisms. Diet fatty acid molecules need about six
554	months period to exert their beneficial effect and this essential parameter was for the first
555	time under consideration in our study design (normalization period). ⁴² This chronotherapy
556	parameter it is of major importance in line with the SM treatment philosophy and if it is not
557	included in the trial design the possibility of misleading result evaluation greatly increases. In
558	fact, considering that omega-3 supplementation can release and replace excess AA within the
559	cellular membranes, we can speculate that an increased inflammatory activity can possibly
560	result during the first six months of supplementation (during normalization period).
561	
562	The maintenance of myelin requires continued turnover of its components throughout life. ^{54,55}
563	In addition to the EPA, DHA, LA, and GLA, PLP10 was containing limited quantities of

Page 24 of 112

BMJ Open

other structural PUFA, specific MUFA (mostly oleic acid) and SFA (palmitic and stearic
acid), specifically to provide a direct source for neuronal cell membranes rehabilitation and
for (re)myelination and neuroprotection since they are all major components, precursors and
building blocks of any new physiological myelin and cellular membranes in general.
Assembly of the correct molecules into myelin membrane may be especially critical during
active synthesis. Possibly, if critical constituents aren't available or are metabolically
blocked, amyelination, dysmyelination or demyelination may ensue.⁵⁶

The well known and established safety of the ingredients used and the protocol guidelines were supportive reasons for us to proceed with the clinical study even though with limitation on the pre-estimation of required trial sample size as it was discussed in method section. The adherence of the subjects is another issue but the duration of the study (42 months) is adding power to the results;⁴⁴ having the research questions been consciously and carefully approached and answered. Furthermore, the statistical methodologies used along with the appropriate adjustments, broadly accepted for MS clinical trials, power the findings, results, and significance. The baseline characteristics of the treatment arms could possibly be considered indicative of four very active groups of patients but that was the result of the limited number of RRMS population eligible for the study within Cyprus. On the other hand the balanced baseline characteristics without statistical differences, the statistical adjustments (for all important baseline parameters i.e. relapses, EDSS, age and DMT) and the randomization within four different groups are the safety valves against data misinterpretation. Yet, in small randomized control trials with a high drop-out rate, the perprotocol analysis could be affected by the characteristics of the patients dropping out. In order to safeguard our findings in the best possible way under the circumstances, we proceeded to adjusting for confounders. Moreover, we cannot discard our finding as a false

Page 25 of 112

1

BMJ Open

1
2
ა ⊿
+ 5
6
7
ן 8
a
10
11
12
13
14
15
16
17
18
19
20
21
22
2 3 4 5 6 7 8 9 10 1 12 3 14 5 6 7 8 9 10 1 12 3 14 5 6 7 8 9 10 1 12 3 14 5 6 7 8 9 10 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
24
25
26
27
28
29
30
31
3Z
24
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 53
54 55
55 56
56 57
57 58
58 59
60
00

589	positive, given that this is a randomized, double-blind, placebo-controlled clinical trial and,
590	despite its small sample size, represents a piece of evidence that only a larger randomized
591	controlled trial can replicate or refute. It is possible to question why DMTs efficacy cannot
592	be emerged out of the data analysis, of the four treatment arms, and in accordance to their
593	published values. We believe that the limited efficacy of the DMTs, the sample size and the
594	statistical adjustments were strong limiting determining factors for such an indication to be
595	countable. An additional argument is that the efficacy reported for the analysis of pre-
596	treatment (24 months before entry baseline) versus on-trial ARR could be considered as
597	potentially biased due to differences of how relapses were defined during the course of a
598	study compared to pre-treatment period; or due to regression to the mean or placebo effect.
599	This analysis was performed as an additional exploratory analysis that we were able to do due
600	to the availability of data. The relapses of the two pre-treatment years were drawn out of the
601	patients' archival records by the same treating neurologist involved in the study (MP), and
602	according to the patients' hospitalization date for receiving intravenous methyl-prednisolone.
603	This analysis was not used as a primary or a secondary end-point under investigation
604	although it is usually reported by many clinical studies. As a matter of fact many early phase
605	trials are based only on such an analysis (before versus after treatment results). In almost all
606	MS trials the number of relapses within the two years before baseline is a factor under
607	adjustment for the statistical analyses. ⁴⁸ The inclusion of the post-hoc MRI analysis is another
608	limiting factor that needs attention since it was used as an additional aside exploratory
609	approach (due to study budget limitations it was not possible to be used as a formal
610	endpoint); but the MRI evaluation was blinded and can be considered as representative of the
611	randomized subjects within the treatment arms. As far as the regression to the mean and the
612	placebo effect concerns we believe that the 6-month normalization period is an accountable
613	and valuable eliminating factor of the possible effect; as well as the presence of four groups,

where only the PLP10 treatment arm is associated with statistically significant efficacy versusplacebo.

Our observations are consistent with the idea that simultaneous availability of specific PUFA along with other major membrane and myelin building blocks in combination with specific antioxidants, within optimum quantity, quality, ratio and structural form can possibly result to a more appropriate holistic therapy reducing MS disease activity. This is probably succeeded through synergistic and/or simultaneous effect on the interactions and dynamics of the most probable environmental and biological disease causing factors that induce complex biological network of events for disease pathogenesis and evolution; as well as on the protective and reparative mechanisms. We can additionally speculate that the nature of the intervention formula cannot be prohibitive for its use as preventive regimen and does not preclude probable positive efficacy on the other types of MS, but has to be further investigated. A larger size multicenter clinical trial will better establish PLP10 place in the armamentarium of treatments for MS.

It is commonly accepted that nutrition is one of the possible environmental factors involved in the pathogenesis of MS, but its role as complementary MS treatment is unclear and largely disregarded.⁵⁷ It is well known that the majority of the patients suffering from MS they do use dietary supplements for a variable length of time and they prefer supplement type of "help" over conventional drugs.⁵⁸ Dietary antioxidants and fatty acids may influence the disease process in MS by reducing immune-mediated inflammation, oxidative stress and excitotoxic damage.¹¹ Present data reveal that healthy dietary molecules have a pleiotropic role and are able to change cell metabolism from anabolism to catabolism and down-regulate inflammation by interacting with enzymes, nuclear receptors and transcriptional factors.⁵⁷

1	
2	
3	
4	
5	
5 6 7	
1	
8	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20 21 22 23	
21	
22	
23	
24 25	
26	
24 25 26 27 28	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50 51	
51 52	
52 53	
54	
55	
56	
57	
58	
59	
60	

639	The present preliminary small size randomized controlled phase II clinical trial, for the first
640	time provides link evidence between dietary, metabolic, immunological, and neurobiological
641	aspects of MS after three quarters of a century of unsuccessful scientific efforts. This link
642	evidence might probably be the beginning of opening new horizons and new avenues in the
643	approach of MS prevention and treatment, and possibly of other multifactorial chronic
644	diseases, including neurodegenerative and autoimmune as well.
645	
646	
647	
648	
649	
650	
651	
652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	

1.			
A .L		ent Arms	
A† Intervention:	B (PLP10)† Intervention:	C† Intervention:	Placebo† Intervention:
EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg)* / total MUFA** (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) plus citrus aroma	EPA $(1,650mg) / DHA$ (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 $(600mg)^* / total$ MUFA** $(1,714mg) +$ total SFA $(18:0\ 160mg,$ $16:0\ 650mg) / vitamin A$ (0.6mg) / vitamin E (22mg) + pure γ -tocopherol (760mg) plus citrus aroma	pure γ -tocopherol (760mg) dispersed in pure virgin olive oil (16,137 mg) as delivery vehicle plus citrus aroma	Olive oil (pure virgin) plus citrus aroma
	n-3 37mg, C18:4n-3 73mg, C 20:1 250mg, 22:1 82mg, 24:1 I		mg
glycerides from fish body International GmbH, Edlin triglycerides. The pure γ -	Aalesund, Norway; was used oils; Borage seed oil (organ ng, Germany, was used as th tocopherol was purchased fi arotene from HealthAid Ltd., ubendorf, Switzerland.	ic, cold pressed) "Borago of ne source for the omega-6 P rom Tama Biochemical Co.	fficinalis" Goerlich Phar UFA, MUFA and SFA, Ltd., Shinjuku-ku Tok
Table 1. Intervention	ingredients per treatment		
Table 1. Intervention	ingredients per treatment	t arm.	
Table 1. Intervention	ingredients per treatment	84	
Table 1. Intervention	ingredients per treatment	84	5,
Table 1. Intervention	ingredients per treatment	84	
Table 1. Intervention	ingredients per treatment	84	2
Table 1. Intervention	ingredients per treatment	84	2
Table 1. Intervention	ingredients per treatment	84	2
Table 1. Intervention	ingredients per treatment	84	2
Table 1. Intervention	ingredients per treatment	84	

Page 29 of 112

Characteristics	Group A	Group B†	Group C	Placebo	P-
	(n=20)	(n=20)	(n=20)	(n=20)	val
Sex					
Female - no. (%)	15 (75)	15 (75)	15 (75)	15 (75)	1.0
Age (yr)					
Mean ± Standard Deviation (SD)	38.0±11.9	36.9±8.4	37.7±8.7	38.1±10.9	0.9
Median (Range)	38.0 (22 - 65)	37.0 (25 –61)	36.5 (24 - 54)	36.0 (21–58)	
Treatment history					
Patients on DMT- no. (%)	11 (55)	9 (45)	12 (60)	10 (50)	0.8
Pre-treatment disease duration (yr)					
Mean ± SD	9.0±7.6	8.6±4.8	8.6±5.3	7.7±5.7	0.9
Median (Range)	7.5 (2 – 37)	8.0 (2 - 20)	8.0 (3 – 24)	6.5 (2 – 25)	
Pre-treatment relapses:					
Mean ± SD	2.33±1.68	2.41±1.73	2.31±1.66	2.10±1.32	0.9
Median (Range)	2.0 (1 – 6)	2.0 (1 – 7)	2.0 (1 – 6)	2.0 (1 – 4)	
ARR	1.17	1.21	1.16	1.05	0.9
Patients -% with ≤1 relapse	40	45	40	35	
Baseline EDSS score‡					
Mean ± SD	2.52±1.23	2.15±1.05	2.42±1.21	2.39 ± 0.93	0.7
Median (Range)	2.5 (1.0–5.5)	2.0 (1.0-4.0)	2.5 (0.0-5.0)	2.5 (1.0-4.0)	
2B.					
Characteristics	Group A (n=10)	Group B† (n=10)	Group C (n=9)	Placebo (n=12)	P- val
Sex					
Female - no. (%)	5 (50)	7 (70)	6 (66.6)	10 (83.3)	0.4
Age (yr)					
Mean \pm SD	36.6±13.5	34.80±5.4	40.9±8.1	39.8±13.2	0.5
Median (Range)	34.5 (22–65)	34.5 (26–43)	40.0 (29–54)	37.5 (21–58)	
Treatment history					
Patients on DMT- no. (%)	6 (60)	4 (40)	6 (67)	6 (50)	0.9
Pre-treatment disease duration (yr)					
Mean ± SD	9.7±10.0	8.3±5.3	11.3±6.1	8.7± 7.1	0.8
Median (Range)	7.5 (2 – 37)	8.0 (2 - 20)	8.0 (4 – 24)	5.5 (2 – 25)	

Mean \pm SD	2.20±1.47	2.70±1.25	1.78±0.66	1.67±1.37	0.241
Median (Range)	2.0 (1 - 6)	2.5 (1 – 4)	2.0 (1 – 3)	1.5 (1 – 4)	
ARR	1.10	1.35	0.89	0.83	
Patients -% with ≤ 1 relapse	30	20	33	50	
Baseline EDSS score					
Mean ± SD	2.65±1.37	2.40±1.12	2.11±1.02	2.16±0.96	0.698
Median (Range)	3.0 (1.0-5.5)	2.5 (1.0-4.0)	2.0 (1.0-4.0)	2.0(1.0-3.5)	

Table 2. The table section 2A reports the demographics and baseline disease characteristics for total randomized population by treatment arm.

The table section 2B reports the demographics and baseline disease characteristics of all-time onstudy population by treatment arm. There were no significant between study-group differences at baseline for any characteristic.

67	75	
67	76	
67	77	
67	78	
67	79	
68	30	
68	31	
68	32	
68	33	
68	34	
68	85	
68	86	
68	37	
68	38	

Characteristics	Group A (N =10)		Group B† (N=10)		Group C (N =9)		Placebo (N=12)	
	(11	10)	(11)	10)	(11)	(11	12)
End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	22	17	27	8	16	13	20	25
Annual Relapse Rate (ARR)	1.10	0.85	1.35	0.40	0.88	0.72	0.83	1.04
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-18		-62		-30		N/A
P Value against placebo		0.468		0.024		0.578		
ARR change -% (Y to X)¶	-2	23	-7	0	- :	18	+	25
P value against baseline	0.425		0.003		0.578		0.500	

Y: Total number of relapses of 24 months pre-deduced (our

¶ Unadjusted estimate

3B.									
<u>Excluding patients on</u> natalizumab	Group A (N =9) Group (N =10				Grou (N =		Placebo (N =10)		
End Point	Х	Y	Х	Y	Х	Y	Х	Y	
Total No. of relapses	16	15	27	8	16	13	13	19	
Annual Relapse Rate (ARR)	0.88	0.83	1.35	0.40	0.88	0.72	0.65	0.95	
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-13		-58		-24		N/A	
P Value against placebo		0.493		0.016		0.412			
ARR change -% (Y to X)¶		-6	-7	0	- 1	8	+4	46	
P value against baseline	0.	857	0.0	03	0.5	78	0.3	354	

X: Total number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

† PLP10 group

¶ Unadjusted estimate

Table 3. The table section 3A reports the two year primary end points of ARR of all-time on-study

population by treatment arm and percent difference with placebo. During the 24mo period on-treatment

the ARR of the group A was 0.85 with 18% decrease compared to placebo (p=0.468), of PLP10 group 0.40 with 62% decrease (p=0.024), and of group C 0.72 with 30% decrease (p=0.578) and reports the comparison of the 24mo pre-treatment ARR (baseline ARR) to 24mo on-treatment ARR of all-time on-study population including patients on natalizumab.

The table section 3B reports comparison of the 24mo pre-treatment ARR to 24mo on-treatment ARR of all-time on-study population excluding patients on natalizumab; and the comparison of the ARR during the 24mo period on-treatment (primary end point) between each one of the groups against placebo.

689	
690	
691	
692	
693	
694	
695	
696	
697	
698	
699	
700	
701	
702	
703	
704	
705	
706	

4A.								
Characteristics	Group A (N =8)				Group C (N =10)		Placebo (N=7)	
	Х	Y	Х	Y	Х	Y	Х	Y
No. of Relapses	20	14	14	14	27	26	20	13
Annual Relapse Rate (ARR)	1.25	0.88	1.00	1.00	1.35	1.30	1.42	0.92

X: Total number of relapses of 24 months pre-treatment

Y: Total number of relapses of 24 months on-treatment

4B.								
Characteristics	Grou (N =	1		up B† =20)		up C =20)		ebo =20)
End Point	Х	Y	Х	Y	Х	Y	Х	Y
No. of Relapses	45	34	49	30	46	41	43	41
Annual Relapse Rate (ARR)	1.13	0.85	1.23	0.75	1.15	1.03	1.08	1.03
ARR Reduction -% (Y to X)¶	-2	5	-	39	-	10	-	5
P value against baseline	0.1	20	0.	005	0.4	475	0.6	52
% Reduction of the ARR Compared to Placebo (Ys)¶		-18		-27		0.0		N/A
P Value against placebo		0.447		0.121		0.996		

X: Total number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

¶ Unadjusted estimate

† PLP10 group

Table 4. The table section 4A reports the two year primary end point of relapses based on study design as reported by drop-out patients by Treatment Arm. The most drop-out patients that went on disease modified therapy (DMT) were from the group A and placebo with three and two patients respectively on natalizumab. These parameters justify the decreased number of relapses recorded within group A and placebo drop-outs; and this could affect the ITT analysis in favor of placebo when the total two-year recorded data are used. For PLP10 group, 14 relapses were reported at baseline and remained the same during the two-year study. For placebo, 20 relapses were reported at baseline and decreased to 13 during the two-

year study. This is expected since, for PLP10 group 43% of the drop-outs were under DMT at entry baseline and remained the same until the end of the study with no patient on natalizumab; but 57% of the placebo group drop-outs that were under DMT at entry baseline increased to 86% at the end of the study including two patients on natalizumab.

The table section 4B reports comparison of 24 months pre-treatment ARR (baseline) to 24 months on-treatment ARR of total randomized population, by treatment arm. The ARR of PLP10 group was 1.23 at baseline and 0.75 at the end of the study (39% reduction p=0.005), and for placebo 1.08 at baseline and 1.03 at the end of the study (5% reduction p=0.652). No statistical difference was calculated for the other two treatment arms. During the 24 months on-treatment, PLP10 group presented a 27% reduction of ARR versus placebo (p=0.121), with all groups without statistically significant results.

707	
708	
709	
710	
711	
712	
713	
714	
715	

Characteristics*	Group A (n=10)	Group B PLP10 (n=10)	Group C (n=9)	Placebo (n=12)	P-va Grou B vs. Place
Annual relapse rate over 1 year**	0.80	0.40	0.78	0.83	
Total number of relapses**	8	4	7	10	
Primary end points					
Annual relapse rate over 2 years (95% CI)**	0.85	0.40 (0.15-0.87)	0.72	1.04	0.02
Total number of relapses**	17	8	13	25	
Excluding patients on natalizumab	(n=9)	(n=10)	(n=9)	(n=10)	
Annual relapse rate over 2 years (95% CI)	0.83	0.40 (0.10-0.79)	0.72	0.95	0.01
Total number of relapses	15	8	13	19	
Secondary end points					
Cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -% ** Excluding patients on natalizumab	43	10 (1/10)	24	58 (7/12)	0.01
cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -%	33	10 (1/10)	24	70 (7/10)	0.00
Exploratory Results					
Patients proportion with ≤ 1 relapse over 2 years -% **	50 (5/10)	90 (9/10)	56 (5/9)	42 (5/12)	0.03
MRI					
Patients proportion with new or enlarging T2 lesions-% **		29 (2/7)		67 (4/6)	
Excluding patients on natalizumab Patients proportion with no new or enlarging T2 lesions-%		29 (2/7)		80 (4/5)	
DMT (interferons, glatiramer acetate) and natalizumab					
Patients proportion on DMT and natalizumab at the end of 2 years-% **	80 (8/10)†	60 (6/10)	67 (6/9)	75 (9/12) ‡	0.74
 CI denotes confidence interval. Including patients on natalizumab lout of 10 on natalizumab 2 out of 12 on natalizumab 					

2
3
4 5
6
7
8 9
10
11
12 13
14
15
16 17
18
19
20 21
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
23
24 25
25 26
27
28
29 30
31
32
33 34
35
36
37 38
39
10
41 42
43
44
45 46
47
48
49 50
51
52
53 54
55
49 50 51 52 53 54 55 56 57 58
57 58
58 59
59 60

717	Acknowledgments: We thank all participant patients. We thank Thyrsos Posporis MD and the
718	central reading centre (Ayios Therissos Medical Diagnostic Centre, Nicosia, Cyprus), and
719	Eleni Eracleous, MD (neuroradiologist) for the contribution on the MRI scans and their team
720	for the MRI reading. Special thanks to Elena Kkolou the pharmacist involved in the study and
721	Eftychia Gaglia for her nursing contribution and collection of blood from the patients. We
722	also thank Demetris Hadjisofoklis and Ioanna Leontiou (University of Nicosia, Helix
723	Business incubator) for their contribution on randomization process, data collection, filing
724	and blind codes keeping. Additionally we would like to thank the CING for hosting the
725	project. Moreover, we thank the Cyprus Ministry of Commerce, Industry and Tourism for
726	funding the project; and Yasoo Health Ltd., for providing some of the raw materials in
727	exchange of investigating, on their behalf, the efficacy and safety of γ -tocopherol.
728	
729	Contributors: All authors interpreted the data. I.S.P drafted the report and figures and all
730	authors critically revised and approved the final version. M.C.P and I.S.P were responsible
731	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs
731 732	
	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs
732	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic
732 733	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L
732 733 734	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the
732 733 734 735	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the composition procedure of the interventions and the fatty acid profile analysis of the red blood
732 733 734 735 736	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the composition procedure of the interventions and the fatty acid profile analysis of the red blood cell membranes. E.E.N and I.S.P performed the statistical analyses. E.E.N was an

BMJ Open

740	Funding: Supported by a grand from the Cyprus Ministry of Commerce, Industry and
741	Tourism, program for the creation of new high technology and innovation enterprises through
742	the business incubator.
743	
744	Competing interest: M.C.P, G.N.L, I.S.P received grand support from the Cyprus Ministry of
745	Commerce, Industry and Tourism, Program for the Creation of New High Technology and
746	Innovation Enterprises through the Business Incubator. PALUPA Medical Ltd. is a research
747	company formed and registered for completion of the study, as required by the Governments'
748	funding grand program. M.C.P, G.N.L, I.S.P, and CING are all stockholders of the PALUPA
749	Medical Ltd. M.C.P is an employee at the CING. I.S.P is a senior research collaborator
750	hosted by the CING. G.N.L is a CING collaborator. E.E.N declares no-competing interest.
751	No pharmaceutical companies were involved in this phase II clinical trial. The intervention is
752	under a USA provisional patent; Application Number 61469081.
753	
754	Ethical approval: Cyprus National bioethics committee (reference EEBK/EII/2005/10).
755	
756	All authors have completed the Unified Competing Interest form at
757	www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and
758	declare that (1) M.C.P, G.N.L, I.S.P have support from Cyprus Ministry of Commerce,
759	Industry and Tourism, Program for the Creation of New High Technology and Innovation
760	Enterprises through the Business Incubator for the submitted work; (2) E.E.N has no
761	relationships with Cyprus Ministry of Commerce, Industry and Tourism, or PLUPA Medical
762	Ltd. that might have an interest in the submitted work in the previous 3 years; (3) their
763	spouses, partners, or children have no financial relationships that may be relevant to the

3	
4	
5	
5 6	
7	
8	
ğ	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ I 20	
22	
23	
24	
25	
26	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	
28	
29	
30	
31	
22	
32 33 34 35	
33	
34	
35	
36	
34 35 36 37 38 39 40	
38	
39	
40	
41	
42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
55	
56	
57	
58	
59	
60	

submitted work; and (4) E.E.N has a non-financial interests that may be relevant to thesubmitted work.

766

The Corresponding Author has the right to grant on behalf of all authors and does grant on
behalf of all authors, an exclusive license on a worldwide basis to the BMJ Publishing Group
Ltd and its Licensees to permit this article (if accepted) to be published in BMJ editions and
any other BMJPGL products and sublicenses to exploit all subsidiary rights, as set out in our
license (http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication)."

772

Article Summary

Article focus:

- The increasing prevalence of Multiple Sclerosis (MS), the limited efficacy and the side effects of the existing treatments urge the clinical need for the development of new, innovative, more effective, safe, and preventive treatment strategies.
- For the first time we propose three original nutraceutical treatment intervention-cocktails, formulated based on systems medicine through nutritional systems biology rational; with PLP10 representing the complete composition of the formulation and the other two treatments represent partial formulations.
- We have studied the proposed interventions on 80 relapsing remitting MS patients (four groups of 20 each) for a total of 42 months, in a randomized, double-blind, placebo-controlled, phase II proof-of-concept clinical trial.

Key messages:

• The per-protocol data analyses indicated that PLP10 is associated with significant efficacy versus placebo on both reducing the annualized relapse rate and disease progression without any adverse or severe side effects.

• Overall, for this small size phase II study, a total of 41 (51%) patients completed the 42-month trial. For the per-protocol analysis of the two-year primary end point, 8 relapses were recorded in the PLP10 group (n=10) (0.40 ARR) versus 25 relapses in the placebo group (n=12) (1.04 ARR), a 64% adjusted relative rate reduction for the PLP10 group (RRR 0.36, 95% CI 0.15 to 0.87, p=0.024). In a subgroup analysis that excluded patients on monoclonal antibody (natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016). Perprotocol analysis for the secondary outcome at two years, time to disability progression, was significantly longer only with PLP10. The cumulative probability of disability progression at two years was 10% in the PLP10 group and 58% in the placebo group (unadjusted log-rank p=0.019). In a subgroup analysis that excluded patients on natalizumab the cumulative probability of progression was 10% for the 12 patients in the placebo group, a relative 86% decrease in the risk of sustained progression of disability in the PLP10 group (unadjusted log-rank p=0.011; 95% CI 0.01 to 0.97, p=0.047).

- PLP10 has probably the ability to interfere with the total known repertoire of mechanisms involved in MS pathogenesis as well as with the recovery mechanisms, neuroprotection and remyelination.; it is potentially able to manipulate global perturbed networks of the disease causing factors rather than focusing only on unique failing components.
- This proof-of-concept clinical study might be indicative and the beginning of new avenues in MS prevention and treatment and of new epoch of novel drug development

with dynamic therapeutic potential for chronic complex multifactorial diseases.

Strengths and limitations of this study:

- The strength of this study is the systems medicine therapeutic approach, the length of the study the inclusion of the six months normalization (chronotherapy) period, and the study protocol following all indicated appropriate guidelines with definite inclusion/exclusion criteria and primary/secondary end points.
- The sample size and the high rate of drop-outs (palatability of the formula) are the limitations associated with the present study.
- A phase III multi-center clinical trial will establish the present intervention regime among the best choices among neurodegenerative diseases prophylaxis and MS treatment drugs faretra.

BMJ Open

1 2 3 4 5	781	Refe	rences
6 7 8 9	782	1.	Baranzini SE, Oksenberg JR, Hauser SL. New insights into the genetics of multiple
	783		sclerosis. Journal of Rehabilitation Research and Development 2002;39:201-210.
10 11 12	784	2.	Goni J, Esteban FJ, de Mendizabal NV, et al. A computational analysis of protein-
13 14 15 16 17 18 19 20	785		protein interaction networks in neurodegenerative diseases. BMC Syst Biol
	786		2008;2:52.
	787	3.	Lobo I. Multifactorial inheritance and genetic disease. Nature Education 2008; 1.
	788	4.	Compston A, Coles A. Multiple sclerosis. Lancet 2002;359:1221.
21 22 23	789	5.	Evans PH. Free radicals in brain metabolism and pathology. British Medical Bulletin
24 25	790		1993;49:577-587.
26 27	791	6.	Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab
28 29	792		Sci 1997;27:11-25.
30 31 32	793	7.	Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez
33 34	794		MV. The link between excitotoxic oligodendroglial death and demyelinating diseases.
35 36	795		Trends in Neurosciences 2001;24:224-230.
37 38	796	8.	Owens T. The enigma of multiple sclerosis: inflammation and neurodegeneration
39 40	797		cause heterogeneous dysfunction and damage. Current Opinion in Neurology
41 42 43	798		2003;16:259-265.
44 45	799	9.	Smith KJ, Kapoor R, Felts PA. Demyelination: The role of reactive oxygen and
46 47	800		nitrogen species. Brain Pathology 1999;9:69-92.
48 49	801	10.	Ahn AC, Tewari M, Poon C-S, Phillips RS. The Clinical Applications of a Systems
50 51 52	802		Approach. PLoS Med 2006;3:e209.
52 53 54 55 56 57 58 59 60	803	11.	van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF. Antioxidants and
	804		polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 2005;59:1347-1361.

3	
4	
5	
6	
/ 2	
9	
10	
11	
12	
13	
14	
16	
17	
7 8 9 10 11 12 13 14 15 16 17 18 19 20	
19	
20 21	
22	
22	
23 24 25	
25	
26 27	
26 27 28	
29	
30 31	
31	
32 33 34 35 36 37 38	
34	
35	
36	
37	
39	
40	
41	
42 43	
43 44	
45	
46	
47	
48 49	
50	
51	
52 53	
53 54	
54 55	
56	
57	
58	
59 60	
00	

805	12.	Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases.
806		The American Journal of Clinical Nutrition 2006;83:S1505-1519S.
807	13.	Piani D, Fontana A. Involvement of the cystine transport system xc- in the
808		macrophage- induced glutamate-dependent cytotoxicity to neurons. The Journal of
809		Immunology 1994;152:3578-3585.
810	14.	Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health
811		implications. International Journal of Developmental Neuroscience 2000;18:383-399.
812	15.	Calder PC. Dietary modification of inflammation with lipids. Proceedings of the
813		Nutrition Society 2002;61:345-358.
814	16.	Gil Á. Polyunsaturated fatty acids and inflammatory diseases. Biomedecine &
815		Pharmacotherapy 2002;56:388-396.
816	17.	Ariel A, Serhan CN. Resolvins and protectins in the termination program of acute
817		inflammation. Trends in Immunology 2007;28:176-183.
818	18.	Arita M, Ohira T, Sun Y-P, Elangovan S, Chiang N, Serhan CN. Resolvin E1
819		selectively interacts with leukotriene B4 receptor BLT1 and chemR23 to regulate
820		inflammation. The Journal of Immunology 2007;178:3912-3917.
821	19.	Janakiram NB, Rao CV. Role of Lipoxins and Resolvins as Anti-Inflammatory and
822		Proresolving Mediators in Colon Cancer. Current Molecular Medicine 2009;9:565-
823		579.
824	20.	Serhan C, Arita M, Hong S, Gotlinger K. Resolvins, docosatrienes, and
825		neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-
826		triggered epimers. Lipids 2004;39:1125-1132.
827	21.	Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-
828		inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008;8:349-361.

BMJ Open

2			
2 3 4	829	22.	Rossetti RG, Seiler C, DeLuca P, Laposata M, Zurier R. Oral administration of
5 6	830		unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation.
7 8	831		Journal of Leukocyte Biology 1997;62:438-443.
9 10	832	23.	Vatassery G. Vitamin E and other endogenous antioxidants in the central nervous
11 12	833		system. Geriatrics 1998a;53:S25-S27.
13 14	834	24.	Fukuzawa K, Gebicki JM. Oxidation of [alpha]-tocopherol in micelles and liposomes
15 16 17	835		by the hydroxyl, perhydroxyl, and superoxide free radicals. Archives of Biochemistry
18 19	836		and Biophysics 1983;226:242-251.
20 21	837	25.	Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames
22 23	838		BN. γ -Tocopherol traps mutagenic electrophiles such as NOx and complements α -
24 25	839		tocopherol: Physiological implications. Proceedings of the National Academy of
26 27 28	840		Sciences of the United States of America 1997;94:3217-3222.
29 30	841	26.	Brigelius-Flohé R, Kelly FJ, Salonen JT, Neuzil J, Zingg J-M, Azzi A. The European
31 32	842		perspective on vitamin E: current knowledge and future research. The American
33 34	843		Journal of Clinical Nutrition 2002;76:703-716.
35 36 37	844	27.	Calder P. Polyunsaturated fatty acids, inflammatory processes and inflammatory
38 39	845		bowel diseases Mol Nutr Food Res 2008;52:885–897
40 41	846	28.	Edwards IJ, O'Flaherty JT. Omega-3 Fatty Acids and PPARy in Cancer. PPAR
42 43	847		Research 2008;2008:1-15.
44 45	848	29.	Groeger AL, Cipollina C, Cole MP, et al. Cyclooxygenase-2 generates anti-
46 47 48	849		inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 2010;6:433-441.
49 50	850	30.	Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related
51 52	851		decreases in nuclear receptors and increase neurogenesis in old rats. Journal of
53 54	852		Neuroscience Research 2010;88:2091-2102.
55 56 57			
58 59			
59			

2 3 4	853	31.	McNamara RK. DHA Deficiency and Prefrontal Cortex Neuropathology in Recurrent
5 6	854		Affective Disorders. The Journal of Nutrition 2010;140:864-868.
7 8	855	32.	Salvati S, Natali F, Attorri L, et al. Eicosapentaenoic acid stimulates the expression of
9 10	856		myelin proteins in rat brain. Journal of Neuroscience Research 2008;86:776-784.
11 12	857	33.	Abraham M, Shapiro S, Karni A, Weiner HL, Miller A. Gelatinases (MMP-2 and
13 14 15	858		MMP-9) are preferentially expressed by Th1 vs. Th2 cells. Journal of
15 16 17	859		Neuroimmunology 2005;163:157-164.
18 19	860	34.	C ffrench-Constant. Pathogenesis of multiple sclerosis. The Lancet 1994;343:271-
20 21	861		275.
22 23	862	35.	Leppert D, Lindberg RLP, Kappos L, Leib SL. Matrix metalloproteinases:
24 25 26	863		multifunctional effectors of inflammation in multiple sclerosis and bacterial
20 27 28	864		meningitis. Brain Research Reviews 2001;36:249-257.
29 30	865	36.	Curtis CL, Rees SG, Cramp J, et al. Effects of n-3 fatty acids on cartilage metabolism.
31 32	866		Proceedings of the Nutrition Society 2002;61:381-389.
33 34	867	37.	Harris MA, Hansen RA, Vidsudhiphan P, et al. Effects of conjugated linoleic acids
35 36 37	868		and docosahexaenoic acid on rat liver and reproductive tissue fatty acids,
38 39	869		prostaglandins and matrix metalloproteinase production. Prostaglandins, Leukotrienes
40 41	870		and Essential Fatty Acids 2001;65:23-29.
42 43	871	38.	McCabe A, Wallace J, Gilmore W, Strain J, McGlynn H. The effect of
44 45	872		eicosapentanoic acid on matrix metalloproteinase gene expression. Lipids
46 47 48	873		1999;34:S217-S218.
49 50	874	39.	Shinto L, Marracci G, Bumgarner L, Yadav V. The Effects of Omega-3 Fatty Acids
51 52	875		on Matrix Metalloproteinase-9 Production and Cell Migration in Human Immune
53 54	876		Cells: Implications for Multiple Sclerosis. Autoimmune Diseases 2011;2011.
55 56 57			
57 58 59			
60			

Page 45 of 112

BMJ Open

3 4	877	40.	Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and
5	878		healthcare. Genome Med 2009;1:2.
7 8	879	41.	Huang WL, King VR, Curran OE, et al. A combination of intravenous and dietary
9 10	880		docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain
11 12	881		2007;130:3004-3019.
13 14 15	882	42.	Marangoni F, Angeli MT, Colli S, et al. Changes of $n - 3$ and $n - 6$ fatty acids in
16 17	883		plasma and circulating cells of normal subjects, after prolonged administration of 20:5
18 19	884		(EPA) and 22:6 (DHA) ethyl esters and prolonged washout. Biochimica et Biophysica
20 21	885		Acta (BBA) - Lipids and Lipid Metabolism 1993;1210:55-62.
22 23 24	886	43.	Martínez M, Vázquez E, García-Silva MT, et al. Therapeutic effects of
25 26	887		docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders1.
27 28	888		The American Journal of Clinical Nutrition 2000;71:376S-385S.
29 30	889	44.	Committee for medicinal products for human use. Guideline on clinical trials in small
31 32 33	890		populations In: European Medicines Agency, 2006: 1-10.
34 35	891	45.	Gerard E Dallal. The Little Handbook of Statistical Practice. [online]. Available at
36 37	892		URL . Accessed Date Accessed, Year .
38 39	893	46.	Wang YC, Meyerson L, Tang YQ, Qian N. Statistical methods for the analysis of
40 41	894		relapse data in MS clinical trials. Journal of the Neurological Sciences 2009;285:206-
42 43 44	895		211.
45 46	896	47.	Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial
47 48	897		of natalizumab for relapsing multiple sclerosis. The New England Journal of
49 50	898		Medicine 2006;354:899-910.
51 52 53	899	48.	Kappos L, Radue E-W, O'Connor P, et al. A Placebo-Controlled Trial of Oral
54 55	900		Fingolimod in Relapsing Multiple Sclerosis. New England Journal of Medicine
56 57	901		2010;362:387-401.
58 59 60			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	902	49.	Cunnane S, Ho S, Dore-Duffy P, Ells K, Horrobin D. Essential fatty acid and lipid
4 5 6	903		profiles in plasma and erythrocytes in patients with multiple sclerosis. The American
7 8	904		Journal of Clinical Nutrition 1989;50:801-806.
9 10	905	50.	Harbige LS, Sharief MK. Polyunsaturated fatty acids in the pathogenesis and
11 12	906		treatment of multiple sclerosis. British Journal of Nutrition 2007;98:S46-S53.
13 14 15	907	51.	Wilson R, Tocher D. Lipid and fatty acid composition is altered in plaque tissue from
16 17	908		multiple sclerosis brain compared with normal brain white matter. Lipids 1991;26:9-
18 19	909		15.
20 21	910	52.	Rafat AS, Saame RS, Laura AS, Heidi RY, William S, Gary PZ. Omega 3-Fatty
22 23 24	911		Acids: Health Benefits and Cellular Mechanisms of Action. Mini Reviews in
24 25 26	912		Medicinal Chemistry 2004;4:859-871.
27 28	913	53.	Shaikh SR, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells,
29 30	914		and antigen presentation. The American Journal of Clinical Nutrition 2006;84:1277-
31 32	915		1289.
33 34 35	916	54.	Lajtha A, Toth J, Fujimoto K, Agrawal CH. Turnover of Myelin Proteins in Mouse
36 37	917		Brain in vivo. Biochem J 1977;164:323-329.
38 39	918	55.	LeBaron FN, Sanyal S, Jungalwala FB. Turnover rate of molecular species of
40 41	919		sphingomyelin in rat brain. Neurochemical Research 1981;6:1081-1089.
42 43 44	920	56.	Yao JK. Increased polyunsaturated fatty acids in developing and regenerating
45 46	921		peripheral nerve. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid
47 48	922		Metabolism 1982;712:542-546.
49 50	923	57.	Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a
51 52	924		narrative review. Complement Ther Med 2011;19:228-237.
53 54 55	925	58.	Farinotti M, Simi S, Di Pietrantonj C, McDowell N, et al. Dietary interventions for
56 57	926		multiple sclerosis (Review), the Cohrane Library 2007, issue I.
58 59			
60			

Page 47 of 112

927

928

1

2	
3	
4	
5	
6	
6	
7	
8	
9	
10	
44	
9 10 11 12 13 14 15 16 17 18 19	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
21	
22	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
24	
25	
20	
20	
27	
28	
29	
30	
24	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
40 41	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Figure 1. Study Flowchart

Figure legends

Figure 2. Omega-6 and omega-3 PUFA, their respective metabolic derivatives and theirpossible effects on inflammation.

931 After consumption, the PUFAs are metabolized via several pathways (not shown) to active

932 compounds that mediate inflammation and products that promote resolution of inflammation.

933 Abbreviations: PL, phospholipid; IFN- γ , interferon γ ; IL-2, interleukin 2; NF κ B, nuclear

934 factor kappa B; PGE2, prostaglandin E2; PPARγ, peroxisome proliferator-activated receptor

935 γ ; PUFAs, polyunsaturated fatty acids; TGF β , transforming growth factor β ; TNF, tumor

936 necrosis factor; COX, cyclooxygenase; hydroxyeicosatetraenoic acid; HPETE,

937 hydroperoxyeicosatetraenoic acid; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin;

938 TX, thromboxane; RXR-γ, retinoid X receptor-gamma; Nrf2, nuclear respiratory factor;

939 MMP, metalloproteinase.

940 **Figure 3.** Panel A demonstrates the ARR of all-time on-study patients during the 24mo pre-

941 treatment (baseline ARR) and at different on-study intervals (6, 12, 18, 24 mo) per treatment
942 arm. **

Panel B demonstrates the ARR of all-time on-study population between 0-6, 6-12, 6-18, and

944 6-24 mo period intervals, of PLP10 vs. placebo group. **

Panel C demonstrates the ARR of all-time on-study population of PLP10 *vs.* placebo group at
baseline, during 1st year, and during the 2-year on-treatment. **

947 Panel D demonstrates the dispersion of relapses throughout the 2-year period of all-time on-

study (excluding patients on natalizumab) of PLP10 (n=10) vs. placebo (n=10). Placebo

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

shows an irregular dispersion of relapses in relation to PLP10 group with linear increasing
trend wile PLP10 shows a stabilized linear trend. By using the per-protocol model where
patients on natalizumab were excluded, we could compare the number of relapses on a same
number of patients.

953 ** Including the patients on natalizumab.

Figure 4. Panel 4A demonstrates the Kaplan–Meier plot of the time to sustained progression
of disability among all-time on-study patients, excluding patients on natalizumab, receiving
intervention A, PLP10 and C as compared with placebo. PLP10 reduced the risk of sustained
progression of disability by 86% over two years (p=0.006). Intervention formula A reduced
the risk of sustained progression of disability by 53% (p=0.266) and intervention formula C
by 67% (p=0.061).

960 Panel 4B demonstrates the Kaplan–Meier plot of the time to sustained progression of

961 disability among ITT population receiving intervention A, PLP10 and C as compared with

962 placebo. PLP10 reduced the risk of sustained progression of disability by 71% over two years

963 (p=0.052, trend). Intervention formula A reduced the risk of sustained progression of

964 disability by 22% (p=0.727) and intervention formula C by 40% (p=0.447).

965 Figure 5. Mean change in expanded disability status scale score as a function of visit

966 number. Values are expressed as mean \pm s.e.m.

967 ¶ Including patients on natalizumab

968 ¶ Excluding patients on natalizumab

A novel oral nutraceutical formula of omega-3 and omega-6 fatty acids with vitamins (PLP10) in relapsing remitting multiple sclerosis: a randomized, double-blind, placebo-controlled proof-of-concept clinical trial Marios C. Pantzaris*, George N. Loukaides, Evangelia E. Ntzani, Ioannis S. Patrikios* * Both M.C.P and I.S.P are the first authors and both are the corresponding authors The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus Marios C. Pantzaris Senior Consultant Neurologist Neurology Clinic C and PALUPA Medical Ltd., The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus George N. Loukaides Clinical Dietitian/Nutritionist Neurology Clinic and PALUPA Medical Ltd., University of Ioannina School of Medicine (UISM) 45110 Ioannina, Greece Evangelia E. Ntzani Assistant Professor Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, PALUPA Medical Ltd at The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus Ioannis S. Patrikios Senior Research Scientist, visiting Professor at European University Cyprus Nicosia, Cyprus, Department of Health and Science. Correspondence should be addresses to e-mail: I.Patrikios@euc.ac.cy or pantzari@cing.ac.cy

22	Correspondence to:
23	Ioannis Patrikios
24	The Cyprus Institute of Neurology and Genetics (CING)
25	Neurology Clinic C (PALUPA Medical),
26	6 International Airport Av.
27	P.O.Box 23462, 1683 Ayios Dometios. Nicosia, Cyprus
28	Tel: +357 22 358 600, +357 99 097 856;
29	i.patrikios@euc.ac.cy
30	patrikiosioannis@gmail.com
31	
32	AND
33	
34	Marios Pantzaris
35	The Cyprus Institute of Neurology and Genetics (CING)
36	Neurology Clinic C (PALUPA Medical),
37	6 International Airport Av.
38	P.O.Box 23462, 1683 Ayios Dometios, Nicosia Cyprus
39	P.O.Box 23462, 1683 Ayios Dometios, Nicosia Cyprus Tel: +357 22 358 600; +357 99 677 067 pantzari@cing.ac.cy
40	pantzari@cing.ac.cy
41	
42	Keywords: antioxidant vitamins, polyunsaturated fatty acids, multiple sclerosis, systems
43	medicine, randomized clinical trial.
44	
45	Word Count: <mark>6299</mark>

BMJ Open

BMJ Open

46	Abstract
47	Objective To assess whether our three novel interventions, formulated based on systems
48	medicine therapeutic concept reduce disease activity in patients with relapsing remitting
49	multiple sclerosis who were either treated with disease modifying treatment or untreated.
50	
51	Design 30-month randomized double-blind, placebo-controlled, parallel design, phase II
52	proof-of-concept clinical study.
53	
54	Settings Cyprus Institute of Neurology and Genetics (CING)
55	
56	Participants and Interventions 80 subjects were randomized into four groups of 20. The
57	first intervention (A) was composed of omega-3 and omega-6 polyunsaturated fatty acids at
58	1:1 wt/wt. Specifically, the omega-3 fatty acids were docosahexaenoic acid (DHA) and
59	eicosapentaenoic acid (EPA) at 3:1 wt/wt and the omega-6 fatty acids were linoleic acid (LA)
60	and gamma (γ)-linolenic acid (GLA) at 2:1 wt/wt. This intervention also included minor
61	quantities of other specific polyunsaturated, monounsaturated and specific saturated fatty
62	acids as well as vitamin A and vitamin E (alpha-tocopherol). The third intervention (C) was
63	γ -tocopherol alone. The second intervention (PLP10) was a combination of A and C. A fourth
64	group of 20 received a vehicle placebo. The interventions were administered per os once
65	daily.
66	
67	Main outcome measures The primary endpoint was the annualized relapse rate (ARR) of the
68	three interventions versus placebo at two years. The secondary end point was the time to
69	confirmed disability progression at two years.
70	

3 71	Results A total of 41 (51%) patients completed the 42-month trial. Overall, for the per-
4 5 72 6	protocol analysis of the two-year primary end point, 8 relapses were recorded in the PLP10
7 8 73	group (n=10) (0.40 ARR) versus 25 relapses in the placebo group (n=12) (1.04 ARR), a 64%
9 10 74	adjusted relative rate reduction for the PLP10 group (RRR 0.36, 95% CI 0.15 to 0.87,
11 12 75	p=0.024). In a subgroup analysis that excluded patients on monoclonal antibody
13 14 76	(natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two
15 16 77 17	years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016). Per-protocol analysis for the secondary
18 19 78	outcome at two years, time to disability progression, was significantly longer only with
20 21 79	PLP10. The cumulative probability of disability progression at two years was 10% in the
22 23 80	PLP10 group and 58% in the placebo group (unadjusted log-rank p=0.019). In a subgroup
24 25 81	analysis that excluded patients on natalizumab the cumulative probability of progression was
26 27 28 82	10% for the 10 patients in the PLP10 group and 70% for the 12 patients in the placebo group,
29 30 83	a relative 86% decrease in the risk of sustained progression of disability in the PLP10 group
31 32 84	(unadjusted log-rank p=0.006; adjusted hazard ratio, 0.11; 95% CI 0.01 to 0.97, p=0.047). No
33 34 85	adverse events were reported. Interventions A (10 patients) and C (9 patients) showed no
35 36 86	significant efficacy.
37 38 39 87	
40 41 88	Conclusions In this small proof-of-concept randomized double-blind clinical trial, PLP10
42 43 89	treatment significantly reduced the ARR, and the risk of sustained disability progression
44 45 90	without any reported serious adverse events. Larger studies are needed to further assess the
46 47 49 91	safety and efficacy of PLP10.
48 51 49 50 92	
51 52 93	Trial registration International Standard Randomized Controlled Trial, number
53 54 94	ISRCTN87818535.
55 56 95	
57 58 59	
60	
4	For poor review only - http://bmionen.hmi.com/site/about/quidelines.yhtml

1 2

BMJ Open

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
$3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 2\ 31\ 11\ 11\ 11\ 11\ 11\ 11\ 11\ 11\ 11$	
20	
21	
22	
23	
24	
24	
20	
26	
27	
28	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
E 1	
51 52 53	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

96	Introduction
97	Multiple sclerosis (MS) is a complex multifactorial disease that results from interplay
98	between as yet unidentified environmental factors and susceptibility genes. ¹⁻³ Together, these
99	factors trigger a cascade of events, involving engagement of the immune system,
100	inflammatory injury of myelin, axons and glia, functional recovery and structural repair,
101	gliosis, and neurodegeneration. ⁴ The bio-mechanisms involved are: immune-mediated
102	inflammation, oxidative stress and excitotoxicity. ⁵⁻⁹ These mechanisms may all contribute to
103	oligodendrocyte and neuronal damage and even cell death, hence promoting disease
104	progression. The increasing prevalence of MS, the limited efficacy and the side effects of the
105	existing treatments urge the clinical need for the development of new, innovative, more
106	effective, safe, and preventive treatment strategies.
107	
108	Research has shown that multiple variables dynamically interact and many different complex
109	interrelated processes are simultaneously orchestrated for MS pathogenesis. The fundamental
110	distinctiveness of systems medicine (SM) is not just the recognition that different specific

111 complex factors are important in disease management, but that they need to be incorporated

in some meaningful way to treatment selection and delivery.¹⁰ The primary challenge tackled

by systems scientific approach is the elucidation of how these multiple variables dynamically

interact and how one can apply this understanding to affect the system and achieve a

desirable end.¹⁰ The answer might be the simultaneous interference with all involved

116 perturbed mechanisms, by using a cocktail of different specific ingredients, potentially able

117 through synergistic effect to give a long, holistic and effective treatment (Supplementary

118 Information Methods 1).

119

120	The polyunsaturated fatty acids (PUFA) composition of membrane phospholipids plays a
121	direct role in immune and non-immune related inflammation. PUFA and antioxidant
122	deficiencies along with decreased cellular antioxidant defense mechanisms have been
123	reported for MS patients. ¹¹ The cause of these PUFA deficiencies is not entirely clear and may
124	involve metabolic and nutritional alterations. ¹¹
125	
126	Increased or uncontrolled inflammation contributes to several different acute and chronic
127	diseases and it is characterized by the production of inflammatory cytokines, arachidonic acid
128	(AA)-derived eicosanoids (prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs),
129	and other oxidized derivatives), other inflammatory agents such as reactive oxygen species
130	(ROS), nitric oxide (NO), and adhesion molecules (Fig 2). ¹² During inflammation glutamate
131	homeostasis is altered by activated immune cells releasing increased quantities of glutamate
132	that can result in over activation of glutamate receptors and in return excitotoxic
133	oligodendroglial death. ^{7, 13} As such, among others, membrane-related pathology, immune-
134	mediated inflammation, oxidative stress and excitotoxicity provide potentially useful
135	combined targets for intervention in MS.
136	
137	In vitro and in vivo studies have demonstrated that dietary EPA, DHA, LA, and GLA can be
138	implicated and modulate almost all known complex network of events and pathways
139	repertoire in MS pathophysiology. Brain membrane fatty acid composition can be modified
140	with dietary supplementation, but the process has been showed to be age dependent (it takes
141	much longer in adults versus developing brains) as well as possibly dependent on the
142	quantities of the dietary/supplemented PUFAs. ¹⁴ Both human and animal studies proved that
143	diets high in DHA and EPA increase the proportion of these PUFA in the membranes of
144	inflammatory cells and reduce the levels of AA. ^{12, 15} The anti-inflammatory properties of

BMJ Open

2
3
4
5
6
1
o Q
10
11
12
13
14
15
17
18
19
20
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 21 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 20 \\ 31 \\ 32 \\ 34 \\ 35 \\ 37 \\ 39 \\ 30 \\ 31 \\ 33 \\ 31 \\ 30 \\ 31 \\ 31 \\ 31$
22
23
24
26
27
28
29
30
১। 32
33
34
35
36
37
30 30
40
41
42
43
44
45 46
46 47
48
49
50
51
52 52
53 54
52 53 54 55
56
57
58
59 60
60

145	omega-3 include production of PGs and TXs of the 3-series and LTs of the 5-series (Fig 2). ^{14,}
146	¹⁶ Resolvins and protectins are biosynthesized from omega-3 fatty acids via cyclooxygenase-
147	2/lipoxygenase (COX-2/LOX) pathways and they promote control of inflammation in neural
148	tissues (Fig 2). ¹⁷⁻²¹ T-cell proliferation in acute and chronic inflammation can be reduced by
149	supplementation with either omega-6 or omega-3 PUFA. ²² Furthermore, vitamin E is an
150	important antioxidant that can interrupt the propagation of free radical chain reactions. ²³
151	Vitamin E (alpha-tocopherol, an isoform of vitamin E) efficiently detoxifies hydroxyl,
152	perhydroxyl and superoxide free radicals. ²⁴ However γ -tocopherol (another isoform of
153	vitamin E) seems to be more efficiently implicated in trapping NO radicals. ²⁵ In addition
154	alpha-tocopherol exerts non-antioxidant properties, including modulation of cell signaling
155	and immune function, regulation of transcription, and induction of apoptosis. ²⁶
156	
157	Moreover, omega-3 fatty acids electrophilic derivatives formed by COX-2, in activated
158	macrophages can stimulate the nuclear respiratory factor (Nrf2) inducing the transcription of
159	neuroprotective and antioxidant related genes, and can activate the peroxisome proliferator-
160	activated receptor (PPAR) γ for anti-inflammatory response. ²⁷⁻²⁹ In animal studies, EPA and
161	DHA proved to be endogenous ligands of RXRs, with positive effect on neurogenesis. ³⁰
162	Additionaly, in 2008 Salvati and coworkers reported evidense of accelerated myelination in
163	DHA- and EPA-treated animals. ³² Moreover, DHA and EPA are reported to significantly
164	decrease the levels of metalloproteinases (MMP) -2, -3, -9, and -13 with a significant role in
165	the migration of lymphocytes into the CNS by inducing disruption of the blood brain barrier

166 (BBB), an important step in the formation of MS lesions.³³⁻³⁹

167

Based on the above, specific PUFA and antioxidant vitamins fulfill the criterion of biologicplausibility and have the potential to diminish MS symptoms severity and activity, even

170	promoting recovery (remyelination). ¹¹ Overall, PLP10 contains multiple ingredients (omega-
171	3, omega-6 and other fatty acids and vitamins) potentially able to modulate key
172	interconnected components (i.e. genes, proteins) and structural molecules (i.e. cellular
173	membrane lipids, receptors) within the functional network of events of MS pathogenesis. ⁴⁰
174	
175	This is a randomized phase II, single-center, double-blind, placebo-controlled, proof-of-
176	concept clinical trial evaluating the therapeutic ability of PLP10 and of two other
177	interventions (A and C) consisting of PLP10 constituent partial fractions (Table 1) versus
178	placebo on RRMS patients.
179	
180	
181	Methods
182	Patients
183	Eligibility criteria were an age of 18 to 65; a diagnosis of RRMS according to the McDonald
184	criteria; a score of 0.0 to 5.5 on the EDSS, a rating that ranges from 0 to 10, with higher
185	scores indicating more severe disability; MRI showing lesions consistent with MS; and at
186	least one documented clinical relapse either receiving or not disease modifying treatment
187	(DMT) within the 24 months period before beginning (enrollment) of the study. Patients were
188	excluded because of a recent (<30 days) relapse, prior immunosuppressant or monoclonal
189	antibodies therapy, pregnancy or nursing, other severe disease compromising organ function,
190	progressive MS, history of recent drug or alcohol abuse, use of any additional food
191	supplement, vitamin, or any form of PUFA, history of severe allergic or anaphylactic
192	reactions or known specific nutritional hypersensitivity. No monitor or limitations on
193	patients' daily diet habits were included in the study design since the quantities of the
194	ingredients within the formulas daily-dosage could not be significantly affected or spoiled by

BMJ Open

2		
3	195	any confounding factors within any known global daily food diet (see procedures, treatment
4 5 6	196	regimen and end-points).
7 8	197	
9 10 11	198	The study was conducted in accordance with the standards of the International Conference of
12 13	199	Harmonization Guidelines for Good Clinical Practice. The protocol was developed by the
14 15	200	investigators and it was approved by the Cyprus National Bioethics Committee and was
16 17	201	overseen by an independent safety-monitoring committee evaluating the safety and over-all
18 19	202	benefit-risk profiles. The adherence of care providers with the protocol was assessed by an
20 21	203	external committee assigned by the funder of the project through reviews of case report
22 23 24	204	forms. All patients gave written informed consent at the time of enrolment.
25 26	205	
27 28	206	Randomization and masking
29 30	207	Patients were randomly assigned to four intervention groups in a 1:1:1:1 ratio stratified by
31 32 33	208	gender (women to men, 3:1). Randomization was facilitated by a lottery-type pool of
33 34 35	209	numbered balls. Patients were randomly assigned to treatment in blocks of four by flipping a
36 37	210	coin as follows: for the first two drawn balls heads stratified them to the groups A/B and tails
38 39	211	stratified them to the groups C/D. The other two balls were stratified accordingly. A second
40 41	212	toss of the coin assigned the two patients to group A (head)/B (tail) or group C (head)/D
42 43 44	213	(tail). The randomization scheme was generated, performed and securely stored by Helix
44 45 46	214	Incubator Organization of Nicosia University (HIONU).
47 48	215	
49 50	216	The interventions had identical appearance and smell in dark bottles (15 daily-dose
51 52	217	portions/bottle) under nitrogen bed and labeled by HIONU with code numbers, unidentifiable
53 54	218	for both patients and investigators. Study data were collected by the investigators and saved
55 56 57 58 59 60	219	by the HIONU that also held the blinded codes of the study. All study personnel involved in

3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17 10	
18 19	
20	
20	
21 22	
23	
24	
25	
25 26	
27	
27 28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
41	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

the conduct of the study were blinded throughout the study. Treating/examining physician,other investigators, pharmacist, neuroradiologist and patients were masked to treatment

allocation.

223

1 2

224 **Procedures and end points**

225 The specific omega-3 (re-esterified glycerides) and omega-6 (glycerides) raw materials were 226 purchased according to the required interventions' PUFA-fraction specification (molecular 227 structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant 228 stabilizer by the supplier. The vitamins and masking aroma were purchased separately. The 229 mixing of fractions to the final required intervention-composition specification was always 230 performed by the same team of scientists under the supervision of the involved medical 231 biochemist and lipidology specialist, under appropriate conditions every six months. Interventions were stored refrigerated in dark until use. See Table 1 and Supplementary 232 233 Information Methods 1 and 2 for intervention specification detailed description and 234 study/intervention rational. 235 Participants were randomly assigned to receive: in group A, a daily dose of a 19.5ml 236 mixture of EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other 237 omega-3 (600mg) / total MUFA (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin 238 239 A (0.6mg) / vitamin E (22mg) plus citrus-aroma (intervention A); in group B PLP10, a daily 240 dose of a 19.5ml mixture of EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA 241 (3,850mg) / total other omega-3 (600mg) / total MUFA (1,714mg) + total SFA (18:0 160mg, 242 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) plus pure γ -tocopherol (760mg) plus citrus-aroma (intervention B); in group C, a daily dose of a 19.5ml mixture of pure γ -243 tocopherol (760mg) dispersed in pure virgin olive oil (16,137 mg) plus citrus-aroma 244

Page 59 of 112

BMJ Open

245	(intervention C) and in group D placebo, a daily dose of a 19.5ml mixture of pure virgin
246	olive oil (16,930mg) plus citrus-aroma (intervention D) (Table 1). The institution's
247	pharmacist was responsible for the appropriate storage and handling of the interventions to
248	the individual participants. The interventions were taken orally once daily 30 minutes before
249	dinner by a dosage calibrated cup for 30 months. The ingredients, ratio and dose have been
250	selected based on their biophysical interrelation to the total known multiple MS causing
251	factors, their biochemical importance and the role expected to play in the normalisation and
252	treatment of the involved complex network of events in the disease pathophysiology.
253	Moreover, the high intake dosage was used to overcome any abnormal dietary accumulation
254	of related agents as a result of patients' food intake habits, irrespective of geographical origin,
255	in relation to the daily consumption ratio of the total fatty acid intake; in order to end-up with
256	omega-3 to omega-6 PUFA indicated physiological body ratio composition of 1:1 wt/wt.
257	
258	The period beginning from July 1 st 2007 (enrolment) until December 31 st 2007 (entry
259	baseline) was used for normalization period. This six-month normalization period would
260	allow the interventions' agents to exert their beneficial effect (for the
261	incorporation/normalization of cell membranes by oral PUFA, since they need four to six
262	months to exert pivotal action on immune and neural cells, correction of antioxidant
263	deficiency and body PUFA, and optimal normalization of EPA and DHA levels/ratio).41-43
264	The study was completed on December 31 st 2009 and the recording of relapses continued
265	until December 31 st 2010. More clearly the study included the "normalization period" (July
266	1 st 2007 to Dec 31 st 2007), the "on treatment" period (Jan 1 st 2008 to Dec 31 st 2009) and the
267	12-month "extended period" (Jan 1 st 2010– Dec 31 st 2010).
268	

Depending on their clinical status and in accordance with the ethical issues governing clinical trials participants continued receiving the indicative regular available treatments, according to international guidelines with persistent evaluation of any side-effects and adverse events. The study was designed to end 30 months after enrolment and clinical assessments were scheduled at entry baseline, 3, 9, 15, 21 and 24 months on-treatment. Patients were also clinically examined by the treating neurologist within 48 hours after the onset of new or recurrent neurologic symptoms.

The primary end point was the ARR at two years. A relapse was defined as new or recurrent neurologic symptoms not associated with fever or infection that lasted for at least 24 hours and accompanied by new neurologic signs. Relapses were treated with methyl-prednisolone at a dose of 1g intravenous per day, for three days followed by prednisone orally at a dose of 1mg/kg of weight per day on a tapering scheme for three weeks. The secondary end point at two years was the time to confirmed disability progression, defined as an increase of 1.0 or more on EDSS, confirmed after six months (progression could not be confirmed during a relapse). The final EDSS score was confirmed six months after the end of the study. A posthoc analysis was performed assessing the proportion of patients free from new or enlarging T2 lesions on brain MRI scans at the end of the study for the per-protocol participants of the group receiving the highest effective intervention versus placebo. Comparison was made only versus the available archival MRI scans up to three months before the enrolment date. MRI scans were performed and blindly analyzed at an MRI evaluation centre. The patients continued to be followed for additional 12 months after completion of the trial and relapses were recorded. Finally, patients were strongly encouraged to remain in the study for follow-up assessments even if they had discontinued the study drug.

BMJ Open

294	Blood samples were collected from all randomized patients at the time of enrolment, at every
295	scheduled clinical assessment and during relapses. To check individual compliance with
296	intake, the fatty acids composition of patients' red blood cells' membranes was determined,
297	by gas chromatography, according to a standard protocol. The fatty acid analyses were
298	performed after study termination and thus did not influence the blinding.
299	
300	The involved neurologist was experienced with more than 20 years in practice and trained to
301	standardise EDSS scoring procedures, examined patients, made all medical decisions,
302	determined the EDSS score and reviewed adverse or side-effects. The medical biochemist,
303	specialist on lipidology and immunology and the registered clinical dietitian, members of the
304	investigator team were experienced with more than 25 years in practice. Patients were able to
305	contact the neurologist at any time if there was any adverse event, side-effect or allergic
306	reaction. The study drug was not suspected to have any clinical or laboratory adverse effects
307	different from placebo that could disturb the double-blind nature of the trial. Therefore, the
308	same study-neurologist functioned as both the treating and evaluating physician.
309	
310	Safety measures were assessed from the time of enrollment until 12 months following study
311	completion. Haematological and biochemical tests were performed at enrolment and at every
312	12 months, including full blood count, renal and liver function tests, proteins, cholesterol,
313	triglycerides, glucose and electrolytes.
314	
315	The whole procedure followed the clinical trial guidelines as required by the USA Food and
316	Drug Administration, European Medicines Agency, and the Committee for Medicinal
317	Products for Human Use. ⁴⁴
318	

1 2	
3 4 5 6	
5	
6 7	
8	
9 10	
11 12	
13	
14 15	
16 17	
18	
19 20	
21	
22 23	
24 25	
26	
9 10 11 12 13 14 15 16 17 18 20 21 22 24 25 26 27 28 20 31	
29 30	
31	
31 32 33 34 35	
34 25	
36 37	
37 38	
39	
40 41	
42 43	
44	
45 46	
47 48	
49	
50 51	
52 53	
54	
55 56	
57 58	
59	
60	

319 Statistical analysis

320	Power calculations could not be done before the study because of the lack of information
321	from previous studies on potential effect sizes. In 2005 the prevalence of MS in Cyprus
322	(600,000 population) was 120/100.000. Based on the aforementioned MS patients' numbers
323	of our country and the centre of reference, the CING, we were able to enrol the 20% of the
324	total RRMS patients eligible for treatment in the trial. Sample size was strictly based on this
325	subjects' availability parameter and the novelty of the assessed intervention.
326	
327	Baseline characteristics were compared across all intervention groups by ANOVA or
328	Kruskal-Wallis rank test for continuous variables and by mean Fisher's exact test for
329	categorical variables, as appropriate.
330	
331	For the primary outcome, the ARR was analysed in a pair-wise fashion for the active
332	interventions compared to placebo using negative binomial regression models adjusted for
333	number of relapses within two years before baseline, EDSS score at baseline and DMT. The
334	relapse rate was calculated as the total number of relapses divided by the total number of
335	patient-years followed for each treatment group. ARR differences were also calculated
336	among all comparable parameters and reported as percent difference.
337	
338	For the secondary end-point outcome, the time to disability progression, Kaplan-Meier
339	curves were constructed. Progression to disability and time thereof was compared in a pair-
340	wise fashion for the active interventions versus placebo by the log-rank test in the main
341	analysis and by Cox proportional-hazards models with adjustment for baseline EDSS score,
342	age and DMT in the supportive analysis. Each test was performed with a significance level of

BMJ Open

3
4
5
6
7
י 2
8 9 10
9 10
10
11
12
13
14
10 11 12 13 14 15 16
16
17 18
18
19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 83 9 40
23
24
25
20
20
21
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
43 44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 59

60

343 0.05. Multivariate models considered all variables with P <0.1 on univariate models. There 344 was no overt violation of the proportionality assumption.

345

346 Both, per-protocol and intention to treat (ITT) analyses were performed, for different sets of 347 research questions to be answered, and both are reported. Missing data of the five lost to 348 follow patients were imputed by use of the last-observation-carried-forward (LOCF) 349 approach. Due to the proof-of-concept design of the study, the considerable non-adherence 350 rate (49%) and the interpretation issues caused thereof regarding the ITT analysis, the per-351 protocol analysis considered being more informative and appropriate method approach to 352 answer the research addressed questions of efficacy of the interventions when subjects were 353 continuously following the protocol. All statistical analyses were well defined a priori. All 354 analyses were performed with STATA SE 10.0 (College Station, TX, USA). P-values are 355 two-tailed.

356

Role of the funding source

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. All members of the writing group had full access to all study data and contributed to its interpretation and prepared, reviewed, and approved the manuscript for submission. All authors had final responsibility for the decision to submit the paper for publication.

363

364 **Results**

365 Study population

From July 2007 through December 2010 (including the 12-month extended period), a total of 80 MS patients were randomly assigned to a study group at the CING (tertiary neurological center).

> Among the 80 patients, 20 patients were randomly assigned to each of the three groups to receive the interventions and 20 to receive placebo (Fig 1). Baseline characteristics of both the ITT and the per-protocol populations were similar across groups (Table 2A and 2B). All patients that drop-out completed follow-up until study completion and were included in the ITT analyses (Table 4). Five patients were lost to follow before their first scheduled visit and two other patients that dropped-out before their first scheduled visit progressed to secondary progressive MS. Fifteen patients dropped-out without successfully completing the "normalization" period including five pregnancies. Another 17 patients dropped-out early after entry baseline. Seven patients that dropped out were given monoclonal antibody treatment (natalizumab). Overall, a total of 41 (51%) patients completed the 42-month study (July 2007 through December 31st 2010, including the 12-month extended period) where one patient from group A and two from the placebo group transferred on natalizumab, and 39 (49%) patients either withdrew (drop-out) or lost to follow. Reasons for study-interventions discontinuation are listed in Figure 2. Efficacy Relapses As a proof-of-concept trial we primarily needed to answer whether the interventions were effective for those MS patients who adhere to the assigned treatment, the per-protocol analysis.⁴⁵ For the sake of methodological comprehensiveness we also present the ITT

analysis as a secondary analysis, to answer a different question, complementary to our core

BMJ Open

Regarding the per-protocol analysis, during the first year of treatment, the ARR was 0.80, 0.40, 0.78 and 0.83 for the four intervention groups respectively. During the second year, the ARR was 0.90, 0.40, 0.67 and 1.25 for the four intervention groups respectively. Overall, for the two-year primary end point, 8 relapses were recorded for the 10 patients in PLP10 group (0.40 ARR) versus 25 relapses for the 12 patients in placebo (1.04 ARR), a 64% adjusted relative rate reduction (RRR) for the PLP10 group (RRR 0.36, 95% confidence interval (CI) 0.15 to 0.87, p=0.024) (Tables 3A, 5 and Fig 3A and 3C). Excluding patients on monoclonal antibody (natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016, Tables 3B and 5). Pair-wise comparisons for the other two groups against placebo did not yield statistically significant results (Tables 3A, 3B). The proportion of patients with ≤ 1 relapse for the two years on-study was higher in the PLP10 group than in the placebo group (90% versus 42%, p=0.030, Table 5). Seeking to investigate further the observed difference, we compared the relapse rate during the 24 months before entry to the study to the 24 months on-treatment for each intervention group. We observed a statistically significant relative reduction in the ARR (70%) only in the PLP10 group (RRR 0.30; 95% CI 0.14 to 0.65, p=0.003, Table 3A); within-group comparisons for the three other groups ARR reduction was not significant and remained not significant when natalizumab treated patients were further excluded from the analysis. The effect of PLP10 through time at different time-windows versus placebo for all-time on-study patients is shown in Figures 3A to 3D. The ARR analysis, within time-windows, was not an assigned endpoint, but it could help in the process of evaluating parallel information as the time needed for a specific treatment intervention activity to be evident, as

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
e e	
7	
1	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
$3\ 4\ 5\ 6\ 7\ 8\ 9\ 1\ 1\ 1\ 2\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\ 3\$	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
E0	
58	
58 59	
50 59 60	

12

416	well as the efficacy profile through time. PLP10 reached maximum effect within a year on-
417	treatment (counting from the entry baseline) and remained stable at an ARR of 0.4,
418	displaying a steadily reduced ARR with long free-relapse time-windows. These group B
419	characteristics are considered important parameters of a successful MS treatment where the
420	rule than the exception is the heterogeneity among patients' disease evolution. Specifically,
421	Figure 3D demonstrates the dispersion of relapses throughout the 2-year period of all-time
422	on-study (excluding patients on natalizumab) of PLP10 (n=10) versus placebo (n=10).
423	Placebo, in line with the existing knowledge of how relapse history works in relation to future
424	relapses on MS patients (contagion phenomenon) indicates the expected linearly increased
425	trend of the relapse incidence. ⁴⁶ The same phenomenon was true for the groups A and C.
426	Finally, during the 12 month post-study extended period (January 1 st 2010 to December 31 st
427	2010) all-time on-study patients that received PLP10, showed persistent benefit in the ARR
428	compared to placebo (six relapses for the 10 subjects within PLP10, 0.6 ARR versus 19 for
429	the 12 subjects within placebo group, 1.58 ARR) indicating a statistically significant 62%
430	adjusted relative rate reduction in the ARR for the PLP10 group (RRR 0.38, 95% CI 0.12 to
431	0.99, p=0.046).
432	

Regarding the ITT analysis, within PLP10 group, none of the nine drop-out patients changed 433 to natalizumab and two out of nine discontinued because of pregnancy, whereas two out of 434 435 seven drop-out patients from the placebo group changed to natalizumab (a total of four 436 patients within the placebo arm population were on natalizumab, including the two patients 437 that transferred while all-time on-study versus none within PLP10 group (Supplementary 438 Information Fig 1). As reported, natalizumab reduces ARR by 68%, decreases the possibility 439 of disability progression by 43% with 57% of patients free of new or enlarging T2 lesions on MRI scans compared to 15% on placebo.⁴⁷ The relapses of the drop-out patients are reported 440

BMJ Open

in Table 4A. As expected no statistically significant differences in the ARR were calculated
for the comparison of any group versus placebo for the 24 months on-treatment, with a 0.75
ARR within PLP10 (30 relapses) and 1.03 ARR within placebo (41 relapses) group, a 27%
ARR reduction (Table 4B). Interestingly, despite the high non-adherence rate, there was a
statistically significant difference for the comparison of the ARR in the 24 months before
entry baseline to the 24 months on-treatment for the PLP10 group (RRR 0.45, 95% CI 0.26 to
0.78, p=0.005).

Disability progression

Regarding the per-protocol analysis, at two years, the time to disability progression, with confirmation after six months (secondary end-point) was significantly longer only with PLP10. The cumulative probability of disability progression was 10% in the PLP10 group and 58% in the placebo group (p=0.019) (Supplementary Information Fig 2). After excluding patients on natalizumab, there was an increased statistically significant difference between the PLP10 and the placebo group for the same analysis (p=0.006) (Fig 4A). At two years, the cumulative probability of progression was 10% in the PLP10 group and 70% in the placebo group, which represents a decrease of 60 percentage points or a relative 86% decrease in the risk of sustained progression of disability within PLP10 group (adjusted hazard ratio, 0.11; 95% CI 0.01 to 0.97, p=0.047). One versus seven out of ten patients progressed to confirmed disability in the PLP10 and the placebo groups respectively when patients on natalizumab were excluded. No statistically significant difference was observed for any comparison of the other two groups compared to placebo (Fig 4A and Supplementary Information Fig 2). Regarding the ITT analysis, at two years, the cumulative probability of progression was 10%

465 in the PLP10 group and 35% in the placebo group (p=0.052, a trend for an effect), which

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

466	represents a decrease of 25 percentage points or a relative 71% decrease of the PLP10 for the
467	risk of sustained progression of disability (adjusted hazard ratio 0.22, 95% CI 0.04 to 1.07,
468	p=0.06) (Fig 4B). Two versus seven out of the total randomized patients progressed to
469	confirmed disability in the PLP10 and the placebo groups respectively. No significant
470	differences were observed for groups A or C against placebo (Fig 4B). The mean change in
471	Expanded Disability Status Scale (EDSS) score as a function of visit number is shown in
472	Figure 5.
473	
474	MRI
475	Over two years, the MRI results support the overall conclusion from the study that PLP10 has
476	a positive effect on disease activity since only 29% from the PLP10 group as opposed to 67%
477	from the placebo group developed new or enlarging T2 lesions (57% relative risk reduction).
478	Excluding patients on natalizumab there is an increased relative risk reduction (64%) between
479	PLP10 as opposed to placebo with 29% of patients on PLP10 and 80% on placebo with
480	development of new or enlarging T2 lesions (Table 5).
481	
482	Safety
483	Over the course of the 30 month study no significant adverse events were reported from any
484	group. According to a questioner procedure the only aetiology for drop-outs was the
485	palatability and smell of the formula preparations. Nausea was reported by two patients. No
486	abnormal values observed on any of the biochemical and haematological blood tests. No
487	allergic reactions reported.
488	
489	Discussion

Page 69 of 112

1 2

BMJ Open

2	
3	
4 5	
с С	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
∠∪ 24	
21	
7 8 9 10 11 12 13 15 17 18 201 22 23 24 25 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 27 28 27 28 27 27 28 37	
23	
24	
25	
26	
27	
29	
30	
31	
32	
33	
34	
35	
36	
32 33 34 35 36 37 38 39 40	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
53 54	
54	
55 56	
50	
57	
58	
59	
60	

490	In this proof-of-concept clinical trial assessing the safety and efficacy of three cocktail
491	intervention formulas in RRMS, we observed a significant benefit for the novel PLP10
492	intervention compared to placebo for both the ARR and the progression to disability. Our
493	results include analyses pertaining to a total of 42 months study collected data, including the
494	12-month, free of intervention treatment, extension period. We focused on the per-protocol
495	data analysis since it is the appropriate method to best provide the answer to the proof-of-
496	concept trial-addressed question. The high drop-out rate was mostly the result of formulas
497	palatability, a common phenomenon in trials using oily interventions where a lot of patients
498	tend to drop-out soon after first dosage. We thus present our main per-protocol analysis, as
499	well as a subgroup analysis excluding patients on natalizumab. We have found a statistically
500	significant reduction in the ARR and the disability progression comparing not only patients
501	on PLP10 versus placebo but also comparing the ARR of the PLP10 patients in the 24-month
502	period prior to the study to the ARR of the 24 months on-study; the observed differences
503	became larger when patients that received natalizumab (the most potent disease modifier)
504	were excluded. The ARR decreased within a year on PLP10 and significantly remained stable
505	until study completion. Statistically significant difference of ARR between patients on PLP10
506	versus placebo continued for the additional 12 month extended period (persistent effect)
507	without significant difference on DMT. These clinical findings are supported by the results
508	regarding the MRI analysis where the proportion of patients free from new or enlarging brain
509	T2 lesions was also higher in PLP10 group versus placebo. The persistent effect within the
510	extended period it is considered of major importance and supportive of the results since it is
511	in agreement with the very long washouts, reported necessary, for omega-3 fatty acids and
512	especially DHA to return towards pretreatment values within the fatty acids of plasma,
513	platelets, monocytes and red blood cells. ⁴² This study also provides important 30-month,

514	placebo-controlled information about the safety of PLP10, A and C interventions. No severe
515	side effects have been reported.

517	As medications used to treat MS become increasingly highly specific and potent, attention to
518	safety is paramount. Current available treatments are products of reductionism, partially
519	effective, associated with severe side effects without (re)myelinating or neuroprotective
520	abilities. Interferons and glatiramer acetate, the most widely used first-line MS drugs
521	available today, are associated with the least severe side-effects among MS therapies but they
522	are reported with only 29-33% ARR reduction and with no significant effects on the
523	progression of disability. Natalizumab as previously discussed and Fingolimod with 54%
524	ARR reduction (without significant benefit on the progression of disability) are second-line
525	drugs associated with severe side-effects. ^{47, 48}
526	
527	No existing MS treatment has ever been designed as a result of SM concept approach or with
528	a potential to effectively stimulate intrinsic remyelinating and neuroprotecting mechanisms or
529	exert such an action. Now we propose that a holistic SM model approach has to be applied by
530	synchronized action on all involved perturbed mechanisms. PLP10 has innovative
531	characteristics with a postulated efficacy attained through different mechanisms of action and
532	probably by the synergistic effect of its constituent ingredients. PLP10 has all the
533	characteristics of a medical food with the action to feed a normal metabolic process by
534	supplying nutritional structural membrane precursors, building blocks, and vitamins from
535	dietary sources that enhance remyelination and neuroprotection and simultaneously promote
536	normalization of all cellular membranes lipid content. The intention is to normalize the
537	specific nutritional requirements of the MS patients.
520	
538	

BMJ Open

539	Different factors and molecular entities appear to be part of the possible aetiology for MS
540	with specific PUFA and antioxidants found to be key substances related to all known
541	pathogenic and recovery mechanisms. But, it is well established that MS patients are
542	characterized with significant deficiencies in antioxidant efficiency as well as in PUFA levels
543	in blood and cellular membranes. ^{11, 49-51}
544	
545	According to one hypothesis, the change in the ratio of omega-3 to omega-6, due to
546	increasing consumption of omega-6 PUFA, meaning high accumulation of AA, in the
547	Western diet, may be one of the major factors responsible for the increasing incidence of
548	inflammatory diseases relative to populations. In the Western diet, the ratio of omega-3 to
549	omega-6 is about 1:20–30; in populations that consume fish-based diets, the ratio is about
550	1:1–2. ^{52, 53} The intervention daily dose was aiming and believed to be high enough to
551	restore/amplify body efficient antioxidant activity and ensure cellular membranes lipid profile
552	normalization (PUFA content) and simultaneously potentiate involvement of the ingredients
553	in the anti-inflammatory and recovery mechanisms. Diet fatty acid molecules need about six
554	months period to exert their beneficial effect and this essential parameter was for the first
555	time under consideration in our study design (normalization period). ⁴² This chronotherapy
556	parameter it is of major importance in line with the SM treatment philosophy and if it is not
557	included in the trial design the possibility of misleading result evaluation greatly increases. In
558	fact, considering that omega-3 supplementation can release and replace excess AA within the
559	cellular membranes, we can speculate that an increased inflammatory activity can possibly
560	result during the first six months of supplementation (during normalization period).
561	
562	The maintenance of myelin requires continued turnover of its components throughout life. ^{54,55}
563	In addition to the EPA, DHA, LA, and GLA, PLP10 was containing limited quantities of

other structural PUFA, specific MUFA (mostly oleic acid) and SFA (palmitic and stearic
acid), specifically to provide a direct source for neuronal cell membranes rehabilitation and
for (re)myelination and neuroprotection since they are all major components, precursors and
building blocks of any new physiological myelin and cellular membranes in general.
Assembly of the correct molecules into myelin membrane may be especially critical during
active synthesis. Possibly, if critical constituents aren't available or are metabolically
blocked, amyelination, dysmyelination or demyelination may ensue.⁵⁶

The well known and established safety of the ingredients used and the protocol guidelines were supportive reasons for us to proceed with the clinical study even though with limitation on the pre-estimation of required trial sample size as it was discussed in method section. The adherence of the subjects is another issue but the duration of the study (42 months) is adding power to the results;⁴⁴ having the research questions been consciously and carefully approached and answered. Furthermore, the statistical methodologies used along with the appropriate adjustments, broadly accepted for MS clinical trials, power the findings, results, and significance. The baseline characteristics of the treatment arms could possibly be considered indicative of four very active groups of patients but that was the result of the limited number of RRMS population eligible for the study within Cyprus. On the other hand the balanced baseline characteristics without statistical differences, the statistical adjustments (for all important baseline parameters i.e. relapses, EDSS, age and DMT) and the randomization within four different groups are the safety valves against data misinterpretation. Yet, in small randomized control trials with a high drop-out rate, the perprotocol analysis could be affected by the characteristics of the patients dropping out. In order to safeguard our findings in the best possible way under the circumstances, we proceeded to adjusting for confounders. Moreover, we cannot discard our finding as a false

Page 73 of 112

1 2

BMJ Open

2
3
4
5
6
0
1
8
9
10
10
11
12
13
14
15
16
47
17
18
3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 10 11 23 10 11 23 10 11 23 10 11 23 10 11 23 11 11 23 11 11 23 11 11 23 11 11 23 11 11 23 11 11 23 11 11 23 11 11 23 11 11 23 11 11 23 11 11 11 23 11 11 11 23 11 11 11 23 11 11 11 23 11 11 11 23 11 11 11 11 11 11 11 11 11 11 11 11 11
20
21
20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 38 39 40
22
23
24
25
26
20
21
28
29
30
31
20
32
33
34
35
36
27
31
38
39
40
41
42
-T-C 4-0
43
44
45
46
47
48
49
50
51
52 53
53
55
54
55
56
57
58
59
60

positive, given that this is a randomized, double-blind, placebo-controlled clinical trial and, 589 590 despite its small sample size, represents a piece of evidence that only a larger randomized controlled trial can replicate or refute. It is possible to question why DMTs efficacy cannot 591 592 be emerged out of the data analysis, of the four treatment arms, and in accordance to their published values. We believe that the limited efficacy of the DMTs, the sample size and the 593 594 statistical adjustments were strong limiting determining factors for such an indication to be 595 countable. An additional argument is that the efficacy reported for the analysis of pre-596 treatment (24 months before entry baseline) versus on-trial ARR could be considered as 597 potentially biased due to differences of how relapses were defined during the course of a 598 study compared to pre-treatment period; or due to regression to the mean or placebo effect. 599 This analysis was performed as an additional exploratory analysis that we were able to do due 600 to the availability of data. The relapses of the two pre-treatment years were drawn out of the 601 patients' archival records by the same treating neurologist involved in the study (MP), and 602 according to the patients' hospitalization date for receiving intravenous methyl-prednisolone. 603 This analysis was not used as a primary or a secondary end-point under investigation 604 although it is usually reported by many clinical studies. As a matter of fact many early phase 605 trials are based only on such an analysis (before versus after treatment results). In almost all 606 MS trials the number of relapses within the two years before baseline is a factor under adjustment for the statistical analyses.⁴⁸ The inclusion of the post-hoc MRI analysis is another 607 608 limiting factor that needs attention since it was used as an additional aside exploratory 609 approach (due to study budget limitations it was not possible to be used as a formal 610 endpoint); but the MRI evaluation was blinded and can be considered as representative of the 611 randomized subjects within the treatment arms. As far as the regression to the mean and the 612 placebo effect concerns we believe that the 6-month normalization period is an accountable

and valuable eliminating factor of the possible effect; as well as the presence of four groups,

where only the PLP10 treatment arm is associated with statistically significant efficacy versusplacebo.

Our observations are consistent with the idea that simultaneous availability of specific PUFA along with other major membrane and myelin building blocks in combination with specific antioxidants, within optimum quantity, quality, ratio and structural form can possibly result to a more appropriate holistic therapy reducing MS disease activity. This is probably succeeded through synergistic and/or simultaneous effect on the interactions and dynamics of the most probable environmental and biological disease causing factors that induce complex biological network of events for disease pathogenesis and evolution; as well as on the protective and reparative mechanisms. We can additionally speculate that the nature of the intervention formula cannot be prohibitive for its use as preventive regimen and does not preclude probable positive efficacy on the other types of MS, but has to be further investigated. A larger size multicenter clinical trial will better establish PLP10 place in the armamentarium of treatments for MS.

It is commonly accepted that nutrition is one of the possible environmental factors involved in the pathogenesis of MS, but its role as complementary MS treatment is unclear and largely disregarded.⁵⁷ It is well known that the majority of the patients suffering from MS they do use dietary supplements for a variable length of time and they prefer supplement type of "help" over conventional drugs.⁵⁸ Dietary antioxidants and fatty acids may influence the disease process in MS by reducing immune-mediated inflammation, oxidative stress and excitotoxic damage.¹¹ Present data reveal that healthy dietary molecules have a pleiotropic role and are able to change cell metabolism from anabolism to catabolism and down-regulate inflammation by interacting with enzymes, nuclear receptors and transcriptional factors.⁵⁷

BMJ Open

1		
2 3	639	The present preliminary small size randomized controlled phase II clinical trial, for the first
4	039	The present premininary small size randomized controlled phase if emilical triat, for the first
5	640	time provides link evidence between dietary, metabolic, immunological, and neurobiological
6	040	time provides mix evidence between dreary, metabolie, immunological, and hearobiological
7	641	aspects of MS after three quarters of a century of unsuccessful scientific efforts. This link
8	041	aspects of MS after three quarters of a century of unsuccessful scientific efforts. This link
9	C 4 2	evidence might probably be the beginning of opening new horizons and new avenues in the
10	642	evidence might probably be the beginning of opening new norizons and new avenues in the
11	C 4 2	approach of MS prevention and treatment, and possibly of other multifactorial chronic
12 13	643	approach of Mis prevention and treatment, and possibly of other multifactorial chronic
13	644	diseases, including neurodegenerative and autoimmune as well.
15	044	diseases, including neurodegenerative and autoininnune as wen.
16	645	
17	045	
18	C 4 C	
19	646	
20	C 47	
21	647	
22 23	C 4 0	
23 24	648	
25	649	
26	049	
27	650	
28	050	
29	651	
30	051	
31 32	652	
32 33	052	
34	653	
35	033	
36	654	
37	054	
38	655	
39	000	
40 41	656	
41	000	
43	657	
44		
45	658	
46		
47	659	
48		
49 50	660	
50 51		
52	661	
53		
54	662	
55		
56	663	
57		
58 59		
59 60		
00		
		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

1.			
	Treatme	ent Arms	
A†	B (PLP10)†	C†	Placebo †
Intervention:	Intervention:	Intervention:	Intervention:
EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg)* / total MUFA** (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) plus citrus aroma	EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg)* / total MUFA** (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) + pure γ -tocopherol (760mg) plus citrus	pure γ-tocopherol (760mg) dispersed in pure virgin olive oil (16,137 mg) as delivery vehicle plus citrus aroma	Olive oil (pure virgin) plus citrus aroma
	aroma		
⁺ Total daily dose 19.5m EPAX1050, EPAX AS, A glycerides from fish body International GmbH, Edli triglycerides. The pure γ - Japan; vitamin A as beta-c	Aalesund, Norway; was used oils; Borage seed oil (organ ng, Germany, was used as th tocopherol was purchased f arotene from HealthAid Ltd.,	as the source for the omeg ic, cold pressed) "Borago o te source for the omega-6 F rom Tama Biochemical Co	fficinalis" Goerlich Phar PUFA, MUFA and SFA, . Ltd., Shinjuku-ku Tok
Givaudan Schwaiz AG, D	ubendorf Switzerland		
Table 1. Intervention	ingredients per treatmen	t arm.	
Table 1. Intervention		64	
Table 1. Intervention		64	
Table 1. Intervention		64	
Table 1. Intervention		64	2
Table 1. Intervention		64	2
Table 1. Intervention		64	

2A.					
Characteristics	Group A (n=20)	Group B† (n=20)	Group C (n=20)	Placebo (n=20)	P- valı
Sex					
Female - no. (%)	15 (75)	15 (75)	15 (75)	15 (75)	1.0
Age (yr)					
Mean ± Standard Deviation (SD)	38.0±11.9	36.9±8.4	37.7±8.7	38.1±10.9	0.9
Median (Range)	38.0 (22 - 65)	37.0 (25 –61)	36.5 (24 - 54)	36.0 (21–58)	
Treatment history					
Patients on DMT- no. (%)	11 (55)	9 (45)	12 (60)	10 (50)	0.8
Pre-treatment disease duration (yr)					
Mean ± SD	9.0±7.6	8.6±4.8	8.6±5.3	7.7±5.7	0.9
Median (Range)	7.5 (2 – 37)	8.0 (2 – 20)	8.0 (3 – 24)	6.5 (2 – 25)	
Pre-treatment relapses‡					
Mean ± SD	2.33±1.68	2.41±1.73	2.31±1.66	2.10±1.32	0.9
Median (Range)	2.0 (1 – 6)	2.0 (1 – 7)	2.0 (1 - 6)	2.0 (1 – 4)	
ARR	1.17	1.21	1.16	1.05	0.9
Patients -% with ≤ 1 relapse	40	45	40	35	
Baseline EDSS score‡					
Mean ± SD	2.52±1.23	2.15±1.05	2.42±1.21	2.39± 0.93	0.7
Median (Range)	2.5 (1.0–5.5)	2.0 (1.0–4.0)	2.5 (0.0-5.0)	2.5 (1.0-4.0)	
2B.					
Characteristics	Group A (n=10)	Group B† (n=10)	Group C (n=9)	Placebo (n=12)	P- val
Sex					
Female - no. (%)	5 (50)	7 (70)	6 (66.6)	10 (83.3)	0.4
Age (yr)					
Mean \pm SD	36.6±13.5	34.80±5.4	40.9±8.1	39.8±13.2	0.5
Median (Range)	34.5 (22–65)	34.5 (26–43)	40.0 (29–54)	37.5 (21–58)	
Treatment history					
Patients on DMT- no. (%)	6 (60)	4 (40)	6 (67)	6 (50)	0.9
Pre-treatment disease duration (yr)					
Mean ± SD	9.7±10.0	8.3±5.3	11.3±6.1	8.7± 7.1	0.8
Median (Range)	7.5 (2 – 37)	8.0(2-20)	8.0 (4 – 24)	5.5 (2 - 25)	

2.20±1.47	2.70±1.25	1.78±0.66	1.67±1.37	0.241
2.0 (1 – 6)	2.5 (1 – 4)	2.0 (1 – 3)	1.5 (1 – 4)	
1.10	1.35	0.89	0.83	
30	20	33	50	
2.65±1.37	2.40±1.12	2.11±1.02	2.16±0.96	0.698
3.0 (1.0-5.5)	2.5 (1.0-4.0)	2.0 (1.0-4.0)	2.0 (1.0-3.5)	
3.0 (1.0–5.5)	2.5 (1.0-4.0)	2.0 (1.0-4.0)	2.0 (1.0-3.5)	
		=19 for group C,		
	2.0 (1 – 6) 1.10 30 2.65±1.37	2.0 (1 - 6) 2.5 (1 - 4) 1.10 1.35 30 20 2.65±1.37 2.40±1.12	$2.0 (1-6)$ $2.5 (1-4)$ $2.0 (1-3)$ 1.10 1.35 0.89 30 20 33 2.65 ± 1.37 2.40 ± 1.12 2.11 ± 1.02	2.0 (1 - 6) 2.5 (1 - 4) 2.0 (1 - 3) 1.5 (1 - 4) 1.10 1.35 0.89 0.83 30 20 33 50 2.65±1.37 2.40±1.12 2.11±1.02 2.16±0.96

Table 2. The table section 2A reports the demographics and baseline disease characteristics for

 total randomized population by treatment arm.

The table section 2B reports the demographics and baseline disease characteristics of all-time onstudy population by treatment arm. There were no significant between study-group differences at baseline for any characteristic.

675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	
687	
688	

Characteristics	Group A (N =10)		Group B† (N=10)		Group C (N =9)		Placebo (N=12)	
			×					
End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	22	17	27	8	16	13	20	25
Annual Relapse Rate (ARR)	1.10	0.85	1.35	0.40	0.88	0.72	0.83	1.04
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-18		-62		-30		N/A
P Value against placebo		0.468		0.024		0.578		
ARR change -% (Y to X)¶	-2	23	-7	70	- :	18	+ :	25
P value against baseline	0.4	125	0.0	0.2	0.5	578	0.5	500

X: Total number of relapses of 24 months pre-treatment (baseline) Y: Total number of relapses of 24 months on-treatment

¶ Unadjusted estimate

3B.								
<u>Excluding patients on</u> <u>natalizumab</u>		oup A (=9)	Grouj (N =			Group C (N =9)		cebo =10)
End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	16	15	27	8	16	13	13	19
Annual Relapse Rate (ARR)	0.88	0.83	1.35	0.40	0.88	0.72	0.65	0.95
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-13		-58		-24		N/A
P Value against placebo		0.493		0.016		0.412		
ARR change -% (Y to X)¶		-6	-7	0	- 1	8	+-	46
P value against baseline	0.	857	0.0	03	0.5	78	0.3	354

X: Total number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

† PLP10 group

¶ Unadjusted estimate

Table 3. The table section 3A reports the two year primary end points of ARR of all-time on-study

population by treatment arm and percent difference with placebo. During the 24mo period on-treatment

the ARR of the group A was 0.85 with 18% decrease compared to placebo (p=0.468), of PLP10 group 0.40 with 62% decrease (p=0.024), and of group C 0.72 with 30% decrease (p=0.578) and reports the comparison of the 24mo pre-treatment ARR (baseline ARR) to 24mo on-treatment ARR of all-time on-study population including patients on natalizumab.

The table section 3B reports comparison of the 24mo pre-treatment ARR to 24mo on-treatment ARR of all-time on-study population excluding patients on natalizumab; and the comparison of the ARR during the 24mo period on-treatment (primary end point) between each one of the groups against placebo.

689	
690	
691	
692	
693	
694	
695	
696	
697	
698	
699	
700	
701	
702	
703	
704	
705	
706	

4A.								
Characteristics	Group A (N =8)		Group B† (N=7)		Group C (N=10)		Placebo (N=7)	
	Х	Y	Х	Y	Х	Y	Х	Y
No. of Relapses	20	14	14	14	27	26	20	13
Annual Relapse Rate (ARR)	1.25	0.88	1.00	1.00	1.35	1.30	1.42	0.92

X: Total number of relapses of 24 months pre-treatment

Y: Total number of relapses of 24 months on-treatment

4B.								
Characteristics	Grou (N =	ир А =20)		up B† =20)		up C =20)		ebo =20)
End Point	Х	Y	Х	Y	Х	Y	Х	Y
No. of Relapses	45	34	49	30	46	41	43	41
Annual Relapse Rate (ARR)	1.13	0.85	1.23	0.75	1.15	1.03	1.08	1.03
ARR Reduction -% (Y to X)¶	-2	25	-	39	-]	10	-	5
P value against baseline	0.1	20	0.	005	0.4	475	0.6	52
% Reduction of the ARR Compared to Placebo (Ys)¶		-18		-27		0.0		N/A
P Value against placebo		0.447		0.121		0.996		

X: Total number of relapses of 24 months pre-treatment (baseline)

Y: Total number of relapses of 24 months on-treatment

¶ Unadjusted estimate

† PLP10 group

Table 4. The table section 4A reports the two year primary end point of relapses based on study design as reported by drop-out patients by Treatment Arm. The most drop-out patients that went on disease modified therapy (DMT) were from the group A and placebo with three and two patients respectively on natalizumab. These parameters justify the decreased number of relapses recorded within group A and placebo drop-outs; and this could affect the ITT analysis in favor of placebo when the total two-year recorded data are used. For PLP10 group, 14 relapses were reported at baseline and remained the same during the two-year study. For placebo, 20 relapses were reported at baseline and decreased to 13 during the two-

year study. This is expected since, for PLP10 group 43% of the drop-outs were under DMT at entry baseline and remained the same until the end of the study with no patient on natalizumab; but 57% of the placebo group drop-outs that were under DMT at entry baseline increased to 86% at the end of the study including two patients on natalizumab.

The table section 4B reports comparison of 24 months pre-treatment ARR (baseline) to 24 months on-treatment ARR of total randomized population, by treatment arm. The ARR of PLP10 group was 1.23 at baseline and 0.75 at the end of the study (39% reduction p=0.005), and for placebo 1.08 at baseline and 1.03 at the end of the study (5% reduction p=0.652). No statistical difference was calculated for the other two treatment arms. During the 24 months on-treatment, PLP10 group presented a 27% reduction of ARR versus placebo (p=0.121), with all groups without statistically significant results.

707	
708	
709	
710	
711	
712	
713	
714	
715	

Characteristics*	Group A (n=10)	Group B PLP10 (n=10)	Group C (n=9)	Placebo (n=12)	P-va Grou B <i>vs.</i> Place
Annual relapse rate over 1year**	0.80	0.40	0.78	0.83	
Total number of relapses**	8	4	7	10	
Primary end points					
Annual relapse rate over 2 years (95% CI)**	0.85	0.40 (0.15-0.87)	0.72	1.04	0.02
Total number of relapses**	17	8	13	25	
Excluding patients on natalizumab	(n=9)	(n=10)	(n=9)	(n=10)	
Annual relapse rate over 2 years (95% CI)	0.83	0.40 (0.10-0.79)	0.72	0.95	0.01
Total number of relapses	15	8	13	19	
Secondary end points					
Cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -% **	43	10 (1/10)	24	58 (7/12)	0.01
Excluding patients on natalizumab cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -%	33	10 (1/10)	24	70 (7/10)	0.00
Exploratory Results					
Patients proportion with ≤ 1 relapse over 2 years -% **	50 (5/10)	90 (9/10)	56 (5/9)	42 (5/12)	0.03
MRI					
Patients proportion with new or enlarging T2 lesions-% **		29 (2/7)		67 (4/6)	
Excluding patients on natalizumab Patients proportion with no new or enlarging T2 lesions-%		29 (2/7)		80 (4/5)	
DMT (interferons, glatiramer acetate) and natalizumab					
Patients proportion on DMT and natalizumab at the end of 2 years-% **	80 (8/10)†	60 (6/10)	67 (6/9)	75 (9/12) ‡	0.74
 CI denotes confidence interval. Including patients on natalizumab 1out of 10 on natalizumab 2 out of 12 on natalizumab 					

2
3
4
5
6
/ 8
9
10
11
12
13
14 15
15 16
17
18
19
20
-3 45 67 89 101 123 145 167 189 201 223 245 267 289 313 334 356 378 391 333 355 378 391 39
22
23 24
25
26
27
28
29
30
32
33
34
35
36
31
30 30
40
41
42
43
44
45 46
40 47
48
49
50
51
52 52
53 54
55
48 49 50 51 52 53 54 55 56 57 58 59 60
57
58
59
60

717	Acknowledgments: We thank all participant patients. We thank Thyrsos Posporis MD and the
718	central reading centre (Ayios Therissos Medical Diagnostic Centre, Nicosia, Cyprus), and
719	Eleni Eracleous, MD (neuroradiologist) for the contribution on the MRI scans and their team
720	for the MRI reading. Special thanks to Elena Kkolou the pharmacist involved in the study and
721	Eftychia Gaglia for her nursing contribution and collection of blood from the patients. We
722	also thank Demetris Hadjisofoklis and Ioanna Leontiou (University of Nicosia, Helix
723	Business incubator) for their contribution on randomization process, data collection, filing
724	and blind codes keeping. Additionally we would like to thank the CING for hosting the
725	project. Moreover, we thank the Cyprus Ministry of Commerce, Industry and Tourism for
726	funding the project; and Yasoo Health Ltd., for providing some of the raw materials in
727	exchange of investigating, on their behalf, the efficacy and safety of γ -tocopherol.
728	
729	Contributors: All authors interpreted the data. I.S.P drafted the report and figures and all
730	authors critically revised and approved the final version. M.C.P and I.S.P were responsible
731	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs
731 732	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic
732	and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic
732 733	and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L
732 733 734	and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the
732 733 734 735	and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the composition procedure of the interventions and the fatty acid profile analysis of the red blood
732 733 734 735 736	and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L contributed on the intervention formulation and composition rational. I.S.P supervised the composition procedure of the interventions and the fatty acid profile analysis of the red blood cell membranes. E.E.N and I.S.P performed the statistical analyses. E.E.N was an

BMJ Open

740	Funding: Supported by a grand from the Cyprus Ministry of Commerce, Industry and
741	Tourism, program for the creation of new high technology and innovation enterprises through
742	the business incubator.
743	
744	Competing interest: M.C.P, G.N.L, I.S.P received grand support from the Cyprus Ministry of
745	Commerce, Industry and Tourism, Program for the Creation of New High Technology and
746	Innovation Enterprises through the Business Incubator. PALUPA Medical Ltd. is a research
747	company formed and registered for completion of the study, as required by the Governments'
748	funding grand program. M.C.P, G.N.L, I.S.P, and CING are all stockholders of the PALUPA
749	Medical Ltd. M.C.P is an employee at the CING. I.S.P is a senior research collaborator
750	hosted by the CING. G.N.L is a CING collaborator. E.E.N declares no-competing interest.
751	No pharmaceutical companies were involved in this phase II clinical trial. The intervention is
752	under a USA provisional patent; Application Number 61469081.
753	
754	Ethical approval: Cyprus National bioethics committee (reference EEBK/EII/2005/10).
755	
756	All authors have completed the Unified Competing Interest form at
757	www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and
758	declare that (1) M.C.P, G.N.L, I.S.P have support from Cyprus Ministry of Commerce,
759	Industry and Tourism, Program for the Creation of New High Technology and Innovation
760	Enterprises through the Business Incubator for the submitted work; (2) E.E.N has no
761	relationships with Cyprus Ministry of Commerce, Industry and Tourism, or PLUPA Medical
762	Ltd. that might have an interest in the submitted work in the previous 3 years; (3) their
763	spouses, partners, or children have no financial relationships that may be relevant to the

3	
4	
5	
5 6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
9 10 11 12 13 14 15 16 17 18 19	
16	
17	
10	
10	
19	
20	
21	
22	
23	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
55	
56	
57	
58	
59	
60	

submitted work; and (4) E.E.N has a non-financial interests that may be relevant to thesubmitted work.

766

The Corresponding Author has the right to grant on behalf of all authors and does grant on
behalf of all authors, an exclusive license on a worldwide basis to the BMJ Publishing Group
Ltd and its Licensees to permit this article (if accepted) to be published in BMJ editions and
any other BMJPGL products and sublicences to exploit all subsidiary rights, as set out in our
licence (http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication)."

772

Article Summary

Article focus:

- The increasing prevalence of Multiple Sclerosis (MS), the limited efficacy and the side effects of the existing treatments urge the clinical need for the development of new, innovative, more effective, safe, and preventive treatment strategies.
- For the first time we propose three original nutraceutical treatment intervention-cocktails, formulated based on systems medicine through nutritional systems biology rational; with PLP10 representing the complete composition of the formulation and the other two treatments represent partial formulations.
- We have studied the proposed interventions on 80 relapsing remitting MS patients (four groups of 20 each) for a total of 42 months, in a randomized, double-blind, placebo-controlled, phase II proof-of-concept clinical trial.

Key messages:

- The per-protocol data analyses indicated that PLP10 is associated with significant efficacy versus placebo on both reducing the annualized relapse rate and disease progression without any adverse or severe side effects.
- Overall, for this small size phase II study, a total of 41 (51%) patients completed the 42-month trial. For the per-protocol analysis of the two-year primary end point, 8 relapses were recorded in the PLP10 group (n=10) (0.40 ARR) versus 25 relapses in the placebo group (n=12) (1.04 ARR), a 64% adjusted relative rate reduction for the PLP10 group (RRR 0.36, 95% CI 0.15 to 0.87, p=0.024). In a subgroup analysis that excluded patients on monoclonal antibody (natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016). Perprotocol analysis for the secondary outcome at two years, time to disability progression, was significantly longer only with PLP10. The cumulative probability of disability progression at two years was 10% in the PLP10 group and 58% in the placebo group (unadjusted log-rank p=0.019). In a subgroup analysis that excluded patients on natalizumab the cumulative probability of progression was 10% for the 10 patients in the PLP10 group and 70% for the 12 patients in the placebo group, a relative 86% decrease in the risk of sustained progression of disability in the PLP10 group (unadjusted log-rank p=0.011; 95% CI 0.01 to 0.97, p=0.047).
- PLP10 has probably the ability to interfere with the total known repertoire of mechanisms involved in MS pathogenesis as well as with the recovery mechanisms, neuroprotection and remyelination.; it is potentially able to manipulate global perturbed networks of the disease causing factors rather than focusing only on unique failing components.
- This proof-of-concept clinical study might be indicative and the beginning of new avenues in MS prevention and treatment and of new epoch of novel drug development

with dynamic therapeutic potential for chronic complex multifactorial diseases.

Strengths and limitations of this study:

- The strength of this study is the systems medicine therapeutic approach, the length of the study the inclusion of the six months normalization (chronotherapy) period, and the study protocol following all indicated appropriate guidelines with definite inclusion/exclusion criteria and primary/secondary end points.
- The sample size and the high rate of drop-outs (palatability of the formula) are the limitations associated with the present study.
- A phase III multi-center clinical trial will establish the present intervention regime among the best choices among neurodegenerative diseases prophylaxis and MS treatment drugs faretra.

BMJ Open

1 2 3 4 5	781	Refe	rences
6 7	782	1.	Baranzini SE, Oksenberg JR, Hauser SL. New insights into the genetics of multiple
8 9	783		sclerosis. Journal of Rehabilitation Research and Development 2002;39:201-210.
10 11 12	784	2.	Goni J, Esteban FJ, de Mendizabal NV, et al. A computational analysis of protein-
13 14	785		protein interaction networks in neurodegenerative diseases. BMC Syst Biol
15 16	786		2008;2:52.
17 18	787	3.	Lobo I. Multifactorial inheritance and genetic disease. Nature Education 2008; 1.
19 20	788	4.	Compston A, Coles A. Multiple sclerosis. Lancet 2002;359:1221.
21 22 23	789	5.	Evans PH. Free radicals in brain metabolism and pathology. British Medical Bulletin
24 25	790		1993;49:577-587.
26 27	791	6.	Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab
28 29	792		Sci 1997;27:11-25.
30 31 22	793	7.	Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez
32 33 34	794		MV. The link between excitotoxic oligodendroglial death and demyelinating diseases.
35 36	795		Trends in Neurosciences 2001;24:224-230.
37 38	796	8.	Owens T. The enigma of multiple sclerosis: inflammation and neurodegeneration
39 40	797		cause heterogeneous dysfunction and damage. Current Opinion in Neurology
41 42 43	798		2003;16:259-265.
44 45	799	9.	Smith KJ, Kapoor R, Felts PA. Demyelination: The role of reactive oxygen and
46 47	800		nitrogen species. Brain Pathology 1999;9:69-92.
48 49	801	10.	Ahn AC, Tewari M, Poon C-S, Phillips RS. The Clinical Applications of a Systems
50 51 52	802		Approach. PLoS Med 2006;3:e209.
52 53 54	803	11.	van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF. Antioxidants and
55 56 57 58 59 60	804		polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 2005;59:1347-1361.

3	
4	
5	
6	
/ 2	
9	
10	
11	
12	
13	
14	
16	
17	
7 8 9 10 11 12 13 14 15 16 17 18 19 20	
19	
20 21	
22	
22	
23 24 25	
25	
26 27	
26 27 28	
29	
30 31	
31	
32 33 34 35 36 37 38	
34	
35	
36	
37	
39	
40	
41	
42 43	
43 44	
45	
46	
47	
48 49	
50	
51	
52 53	
53 54	
54 55	
56	
57	
58	
59 60	
00	

805	12.	Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases.
806		The American Journal of Clinical Nutrition 2006;83:S1505-1519S.
807	13.	Piani D, Fontana A. Involvement of the cystine transport system xc- in the
808		macrophage- induced glutamate-dependent cytotoxicity to neurons. The Journal of
809		Immunology 1994;152:3578-3585.
810	14.	Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health
811		implications. International Journal of Developmental Neuroscience 2000;18:383-399.
812	15.	Calder PC. Dietary modification of inflammation with lipids. Proceedings of the
813		Nutrition Society 2002;61:345-358.
814	16.	Gil Á. Polyunsaturated fatty acids and inflammatory diseases. Biomedecine &
815		Pharmacotherapy 2002;56:388-396.
816	17.	Ariel A, Serhan CN. Resolvins and protectins in the termination program of acute
817		inflammation. Trends in Immunology 2007;28:176-183.
818	18.	Arita M, Ohira T, Sun Y-P, Elangovan S, Chiang N, Serhan CN. Resolvin E1
819		selectively interacts with leukotriene B4 receptor BLT1 and chemR23 to regulate
820		inflammation. The Journal of Immunology 2007;178:3912-3917.
821	19.	Janakiram NB, Rao CV. Role of Lipoxins and Resolvins as Anti-Inflammatory and
822		Proresolving Mediators in Colon Cancer. Current Molecular Medicine 2009;9:565-
823		579.
824	20.	Serhan C, Arita M, Hong S, Gotlinger K. Resolvins, docosatrienes, and
825		neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-
826		triggered epimers. Lipids 2004;39:1125-1132.
827	21.	Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-
828		inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008;8:349-361.

Page 91 of 112

BMJ Open

2			
2 3 4	829	22.	Rossetti RG, Seiler C, DeLuca P, Laposata M, Zurier R. Oral administration of
5 6	830		unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation.
7 8	831		Journal of Leukocyte Biology 1997;62:438-443.
9 10	832	23.	Vatassery G. Vitamin E and other endogenous antioxidants in the central nervous
11 12	833		system. Geriatrics 1998a;53:S25-S27.
13 14	834	24.	Fukuzawa K, Gebicki JM. Oxidation of [alpha]-tocopherol in micelles and liposomes
15 16 17	835		by the hydroxyl, perhydroxyl, and superoxide free radicals. Archives of Biochemistry
18 19	836		and Biophysics 1983;226:242-251.
20 21	837	25.	Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames
22 23	838		BN. γ -Tocopherol traps mutagenic electrophiles such as NOx and complements α -
24 25	839		tocopherol: Physiological implications. Proceedings of the National Academy of
26 27	840		Sciences of the United States of America 1997;94:3217-3222.
28 29 30	841	26.	Brigelius-Flohé R, Kelly FJ, Salonen JT, Neuzil J, Zingg J-M, Azzi A. The European
30 31 32	842		perspective on vitamin E: current knowledge and future research. The American
33 34	843		Journal of Clinical Nutrition 2002;76:703-716.
35 36	844	27.	Calder P. Polyunsaturated fatty acids, inflammatory processes and inflammatory
37 38		21.	bowel diseases Mol Nutr Food Res 2008;52:885–897
39 40	845	• •	
41 42	846	28.	Edwards IJ, O'Flaherty JT. Omega-3 Fatty Acids and PPAR γ in Cancer. PPAR
43 44	847		Research 2008;2008:1-15.
45 46	848	29.	Groeger AL, Cipollina C, Cole MP, et al. Cyclooxygenase-2 generates anti-
47 48	849		inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 2010;6:433-441.
49 50	850	30.	Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related
51 52	851		decreases in nuclear receptors and increase neurogenesis in old rats. Journal of
53 54 55	852		Neuroscience Research 2010;88:2091-2102.
56 57			
58			
59 60			

2 3 4	853	31.	McNamara RK. DHA Deficiency and Prefrontal Cortex Neuropathology in Recurrent
5 6	854		Affective Disorders. The Journal of Nutrition 2010;140:864-868.
7 8	855	32.	Salvati S, Natali F, Attorri L, et al. Eicosapentaenoic acid stimulates the expression of
9 10	856		myelin proteins in rat brain. Journal of Neuroscience Research 2008;86:776-784.
11 12	857	33.	Abraham M, Shapiro S, Karni A, Weiner HL, Miller A. Gelatinases (MMP-2 and
13 14 15	858		MMP-9) are preferentially expressed by Th1 vs. Th2 cells. Journal of
16 17	859		Neuroimmunology 2005;163:157-164.
18 19	860	34.	C ffrench-Constant. Pathogenesis of multiple sclerosis. The Lancet 1994;343:271-
20 21	861		275.
22 23	862	35.	Leppert D, Lindberg RLP, Kappos L, Leib SL. Matrix metalloproteinases:
24 25 26	863		multifunctional effectors of inflammation in multiple sclerosis and bacterial
20 27 28	864		meningitis. Brain Research Reviews 2001;36:249-257.
29 30	865	36.	Curtis CL, Rees SG, Cramp J, et al. Effects of n-3 fatty acids on cartilage metabolism.
31 32	866		Proceedings of the Nutrition Society 2002;61:381-389.
33 34 35	867	37.	Harris MA, Hansen RA, Vidsudhiphan P, et al. Effects of conjugated linoleic acids
36 37	868		and docosahexaenoic acid on rat liver and reproductive tissue fatty acids,
38 39	869		prostaglandins and matrix metalloproteinase production. Prostaglandins, Leukotrienes
40 41	870		and Essential Fatty Acids 2001;65:23-29.
42 43	871	38.	McCabe A, Wallace J, Gilmore W, Strain J, McGlynn H. The effect of
44 45 46	872		eicosapentanoic acid on matrix metalloproteinase gene expression. Lipids
47 48	873		1999;34:S217-S218.
49 50	874	39.	Shinto L, Marracci G, Bumgarner L, Yadav V. The Effects of Omega-3 Fatty Acids
51 52	875		on Matrix Metalloproteinase-9 Production and Cell Migration in Human Immune
53 54	876		Cells: Implications for Multiple Sclerosis. Autoimmune Diseases 2011;2011.
55 56 57			
58 59			
60			

1 2 Page 93 of 112

BMJ Open

3 4	877	40.	Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and
5	878		healthcare. Genome Med 2009;1:2.
7 8	879	41.	Huang WL, King VR, Curran OE, et al. A combination of intravenous and dietary
9 10	880		docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain
11 12	881		2007;130:3004-3019.
13 14 15	882	42.	Marangoni F, Angeli MT, Colli S, et al. Changes of $n - 3$ and $n - 6$ fatty acids in
16 17	883		plasma and circulating cells of normal subjects, after prolonged administration of 20:5
18 19	884		(EPA) and 22:6 (DHA) ethyl esters and prolonged washout. Biochimica et Biophysica
20 21	885		Acta (BBA) - Lipids and Lipid Metabolism 1993;1210:55-62.
22 23 24	886	43.	Martínez M, Vázquez E, García-Silva MT, et al. Therapeutic effects of
25 26	887		docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders1.
27 28	888		The American Journal of Clinical Nutrition 2000;71:376S-385S.
29 30	889	44.	Committee for medicinal products for human use. Guideline on clinical trials in small
31 32	890		populations In: European Medicines Agency, 2006: 1-10.
33 34 35	891	45.	Gerard E Dallal. The Little Handbook of Statistical Practice. [online]. Available at
36 37	892		URL . Accessed Date Accessed, Year .
38 39	893	46.	Wang YC, Meyerson L, Tang YQ, Qian N. Statistical methods for the analysis of
40 41	894		relapse data in MS clinical trials. Journal of the Neurological Sciences 2009;285:206-
42 43 44	895		211.
45 46	896	47.	Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial
47 48	897		of natalizumab for relapsing multiple sclerosis. The New England Journal of
49 50	898		Medicine 2006;354:899-910.
51 52 53	899	48.	Kappos L, Radue E-W, O'Connor P, et al. A Placebo-Controlled Trial of Oral
53 54 55	900		Fingolimod in Relapsing Multiple Sclerosis. New England Journal of Medicine
56 57	901		2010;362:387-401.
58 59 60			

3
4
5
6
4 5 6 7 8
8
9
9 10
11
12
13
12 13 14 15 16 17
15
16
17
18
18 19
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32
23
24
25
26
27
28
29
30
30 31 32 33 34 35 36 37 38
32
33
34
35
36
37
38
39
39 40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

902	49.	Cunnane S, Ho S, Dore-Duffy P, Ells K, Horrobin D. Essential fatty acid and lipid
903		profiles in plasma and erythrocytes in patients with multiple sclerosis. The American
904		Journal of Clinical Nutrition 1989;50:801-806.
905	50.	Harbige LS, Sharief MK. Polyunsaturated fatty acids in the pathogenesis and
906		treatment of multiple sclerosis. British Journal of Nutrition 2007;98:S46-S53.

- 907 51. Wilson R, Tocher D. Lipid and fatty acid composition is altered in plaque tissue from
 908 multiple sclerosis brain compared with normal brain white matter. Lipids 1991;26:9909 15.
 - 910 52. Rafat AS, Saame RS, Laura AS, Heidi RY, William S, Gary PZ. Omega 3-Fatty
 911 Acids: Health Benefits and Cellular Mechanisms of Action. Mini Reviews in
 - 912 Medicinal Chemistry 2004;4:859-871.
- 913 53. Shaikh SR, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells,
 914 and antigen presentation. The American Journal of Clinical Nutrition 2006;84:1277915 1289.
- 916 54. Lajtha A, Toth J, Fujimoto K, Agrawal CH. Turnover of Myelin Proteins in Mouse
 917 Brain in vivo. Biochem J 1977;164:323-329.
- 918 55. LeBaron FN, Sanyal S, Jungalwala FB. Turnover rate of molecular species of
 919 sphingomyelin in rat brain. Neurochemical Research 1981;6:1081-1089.
- 920 56. Yao JK. Increased polyunsaturated fatty acids in developing and regenerating
- 921 peripheral nerve. Biochimica et Biophysica Acta (BBA) Lipids and Lipid
- 922 Metabolism 1982;712:542-546.
- 923 57. Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a
 924 narrative review. Complement Ther Med 2011;19:228-237.
 - 925 58. Farinotti M, Simi S, Di Pietrantonj C, McDowell N, et al. Dietary interventions for
 926 multiple sclerosis (Review), the Cohrane Library 2007, issue I.

Page 95 of 112

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

arm. **

Figure legends

Figure 1. Study Flowchart

MMP, metalloproteinase.

possible effects on inflammation.

1

Figure 2. Omega-6 and omega-3 PUFA, their respective metabolic derivatives and their

After consumption, the PUFAs are metabolized via several pathways (not shown) to active

compounds that mediate inflammation and products that promote resolution of inflammation.

factor kappa B; PGE2, prostaglandin E2; PPARy, peroxisome proliferator-activated receptor

Abbreviations: PL, phospholipid; IFN- γ , interferon γ ; IL-2, interleukin 2; NF κ B, nuclear

 γ ; PUFAs, polyunsaturated fatty acids; TGF β , transforming growth factor β ; TNF, tumor

hydroperoxyeicosatetraenoic acid; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin;

Figure 3. Panel A demonstrates the ARR of all-time on-study patients during the 24mo pre-

treatment (baseline ARR) and at different on-study intervals (6, 12, 18, 24 mo) per treatment

Panel B demonstrates the ARR of all-time on-study population between 0-6, 6-12, 6-18, and

Panel C demonstrates the ARR of all-time on-study population of PLP10 vs. placebo group at

Panel D demonstrates the dispersion of relapses throughout the 2-year period of all-time on-

study (excluding patients on natalizumab) of PLP10 (n=10) vs. placebo (n=10). Placebo

6-24 mo period intervals, of PLP10 vs. placebo group. **

baseline, during 1st year, and during the 2-year on-treatment. **

TX, thromboxane; RXR- γ , retinoid X receptor-gamma; Nrf2, nuclear respiratory factor;

necrosis factor; COX, cyclooxygenase; hydroxyeicosatetraenoic acid; HPETE,

2
3
4
5
2 3 4 5 6
7
<i>'</i>
8
9
10
11
12
13
14
14
15
16
17
18
19
20
8 9 10 11 12 13 14 15 16 7 18 9 21 22 32 4 25 26 27 28 9 0 12 33 34 35 36 7 8 9 30 31 23 34 35 36 37 8 9 30 31 23 34 35 36 37 8 9 30 31 32 33 34 35 36 37 38 37 37 38 37 37 38 37 38 37 37 37 38 37 38 37 38 37 38 37 38 37 38 37 37 37 37 37 37 37 37 37 37 37 37 38 37 37 37 37 37 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37
22
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
46
40
47
48
49
50
51
52
53
53 54
55
56
57
58
59
60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

shows an irregular dispersion of relapses in relation to PLP10 group with linear increasing
trend wile PLP10 shows a stabilized linear trend. By using the per-protocol model where
patients on natalizumab were excluded, we could compare the number of relapses on a same
number of patients.

953 ** Including the patients on natalizumab.

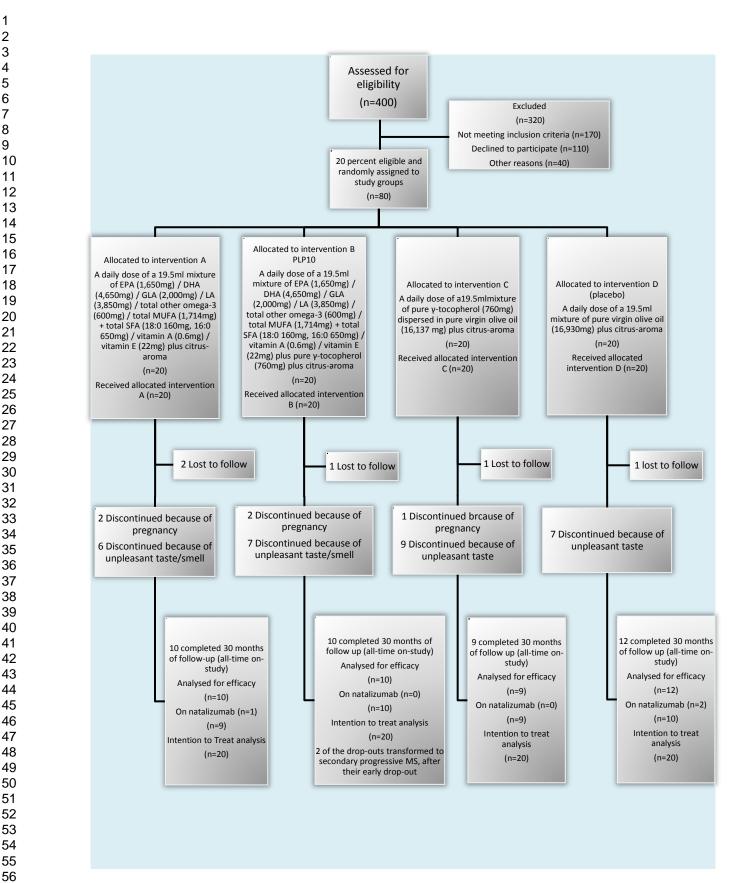
Figure 4. Panel 4A demonstrates the Kaplan–Meier plot of the time to sustained progression
of disability among all-time on-study patients, excluding patients on natalizumab, receiving
intervention A, PLP10 and C as compared with placebo. PLP10 reduced the risk of sustained
progression of disability by 86% over two years (p=0.006). Intervention formula A reduced
the risk of sustained progression of disability by 53% (p=0.266) and intervention formula C
by 67% (p=0.061).

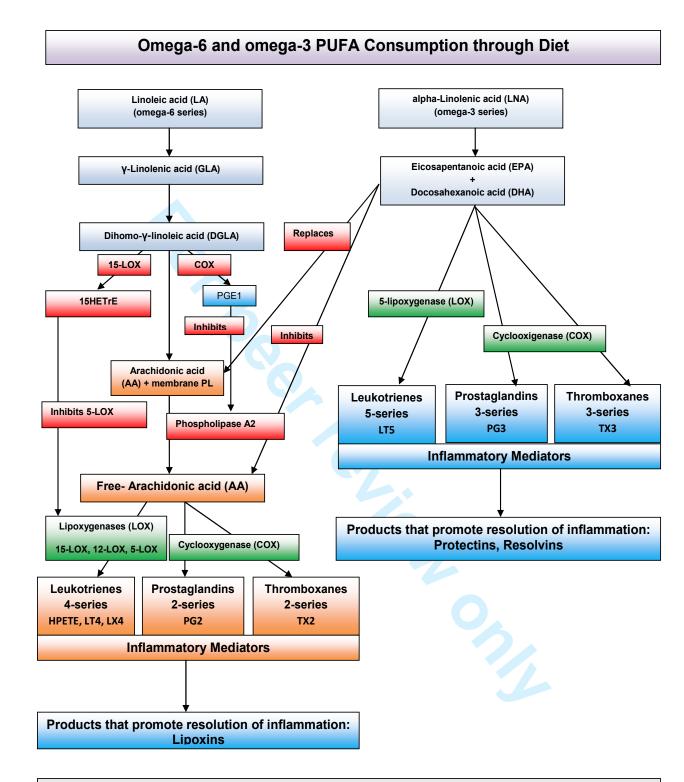
960 Panel 4B demonstrates the Kaplan–Meier plot of the time to sustained progression of

961 disability among ITT population receiving intervention A, PLP10 and C as compared with

962 placebo. PLP10 reduced the risk of sustained progression of disability by 71% over two years

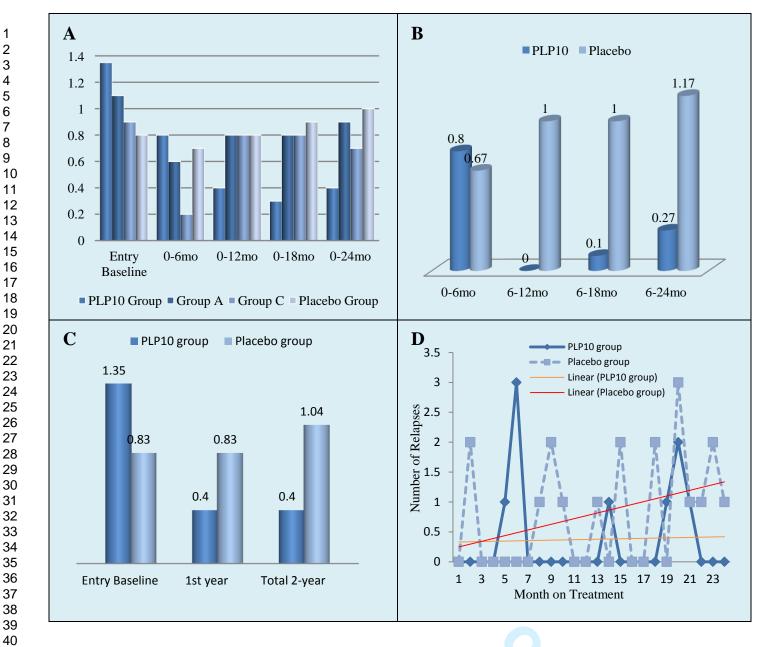
963 (p=0.052, trend). Intervention formula A reduced the risk of sustained progression of

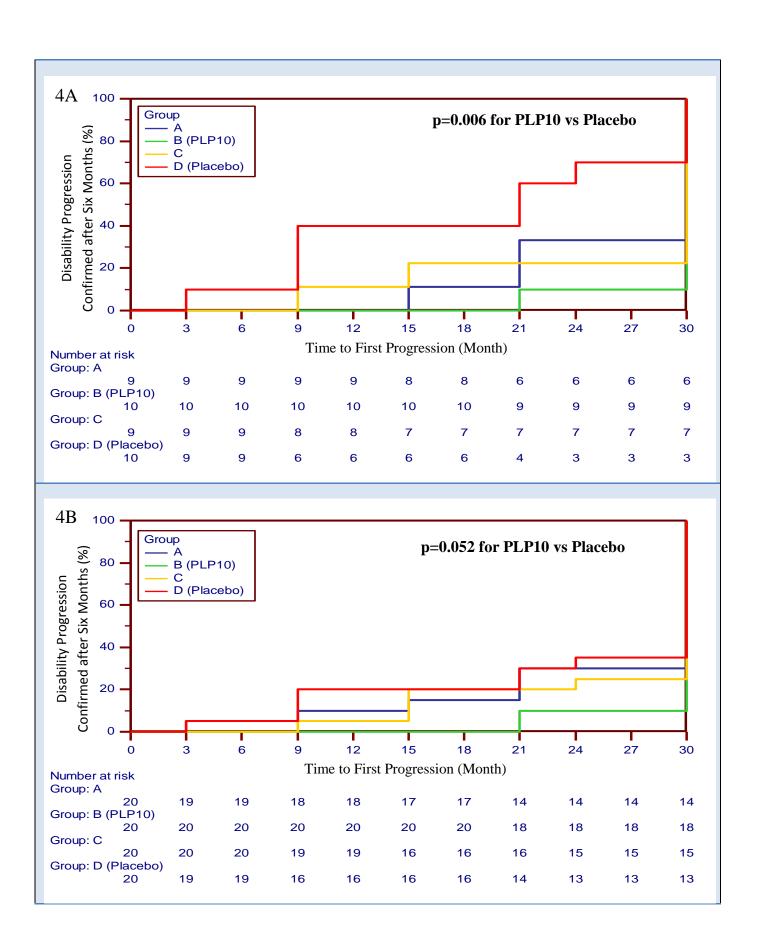

964 disability by 22% (p=0.727) and intervention formula C by 40% (p=0.447).

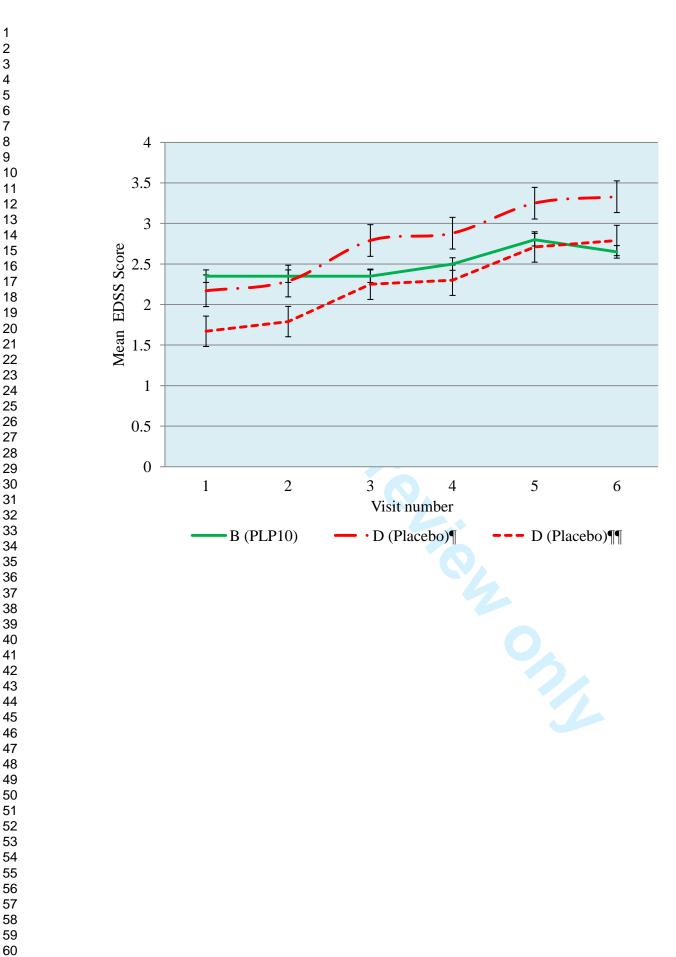

965 Figure 5. Mean change in expanded disability status scale score as a function of visit

966 number. Values are expressed as mean \pm s.e.m.

967 ¶ Including patients on natalizumab


968 ¶ Excluding patients on natalizumab


Possible effects on inflammation:


Reduce IFN- γ production; Reduce IL-2 production; Increase TGF β activity; Increase PGE2 activity; Inhibit arachidonic acid; Reduce TNF levels; RXR- γ and PPAR γ agonist; NF κ B expression; stimulate Nrf2; reduce MMP-2, -3, -9, and -13

1 Supplementary Information

2 Table of Content

Supplementary Section	Page
Supplementary Information Methods 1	2-4
Supplementary Information Methods 2	5-6
Supplementary Information Figure 1	7
Supplementary Information Figure 2	8

5	
6	
5 6 7 8 9	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

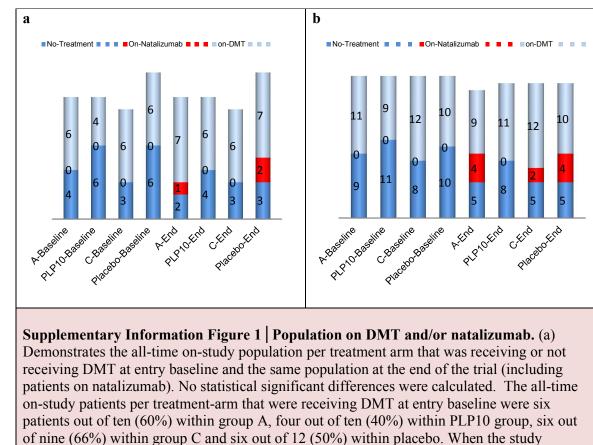
Page 103 of 112

BMJ Open

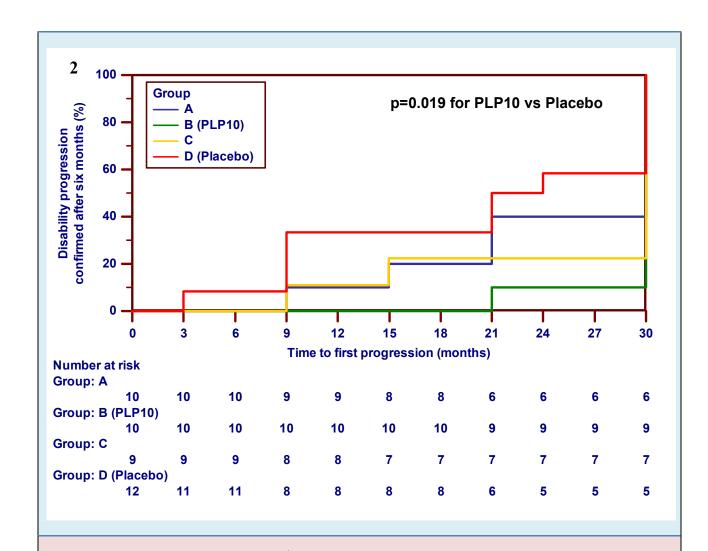
Supplementary Information Methods 1 Intervention and study rational. We are using high dosage of 1:1 omega-3:omega-6 polyunsaturated (PUFA) aiming to overpass and normalize global diet regional traditions and habits in relation to abnormal PUFA/saturated fatty acids (SFA)/monounsaturated fatty acids (MUFA) daily ratio consumption irrespective of the quantities consumed; and enough to equilibrate patients' diet in line with the recommended more physiologic omega-3:omega-6 ratio of about 1:1-4 wt/wt as reported by Simopoulos, 2002. In addition to correct existing deficiencies, cell membrane abnormalities, specifically of the immunopathological system and blood mononuclear peripheral cells, and high enough for availability and immediate ongoing modulation of the involved pathogenic mechanisms and network of events in MS. The high dosage is also required to overpass the quantity limitations, previously discussed, of diet-consumed PUFAs for cellular incorporation, especially in the central nervous system (CNS) of adults. Additionally, fatty acids (FAs) must first cross the intestinal epithelium before reaching the different tissues, where digestion and absorption constitute further problems in their availability (Carlier, H, 1991). Omega-3 PUFA are used in re-esterified form to eliminate unwanted disturbances, at the sides of action, by other fatty acids and molecules present in crude fish oils but also to increase the bioavailability of the FA since triglycerides have been shown to be associated with much higher bioavailability (Dyerberg et al, 2010). Linoleic (LA) and gamma linolenic acid (GLA) are essential structure molecules and important for any physiological (re)generation of cell membrane. GLA quantity is doubled to LA to ensure high direct production of dihomo-gamma-linolenic acid (DGLA), from GLA when LA cannot be metabolized, due to desaturase deficiency or malfunction. Such a reduced capacity to convert LA to GLA has been associated with aging, diabetes, alcoholism, atopic dermatitis, premenstrual syndrome, rheumatoid arthritis, cancer and cardiovascular diseases (Bolton-Smith et al, 1997; Horrobin, 1990; Leventhal et al, 1993). This is going to result in the increase of DGLA relative to arachidonic acid (AA) with DGLA promoting production of prostaglandin (PG)E1 but also inhibition of phospholipase (PL)A2: two major reasons and rational for their use. If other metabolic problems are involved within the omega-6 series and the normal metabolites are not produced then the eicosapentaenoic acid EPA available in PLP10 will substitute the function of DGLA, as a competitive inhibitor of AA for PLA2. In both cases the pro-inflamatory leucotrienes, prostaglandines of the 2series (PG2) and thromboxanes of the 2 series including the platelet-activator factor (PAF) will be attenuated. The synthesis of AA from DGLA by $\Delta 5$ desaturase promoted by LA/GLA supplementation is very limited in humans as a result of limited activity of the enzyme (Yang-Yi & Robert, 1998). AA in the body is mostly available through diet. EPA and docosahexaenoic acid (DHA) are both physiologically important and crucial structured molecules able to substitute excess AA and SFA within the cell membranes. EPA will contribute to the inhibition (competitive to AA) of PLA2, joining the co-supplied omega-6 PUFA but will also participate in the production of anti-inflammatory leukotrienes, prostaglandins of the 3-series (PG3) and thromboxane (TX3) along with DHA, both found in the PLP10 intervention. Moreover EPA will replace AA of the membrane phospholipids and both omega-3 PUFA will contribute replacing abnormal quantities of SFA and excess AA. DHA is used in 3:1 ratio to EPA to cover any possible inabilities of EPA to be metabolized, high enough to strongly promote high production of the aforementioned anti-inflammatory

eicosanoids and cytokines and to be incorporated into CNS cell membranes where DHA should be the major PUFA present, replacing other FA, probably saturated and excess of AA. EPA, DHA, LA and GLA along with the rest of the other ingredients used ("other" omega-3 PUFA, SFA and MUFA that are usually found in the cell membranes of healthy people in limited quantities) in the intervention regimen are for their availability as minor structural constituents of physiological cellular membranes integrity, fluidity and overall function as building blocks for myelin repair and/or myelination. Furthermore the PUFA used within the cocktail intervention aimed to manipulate all other pathophysiological pathways that are reported to be able to: as previously discussed including gene transcription for neuroprotection and remyelination. Furthermore, PUFA are used to ensure the integrity of blood brain barrier (BBB) and to modulate the gelatinases responsible for the T cell migration within the CNS. Three different antioxidant vitamins (vitamin E, mostly as alpha-tocopherol, gamma (γ)-tocopherol (vitamin E isoform) and vitamin A) are used in the regimen preparation to support the cellular antioxidant defenses but also to protect peroxidation of the supplied increased amounts of PUFA. Alpha-tocopherol low-molecular-weight antioxidants will contribute to radical scavenging, interfering with gene transcription, protein expression, enzyme activity and metal chelation (van Meeteren et al, 2005). Vitamin E (alpha tocopherol) and vitamin A are used as antioxidants for the protection of the excess supplemented PUFA, with alpha-tocopherol been demonstrated to protect against peroxynitrite-induced oxidative damage, as well as able to efficiently detoxify hydroxyl, perhydroxyl and superoxide free radicals (the elevated reactive oxygen species (ROS)); each one with different mechanism of action, increasing the effect capability (Vatassery et al, 1998b; van Meeteren, 2005). Gamma-tocopherol is used in high dosage since its half life is very short compared to alpha-tocopherol and has been demonstrated to specifically protect against nitro-radicals. Tocopherols can also exert non-antioxidant properties, including modulation of cell signaling and immune function, regulation of transcription, and induction of apoptosis as previously discussed (van Meeteren et al, 2005). PLP10 is the first preparation ever developed for MS therapy that is composed by the use of all different previously discussed PUFA, MUFA, SFA in a cocktail preparation mixed with the specific aforementioned antioxidant vitamins that have never been all together used before within a specific formulation. The ingredients ratio, quality, structural form and mostly the high dosage has never been before tested. Furthermore, the knowledge and chronotherapy as well as other unique limitations associated with the individual molecules used, have never been accounted, discussed, proposed or reported for any previous therapeutic regimen.

Through systems medicine therapeutic philosophy, by the use of PLP10, potentially MS
patients have the opportunity to be treated holistically, by natural source isolated molecules,
demonstrated as able of affecting and modulating all known pathophysiological,
immunopathological, habitual, gene related factors; thus the dynamic interconnected complex
network of events simultaneously. Possibly synergistic effects between PLP10 ingredients are
also feasible. Moreover we can speculate that treatment efficacy of PLP10, when used as


BMJ Open

2		
3	119	adjunct to existing pharmaceuticals produced by reductionism, can be proven therapeutically
4	120	superior to any available treatment for MS.
5 6	121	
7		
8	122	Bolton-Smith C, Woodward M, Tavendale R (1997) Evidence for age-related differences in
9	123	the fatty acid composition of human adipose tissue, independent of diet. <i>European Journal of</i>
10	124	Clinical Nutrition 51 : 619-624
11		
12	125	
13 14	126	Carlier H, Bernard A, Caselli C (1991) Digestion and absorption of polyunsaturated fatty
15	127	acids. Reproduction, nutrition, development 31: 475-500
16	120	
17	128	Drughang I. Madaga D. Mallar IM. Aandagtrum I. Sahmidt ED. (2010) Disayyailahility of
18	129	Dyerberg J, Madsen P, Møller JM, Aardestrup I, Schmidt EB (2010) Bioavailability of marine n 3 fatty and formulations. <i>Prostaglanding, laylestrigner, and assential fatty, acide</i> 83 :
19	130	marine n-3 fatty acid formulations. <i>Prostaglandins, leukotrienes, and essential fatty acids</i> 83 : 137-141
20	131	157-141
21 22	132	
22	133	Horrobin DF (1990) Gamma-linolenic acid. Rev Contemp Physiol 1: 1-41
24		
25	134	
26	135	Leventhal LJ, Boyce EG, Zurier RB (1993) Treatment of rheumatoid arthritis with
27	136	gammalinolenic acid. Annals of Internal Medicine 119: 867-873
28	107	
29	137 138	Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids.
30 31		Biomedecine & Pharmacotherapy 56: 365-379
32	139	biomedecine & Fharmacoinerapy 30. 303-379
33	140	
34	141	van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF (2005) Antioxidants and
35	142	polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 59: 1347-1361
36		
37	143	
38 39	144	Yang-Yi F, Robert SC (1998) Importance of Dietary g-Linolenic acid in human health and
40	145	nutrition. <i>The Journal of Nutrition</i> 128: 1411-1414
41	146	
42	140	Vatassery GT, Smith WE, Quach HT (1998b) Alpha-tocopherol in rat brain subcellular
43	148	fractions is oxidized rapidly during incubations with low concentrations of peroxynitrite.
44	149	Journal of Nutrition128:152–157.
45	150	
46 47	151	
48		
49	152	
50	153	
51	154	
52	155	
53 54	156	
54 55	157	
56	158	
57	159	
58	100	
59		
60		


Supplementary Information Methods 2 Interventions specifications. The specific omega-3 (re-esterified glycerides) and omega-6 (glycerides) raw materials were purchased according to the required interventions' PUFAfraction specification (molecular structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant stabilizer by the supplier. The vitamins and masking aroma were purchased separately. The mixing of fractions to the final required intervention-composition specification was always performed by the same team of scientists under the supervision of the involved medical biochemist and lipidology specialist, under appropriate conditions every six months. Interventions were stored refrigerated in dark until use. The ratios of the different ingredients used were as follows: omega-3, EPA to DHA (about 1 to 3 wt/wt), omega-6, LA to GLA (about 2 to 1 wt/wt), omega-3 (EPA + DHA) to omega-6 (LA + GLA) (about 1 to 1 wt/wt). The total omega-3 (EPA + DHA + "other" omega-3 PUFA) used as re-esterified triglycerol (minimum value 60%), diglyceride (about 33%), monoglyceride (about 2%) structural form mixture and about 2% ethyl ester structural form, with no less than 80% re-esterified triglycerol content to be DHA and EPA as a result of PUFA triglycerides re-esterification of fish body oils. The "other" group of omega-3 on the re-esterified glycerols included the 18:3 (alpha-linolenic acid), 18:4 (stearidonic acid), 20:4 (eicosatetraenoic acid) and 22:5 (docosapentaenoic acid) PUFA. The fraction of omega-6 (LA + GLA) used as triglycerides with no less than 50-65% triglycerol content to be LA and GLA in a ratio of 2 to 1 with 18:1 (oleic acid) 14-20% and 20:1 (eicosenoic acid), 22:1 (docosenoic acid), 24:1 (tetracosenic acid) as additional monounsaturated fatty acids and minor quantities of 16:0 (palmitic acid) 4-16%, 18:0 (stearic acid) 2-5% saturated fatty acids from Borage oil source. The vitamins used were vitamin A as beta-carotene, vitamin E (alpha-tocopherol) and pure gamma-tocopherol (vitamine E isoform). Citrus extract was used as masking aroma and pure virgin olive oil as delivery vehicle. The daily intervention formula agent dosages were: Intervention formula A daily dosage: EPA (1650mg) / DHA (4650mg) / GLA (2000mg) / LA (3850mg) / total other omega-3 (600mg) / total monounsaturated fatty acids (MUFA) (18:1 1300mg, 20:1 250mg, 22:1 82mg, 24:1 82mg) + total saturated fatty acids (SFA) (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg). Intervention formula B (PLP10) daily dosage: EPA (1650mg) / DHA (4650mg) / GLA (2000mg) / LA (3850mg) / total other omega-3 (600mg) / total MUFA (18:1 1300mg, 20:1 250mg, 22:1 82mg, 24:1 82mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) / gamma- tocopherol (γ -tocopherol) (760 mg). **Intervention formula C** daily dosage: γ -tocopherol (760 mg) (in 16137 mg pure virgin olive oil as a vehicle). **Intervention formula D** daily dosage: pure virgin olive oil (16930mg). Citrus aroma was added in each intervention formula to make up a total dosage of 19.5ml of solution per day.

BMJ Open

2		
3	201	The specific omega-3 related fraction, according to specifications required for the
4	202	interventions was prepared and purchased from EPAX AS, Aalesund, Norway; as re-
5	203	esterified glycerides from fish body oils as a source. The specific omega-6 PUFA, MUFA
6 7	204	and SFA related fraction, according to required specifications, was prepared and purchased
8	204	from Goerlich Pharma International GmbH, Edling, Germany, as triglycerides from Borage
9		
10	206	seed oil (organic, cold pressed) "Borago officinalis" as a source. Both omega-3 and omega-6
11	207	fractions were delivered stabilized by the producer (vitamine E (alpha-tocopherol) ~ 4.5 mg/g
12	208	was used as antioxidant).
13 14		
15	209	Vitamins: vitamin A as beta-carotene (HealthAid Ltd., Middlesex, United Kingdom) and pure
16	210	gamma-tocopherol (Tama Biochemical Co. Ltd., Shinjuku-ku Tokyo, Japan).
17		
18	211	Citrus aroma (Givaudan Schwaiz AG, Dubendorf, Switzerland).
19 20		
21	212	
22		
23		
24	213	
25 26		
27	24.4	Citrus aroma (Givaudan Schwaiz AG, Dubendorf, Switzerland).
28	214	
29		
30	215	
31 32	215	
33		
34	216	
35	-	
36 37		
38	217	
39		
40		
41	218	
42 43		
44	240	
45	219	
46		
47	220	
48 49	220	
50		
51	221	
52		
53		
54 55	222	
56		
57		
58	223	
59 60		
00		
		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

patients on natalizumab). No statistical significant differences were calculated. The all-time on-study patients per treatment-arm that were receiving DMT at entry baseline were six patients out of ten (60%) within group A, four out of ten (40%) within PLP10 group, six out of nine (66%) within group C and six out of 12 (50%) within placebo. When the study completed, 80% of the patients in group A, 60% in PLP10 group, 66% in group C and 75% of the patients in placebo ended up on treatment. Within group A one out of eight and within placebo two out of nine patients on DMT transferred on natalizumab. (b) Demonstrates the total randomized population per treatment arm that was receiving or not receiving DMT at entry baseline and the same population at the end of the trial without lost to follow (including patients on natalizumab). A total of 61% of group A patients were on DMT at entry baseline and became 72% at the end; for PLP10 group 41% and became 53%; for group C 73% and became 74% and for placebo 53% and became 74% at study completion. At the end: for group A, four out of 13 patients on DMT transferred on natalizumab; for PLP10 group no patient was on natalizumab; for Group C two out of 14 patients on DMT transferred on natalizumab. No significant differences measured at entry baseline between the groups.

Supplementary Information Figure 2 | Kaplan–Meier estimates for the time to disability

progression. Kaplan–Meier plot of the time to sustained progression of disability among all-time onstudy patients, including patients on natalizumab, receiving intervention A, PLP10 and C vs. placebo. Intervention PLP10 reduced the risk of sustained progression of disability by 83% over two years (p=0.019). The cumulative probability of progression was 10% in the intervention B group and 58% in the placebo group. Intervention formula A reduced the risk of sustained progression of disability by 32% (p=0.301) and intervention formula C by 62% (p=0.109).

Checklist of Items for Reporting Trials of Nonpharmacologic Treatments*

Section	Item	Standard CONSORT Description	Extension for Nonpharmacologic Trials	Reported on Page No.
Title and abstract†	1	How participants were allocated to interventions (e.g., "random allocation," "randomized," or "randomly assigned")	In the abstract, description of the experimental treatment, comparator, care providers, centers, and blinding status	1,3,4
Introduction				
Background Methods	2	Scientific background and explanation of rationale		5 to 8
Participants†	3	Eligibility criteria for participants and the settings and locations where the data were collected	When applicable, eligibility criteria for centers and those performing the interventions	8, 13,15
Interventions†	4	Precise details of the interventions intended for each group and how and when they were actually administered	Precise details of both the experimental treatment and comparator	9,10,11, Table 1 p.28, Appendix p. 5,6
	4A		Description of the different components of the interventions and, when applicable, descriptions of the procedure for tailoring the interventions to individual participants	10, Table 1 p.28, Appendix p.5
	4B		Details of how the interventions were standardized	9,10, Table 1 p.28 Appendix p.5
	4C		Details of how adherence of care providers with the protocol was assessed or enhanced	9
Objectives	5	Specific objectives and hypotheses	I	7,8
Outcomes	6	Clearly defined primary and secondary outcome measures and, when applicable, any methods used to enhance the quality of measurements (e.g., multiple observations, training of assessors)		12
Sample size†	7	How sample size was determined and, when applicable, explanation of any interim analyses and stopping rules	When applicable, details of whether and how the clustering by care providers or centers was addressed	14
	F	or peer review only - http://bmjopen.bmj.co	om/site/about/guidelines.xhtml	

Randomization– sequence generation†	8	Method used to generate the random allocation sequence, including details of any restriction (e.g., blocking, stratification)	When applicable, how care providers were allocated to each trial group	9
Allocation concealment	9	Method used to implement the random allocation sequence (e.g., numbered containers or central telephone), clarifying whether the sequence was concealed until interventions were assigned		9
Implementation	10	Who generated the allocation sequence, who enrolled participants, and who assigned participants to their groups		9
Blinding (masking)†	11A	Whether or not participants, those administering the interventions, and those assessing the outcomes were blinded to group assignment	Whether or not those administering co- interventions were blinded to group assignment	9,10
	11B		If blinded, method of blinding and description of the similarity of interventions [†]	9,10,Appendix
Statistical methods†	12	Statistical methods used to compare groups for primary outcome(s); methods for additional analyses, such as subgroup analyses and adjusted analyses	When applicable, details of whether and how the clustering by care providers or centers was addressed	13, 14, 15
lesults				
Participant flow†	13	Flow of participants through each stage (a diagram is strongly recommended) specifically, for each group, report the numbers of participants randomly assigned, receiving intended treatment, completing the study protocol, and analyzed for the primary outcome; describe deviations from study as planned, together with reasons	The number of care providers or centers performing the intervention in each group and the number of patients treated by each care provider or in each center	15 Fig 2
Implementation of intervention†	New item		Details of the experimental treatment and comparator as they were implemented	10,15,16 Apper p5,
Recruitment	14	Dates defining the periods of recruitment and follow-up		11,15
Baseline data†	15	Baseline demographic and clinical characteristics of each group	When applicable, a description of care providers (case volume, qualification, expertise, etc.) and centers (volume) in each group	16,Table 2

15,16

15 to 20

22 to 26

3 4						
5 6 7 8 9	Numbers analyzed	16	Number of participants (denominator) in each group included in each analysis and whether analysis was by "intention-to-treat"; state the results in absolute numbers when feasible (e.g., 10/20, not 50%)			
10 11 12 13 14 15 16 17 18 19 20	Outcomes and estimation	17	For each primary and secondary outcome, a summary of results for each group and the estimated effect size and its precision (e.g., 95% confidence interval)			
	Ancillary analyses	18	Address multiplicity by reporting any other analyses performed, including subgroup analyses and adjusted analyses, indicating those prespecified and those exploratory			
	Adverse events Discussion	19	All important adverse events or side effects in each intervention group			
20 21 22 23 24	Interpretation [†]	20	Interpretation of the results, taking into account study hypotheses, sources of potential bias or imprecision, and the dangers associated with multiplicity of analyses and outcomes	In addition, take into account the choice of the comparator, lack of or partial blinding, and unequal expertise of care providers or centers in each group		
25 26 27 28	Generalizability†	21	Generalizability (external validity) of the trial findings	Generalizability (external validity) of the trial findings according to the intervention, comparators, patients, and care providers and centers involved in the trial		
29 30	Overall evidence	22	General interpretation of the results in the context of current evidence			
31 32 33 34 35 36	*Additions or modifications to the CONSORT checklist. CONSORT = Consolidated Standards of Reporting Trials. †This item was modified in the 2007 revised version of the CONSORT checklist.					

A novel oral nutraceutical formula (PLP10) for the treatment of relapsing remitting multiple sclerosis: a randomized, double-blind, placebo-controlled proof-ofconcept clinical trial.

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002170.R3
Article Type:	Research
Date Submitted by the Author:	05-Mar-2013
Complete List of Authors:	Pantzaris, Marios; The Cyprus Institute of Neurology and Genetics (CING), Clinic C and PALUPA Medical Ltd Loukaides, George; The Cyprus Institute of Neurology and Genetics (CING), Neurology Clinic and PALUPA Medical Ltd Ntzani, Evangelia; University of Ioannina School of Medicine (UISM), Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology Patrikios, Ioannis; The Cyprus Institute of Neurology and Genetics (CING), Clinic C and PALUPA Medical Ltd; European University Cyprus, Health Science
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Neurology, Complementary medicine, Pharmacology and therapeutics
Keywords:	Multiple sclerosis < NEUROLOGY, NUTRITION & DIETETICS, Neurophysiology < NEUROLOGY, COMPLEMENTARY MEDICINE, Neurobiology < BASIC SCIENCES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

2	
~	
4	
5	
3 4 5 6 7 8	
0	
1	
8	
9	
10)
11	
10	,
12	
13	
14	
15	,
16	;
17	
10	
10)
19	
20)
21	
22	
23	
2J 24	
24	
25)
26	,
27	,
28	
29	
20	
20	
31	
32	
33	
34	
35	,
36	
27	
31	
38	
39	
8 9 10 1112 131 145 15 15 15 15 15 15 15 15 15 15 15 15 15)
41	
42	
43	
44	
45)
46	;
47	,
48	
49	
50	
52	
53	
54	
55	
56	
	,
57	
58	
59)
60)

A novel oral nutraceutical formula of omega-3 and omega-1 6 fatty acids with vitamins (PLP10) in relapsing remitting 2 multiple sclerosis: a randomised, double-blind, placebo-3 controlled proof-of-concept clinical trial 4 Marios C. Pantzaris*, George N. Loukaides, Evangelia E. Ntzani, Ioannis 5 S. Patrikios* 6 * Both M.C.P and I.S.P are the first authors and both are the corresponding authors 7 8 The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus Marios C. 9 Pantzaris Senior Consultant Neurologist Neurology Clinic C and PALUPA Medical Ltd., The 10 11 Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus George N. 12 Loukaides Clinical Dietitian/Nutritionist Neurology Clinic and PALUPA Medical Ltd., University of Ioannina School of Medicine (UISM) 45110 Ioannina, Greece Evangelia E. 13 14 Ntzani Assistant Professor Clinical and Molecular Epidemiology Unit, Department of 15 Hygiene and Epidemiology, PALUPA Medical Ltd at The Cyprus Institute of Neurology and 16 Genetics (CING) 1683 Nicosia, Cyprus Ioannis S. Patrikios Senior Research Scientist, visiting Professor at European University Cyprus Nicosia, Cyprus, Department of Health and 17 Science. Correspondence should be addresses to e-mail: I.Patrikios@euc.ac.cy or 18 19 pantzari@cing.ac.cy 20 21

3
1
0
6
4 5 7 8 9 10 11
8
9
10
11
12
13
14
12 13 14 15
16
16
17 18 19
18
19
$\gamma \cap$
20 21 22 23
22
23
24
24 25 26 27 28 29 30 31
20
20
21
28
29
30
31
32
33
 31 32 33 34 35 36 37 38
35
36
30
31
38
39
40
41
42
42 43
44
45
46
40 47
47
48
49
50
51
52
53
54
55
56
50 57
58
59
60

22 Correspondence to:

- 23 Ioannis Patrikios
- 24 The Cyprus Institute of Neurology and Genetics (CING)
- 25 Neurology Clinic C (PALUPA Medical),
- 26 6 International Airport Av.
- 27 P.O. Box 23462, 1683 Ayios Dometios. Nicosia, Cyprus
- 28 Tel: +357 22 358 600, +357 99 097 856;
- 29 <u>i.patrikios@euc.ac.cy</u>
- 30 <u>patrikiosioannis@gmail.com</u>
- 31
- 32 AND
- 33
- 34 Marios Pantzaris
- 35 The Cyprus Institute of Neurology and Genetics (CING)
- 36 Neurology Clinic C (PALUPA Medical),
- 37 6 International Airport Av.
- Box 23462, 1683 Ayios Dometios, Nicosia Cyprus
- 39 Tel: +357 22 358 600; +357 99 677 067
- 40 <u>pantzari@cing.ac.cy</u>
- 41
- 42 Keywords: antioxidant vitamins, polyunsaturated fatty acids, multiple sclerosis, systems
- 43 medicine, randomised clinical trial.

44

45 **Word Count: 5915**

BMJ Open

46	Abstract
47	Objective To assess whether three novel interventions, formulated based on a systems
48	medicine therapeutic concept, reduced disease activity in patients with relapsing remitting
49	multiple sclerosis who were either treated or not with disease-modifying treatment.
50	
51	Design A 30-month randomised, double-blind, placebo-controlled, parallel design, phase II
52	proof-of-concept clinical study.
53	
54	Settings Cyprus Institute of Neurology and Genetics (CING)
55	
56	Participants and Interventions Eighty subjects were randomised into four groups of twenty.
57	The first intervention (A) was composed of omega-3 and omega-6 polyunsaturated fatty acids
58	at 1:1 wt/wt. Specifically, the omega-3 fatty acids were docosahexaenoic acid (DHA) and
59	eicosapentaenoic acid (EPA) at 3:1 wt/wt, and the omega-6 fatty acids were linoleic acid
60	(LA) and gamma (γ)-linolenic acid (GLA) at 2:1 wt/wt. This intervention also included minor
61	quantities of other specific polyunsaturated, monounsaturated and saturated fatty acids as
62	well as vitamin A and vitamin E (alpha-tocopherol). The second intervention (B, PLP10) was
63	a combination of A and γ -tocopherol. The third intervention (C) was γ -tocopherol alone. A
64	fourth group of 20 received placebo. The interventions were administered per os (by mouth)
65	once daily.
66	
67	Main outcome measures The primary endpoint was the annualised relapse rate (ARR) of the
68	three interventions versus the placebo at two years. The secondary end point was the time to
69	confirmed disability progression at two years.
70	

' ^	
2	
3	
4	
-	
5	
6	
7	
8	
9	
1	0
	4
1	2
1	3
4	1
!	4
1	5
1	6
1	7
1	1
1	1 2 3 4 5 6 7 8 9
1	9
ი	\cap
~	4
2	1
2	2
2	3
~	1
2	01234567890123456789
2	5
2	6
2	7
~	,
2	8
2	9
3	0
້ວ	1
2	1 0
3	2
3	3
3	4
ິ	- -
3	5
3	6
3	7
о С	o
3	0
3	9
4	0
4	1
4	
4	3
4	
4	
4	6
4	
4	0
4	9
5	0
5	1
5	
5	2
5	3
5	4
5	E
0	ບ ດ
5	
5	7
5	
5	
6	U

1

71	Results A total of 41 (51%) patients completed the 30-month trial. Overall, for the per-
72	protocol analysis of the two-year primary end point, 8 relapses were recorded in the PLP10
73	group (n=10) (0.40 ARR) versus 25 relapses in the placebo group (n=12) (1.04 ARR),
74	representing a 64% adjusted relative rate reduction for the PLP10 group (RRR 0.36, 95% CI
75	0.15 to 0.87, p=0.024). In a subgroup analysis that excluded patients on monoclonal antibody
76	(natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two
77	years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016). The per-protocol analysis for the secondary
78	outcome at two years, the time to disability progression, was significantly longer only for
79	PLP10. The cumulative probability of disability progression at two years was 10% in the
80	PLP10 group and 58% in the placebo group (unadjusted log-rank p=0.019). In a subgroup
81	analysis that excluded patients on natalizumab, the cumulative probability of progression was
82	10% for the 10 patients in the PLP10 group and 70% for the 12 patients in the placebo group,
83	representing a relative 86% decrease in the risk of the sustained progression of disability in
84	the PLP10 group (unadjusted log-rank p=0.006; adjusted hazard ratio, 0.11; 95% CI 0.01 to
85	0.97, p=0.047). No adverse events were reported. Interventions A (10 patients) and C (9
86	patients) showed no significant efficacy.
87	
00	Conclusions In this small proof of concept, randomized, double blind clinical trial: the

Conclusions In this small proof-of-concept, randomised, double-blind clinical trial; the
PLP10 treatment significantly reduced the ARR and the risk of sustained disability
progression without any reported serious adverse events. Larger studies are needed to further
assess the safety and efficacy of PLP10.

92

93 Trial registration International Standard Randomised Controlled Trial, number
94 ISRCTN87818535.

Introduction

BMJ Open

97	Multiple sclerosis (MS) is a complex multifactorial disease that results from the interplay	
98	between environmental factors and a susceptible genetic background. ¹⁻³ Together, these	
99	factors trigger a cascade of events involving the engagement of the immune system,	
100	inflammatory injury of myelin, axons and glia, functional recovery and structural repair,	
101	gliosis, and neurodegeneration. ⁴ The mechanisms involved include immune-mediated	
102	inflammation, oxidative stress and excitotoxicity, all of which contribute to oligodendrocyte	
103	and neuronal damage and even cell death, hence promoting disease progression. ⁵⁻⁹ The	
104	increasing prevalence of MS combined with the partial efficacy and side effects of the	
105	5 existing treatments have urged the development of new, innovative, more effective, safe, and	
106	preventive treatment strategies.	
107		

Recent research has shown that multiple variables dynamically interact and many different complex interrelated processes are simultaneously orchestrated for MS pathogenesis. The uniqueness of systems medicine (SM) is the recognition that different specific complex factors are important in disease management and that these factors need to be incorporated in some meaningful way for treatment selection and delivery.¹⁰ The primary challenge of a systems scientific approach is the elucidation of how these multiple variables dynamically interact and how this understanding can be applied to affect the system and achieve a desirable end.¹⁰¹¹ One approach towards that end might be the simultaneous intervention in multiple involved pathways using a combination of different active ingredients that could exert a synergistic effect and provide a comprehensive, sustainable treatment effect (Supplementary Information Methods 1).

	BMJ Open
120	The polyunsaturated fatty acid (PUFA) composition of membrane phospholipids plays an
121	important role in immune- and non-immune-related inflammation. PUFA and antioxidant
122	deficiencies along with a decreased cellular antioxidant defence mechanisms have been
123	reported in MS patients. ¹²⁻¹⁵ The cause of PUFA deficiencies is not entirely clear and may
124	involve metabolic and nutritional alterations. ¹²
125	
126	Increased or uncontrolled inflammation contributes to several different acute and chronic
127	diseases, and it is characterised by the production of inflammatory cytokines, arachidonic
128	acid (AA)-derived eicosanoids (prostaglandins [PGs], thromboxanes [TXs], leukotrienes
129	[LTs], and other oxidised derivatives), and other inflammatory agents such as reactive
130	oxygen species (ROS), nitric oxide (NO), and adhesion molecules (Fig 2). ¹⁶ During
131	inflammation, glutamate homeostasis is altered by the release of increased quantities of
132	glutamate by activated immune cells, which can result in the over-activation of glutamate
133	receptors and, in turn, excitotoxic oligodendroglial death. ^{7 17} Among others, membrane-
134	related pathology, immune-mediated inflammation, oxidative stress, and excitotoxicity
135	provide potentially useful combined targets for intervention in MS.
136	
137	In vitro and in vivo studies have demonstrated that dietary eicosapentaenoic acid (EPA),
138	docosahexaenoic acid (DHA), linoleic acid (LA), and gamma (γ)-linolenic acid (GLA) can be
139	implicated and modulate almost all known complex networks of events and pathways in MS
140	pathophysiology. The brain membrane fatty acid composition can be modified with dietary
141	supplementation, but the process has been shown to be age dependent (taking much longer in
142	adults versus developing brains) and possibly dependent on the quantity of the
143	dietary/supplemented PUFAs. ¹⁸ Both human and animal studies proved that diets high in
144	DHA and EPA can increase the proportion of these PUFAs in the membranes of

BMJ Open

2	
3	
4	
4 5	
6	
6 7	
7	
8	
g	
10	
10	
11	
9 10 11 12 13 14 15 16 17 18	
13	
14	
14	
15	
16	
17	
10	
10	
19	
20	
21	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40	
22	
23	
24	
25	
20	
20	
27	
28	
29	
20	
30	
31	
32	
33	
24	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

145	inflammatory cells and also reduce the levels of AA, a stress-related biomarker. ^{16 19} The anti-
146	inflammatory properties of omega-3PUFAs include the production of PGs and TXs of the 3-
147	series and LTs of the 5-series (Fig 2). ^{18 20} Resolvins and protectins are biosynthesised from
148	omega-3 fatty acids via cyclooxygenase-2/lipoxygenase (COX-2/LOX) pathways, and they
149	promote the control of inflammation in neural tissues (Fig 2). ²¹⁻²⁵ T-cell proliferation in acute
150	and chronic inflammation can also be reduced by supplementation with either omega-6 or
151	omega-3 PUFAs. ²⁶ Furthermore, vitamin E is an important antioxidant that can interrupt the
152	propagation of free radical chain reactions. ²⁷ Specifically, vitamin E (alpha-tocopherol, an
153	isoform of vitamin E) efficiently detoxifies hydroxyl, perhydroxyl and superoxide free
154	radicals, whereas γ -tocopherol (another isoform of vitamin E) appears to be more efficiently
155	implicated in trapping NO radicals. ^{28 29} In addition, alpha-tocopherol exerts non-antioxidant
156	properties, including the modulation of cell signalling and immune functions, regulation of
157	transcription, and induction of apoptosis. ³⁰
158	

Moreover, omega-3 fatty acid electrophilic derivatives formed by COX-2 in activated 159 160 macrophages can stimulate the nuclear respiratory factor (Nrf2), which induces the transcription of neuroprotective and antioxidant-related genes and can activate the 161 peroxisome proliferator-activated receptor (PPAR)y for an anti-inflammatory response.³¹⁻³⁴ In 162 animal studies, EPA and DHA proved to be endogenous ligands of RXRs, with positive 163 effects on neurogenesis.³⁵ Additionally, in 2008, Salvati and coworkers reported evidence of 164 accelerated myelination in DHA- and EPA-treated animals.³⁶ Moreover, DHA and EPA have 165 been reported to significantly decrease the levels of metalloproteinases (MMP) -2, -3, -9, and 166 167 -13, which have a significant role in the migration of lymphocytes into the central nervous 168 system (CNS) by inducing the disruption of the blood brain barrier (BBB), an important step in the formation of MS lesions.³⁷⁻⁴³ 169

170	
171	Based on the above observations, specific PUFAs and antioxidant vitamins fulfil the criterion
172	of biologic plausibility and have the potential to diminish the severity and activity of MS
173	symptoms, potentially even promoting recovery (remyelination). ^{12 44}
174	
175	We report here a randomised phase II, single-centre, double-blind, placebo-controlled, proof-
176	of-concept clinical trial evaluating the therapeutic ability of a nutraceutical formula (with
177	PLP10 representing the complete composition of the formulation) and of two other
178	interventions (A and C) consisting of PLP10-constituent partial fractions containing
179	ingredients for the aforementioned substance categories on relapsing remitting (RR) MS
180	patients.
181	
182	
183	Methods Patients
184	Patients
185	The eligibility criteria were an age of 18 to 65; a diagnosis of RRMS according to the
186	McDonald criteria; a score of 0.0 to 5.5 on the Expanded Disability Status Scale (EDSS), a
187	rating that ranges from 0 to 10, with higher scores indicating more severe disability; MRI
188	showing lesions consistent with MS; at least one documented clinical relapse; and either
189	receiving or not a disease-modifying treatment (DMT) within the 24 month period before
190	enrolment in the study. Patients were excluded because of a recent (<30 days) relapse, prior
191	immunosuppressant or monoclonal antibody therapy, pregnancy or nursing, other severe
192	disease compromising organ function, progressive MS, history of recent drug or alcohol
193	abuse, use of any additional food supplements, vitamins, or any form of PUFA, and history of
194	severe allergic or anaphylactic reactions or known specific nutritional hypersensitivity. No

BMJ Open

2	
3	
4	
5	
5	
0	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
-345678910123145678910122222222222222222222222222222222222	
20	
20	
21	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
⊿0	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

monitoring or limitations on the patients' daily dietary habits were considered because the
high quantities of the ingredients within the formula could not be significantly affected by
any particular dietary pattern.

198

The study was conducted in accordance with the standards of the International Conference of Harmonisation Guidelines for Good Clinical Practice. The protocol was developed by the investigators, approved by the Cyprus National Bioethics Committee, and overseen by an independent safety-monitoring committee evaluating the safety and over-all benefit-risk profiles. The adherence of the care providers with the protocol was assessed by an external committee assigned by the funder of the project through reviews of case report forms. All patients gave written informed consent at the time of enrolment.

206

207 Randomisation and masking

208 Patients were randomly assigned to four intervention groups in a 1:1:1:1 ratio stratified by 209 gender (women to men, 3:1). Randomisation was facilitated by a lottery-type pool of 210 numbered balls. Patients were randomly assigned to the treatments in blocks of four by 211 flipping a coin as follows: for the first two drawn balls, heads stratified them to the groups 212 A/B and tails stratified them to the groups C/D. The other two balls were stratified 213 accordingly. A second toss of the coin assigned the two patients to group A (head)/B (tail) or 214 to group C (head)/D (tail). The randomisation scheme was generated, performed and securely 215 stored by the Helix Incubator Organization of Nicosia University (HIONU).

216

The interventions had identical appearances and smells and were kept in dark bottles (15

218 daily-dose portions/bottle) under a nitrogen bed and labelled by HIONU with code numbers,

219 blinded for both the patients and investigators. Study data were collected by the investigators

Page 10 of 120

BMJ Open

and saved by HIONU, which also held the blinded codes for the study. All study personnel

221 involved in the conduct of the study were blinded throughout the study. The

treating/examining physician, other investigators, pharmacist, neuroradiologist and patients

223 were masked to the treatment allocation.

225 Procedures and end points

The specific omega-3 and omega-6 raw materials were purchased according to the required interventions' PUFA-fraction specification (molecular structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant stabiliser by the supplier. The vitamins and masking aroma were purchased separately. The mixing of the fractions to the final required intervention-composition specification was always performed by the same team of scientists under the supervision of the involved medical biochemist and lipidology specialist and under appropriate conditions every six months. The interventions were refrigerated in the dark until use. See Table 1 and Supplementary Information Methods 1 and 2 for a detailed description of the interventions.

The participants were randomly assigned to receive the following: group A, a daily dose of a 19.5 ml mixture of EPA (1,650 mg) / DHA (4,650 mg) / GLA (2,000 mg) / LA (3,850 mg) / total other omega-3 (600 mg) / total MUFA (1.714 mg) + total SFA (18:0 160 mg and 16:0650 mg) / vitamin A (0.6 mg) / vitamin E (22 mg) plus citrus-aroma (intervention A); group B (PLP10), a daily dose of a 19.5 ml mixture of EPA (1,650 mg) / DHA (4,650 mg) / GLA (2,000 mg) / LA (3,850 mg) / total other omega-3 (600 mg) / total MUFA (1,714 mg) + total SFA (18:0 160 mg and 16:0 650 mg) / vitamin A (0.6 mg) / vitamin E (22 mg) plus pure γ -tocopherol (760 mg) plus citrus-aroma (intervention B); group C, a daily dose of a 19.5 ml mixture of pure γ -tocopherol (760 mg) dispersed in pure virgin olive oil (16,137 mg) plus

BMJ Open

2
Z
3
4
-
5
6
7
1
8
a
3
10
11
40
12
13
1/
14
15
16
17
17
18
3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 8 9 10 11 2 8 9 10 11 2 8 9 10 11 12 13 14 5 16 7 10 10 10 10 10 10 10 10 10 10 10 10 10
20
20
21
າງ
~~
23
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 839
25
25
26
27
21
28
29
20
30
31
32
52
33
34
25
30
36
37
57
38
39
40
40
41
42
43
44
45
46
47
40
48
49
50
50
51
52 53 54 55
50
53
54
55
55
56
57
58
59
60
00

245	citrus-aroma (intervention C); and group D (placebo), a daily dose of a 19.5 ml mixture of
246	pure virgin olive oil (16,930 mg) plus citrus-aroma (intervention D) (Table 1). The
247	pharmacist of the institution was responsible for the appropriate storage and handling of the
248	interventions for the individual participants. The interventions were taken orally once daily
249	30 minutes before dinner using a dosage-calibrated cup for 30 months. The ingredients, ratio
250	and dose were selected based on their biophysical interrelationship with the total known
251	multiple MS causative factors, their biochemical importance and the role they were expected
252	to play in the normalisation and treatment of the involved complex network of events in the
253	disease pathophysiology. Moreover, the high intervention dosage was selected with the aim
254	of optimising the body composition of omega-3 to omega-6 PUFAs to a 1:1 wt/wt ratio
255	irrespective of dietary habits and geographical origin.
256	
257	The period from July 1 st 2007 (enrolment) to December 31 st 2007 was used as the
258	normalisation period. This six-month normalisation period would allow the interventions to
259	exert their beneficial effect as oral PUFAs need four to six months to achieve pivotal action
260	on immune and neural cells, correction of antioxidant deficiencies and body PUFA

redistribution, and an optimal normalisation of the EPA and DHA ratio.⁴⁵⁻⁴⁷ The study was
completed on December 31st 2009 (30 months), and the recording of relapses continued until

263 December 31st 2010 (42 months). Overall, the study included a "normalisation period" (July

 1^{st} 2007 to Dec 31^{st} 2007), an "on treatment" period (Jan 1^{st} 2008, the baseline, to Dec 31^{st}

265 2009) and a 12-month "post-study monitoring period" (Jan 1^{st} 2010 to Dec 31^{st} 2010).

266

Depending on their clinical status and in accordance with common practice, the participants continued receiving their indicated regular treatment, with persistent evaluation for any sideeffects and adverse events. Clinical assessment visits were scheduled at baseline and 3, 9, 15,

2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
10
- 3 4 5 6 7 8 9 10 1 12 13 14 15 16 7 18 9 20 12 23 24 5 26 7 28 9 30 13 20 12 23 24 5 26 7 28 9 30 13 20 10 10 10 10 10 10 10 10 10 10 10 10 10
∠∪ ว₁
∠ I 00
22
23
24
25
26
27
28
20
20
30 31 32 33 34 35 36 37 38 39
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59
60
55

21 and 24 months on-treatment. The patients were also clinically examined by the treatingneurologist within 48 hours after the onset of new or recurrent neurologic symptoms.

272

1

273 The primary end point was the ARR at two years. A relapse was defined as new or recurrent 274 neurologic symptoms not associated with fever or infection that lasted for at least 24 hours 275 and was accompanied by new neurologic signs. Relapses were treated with methyl-276 prednisolone at a dose of 1 g intravenous per day for three days, followed by prednisone 277 orally at a dose of 1 mg/kg of weight per day on a tapering scheme for three weeks. The 278 secondary end point at two years was the time to disability progression, defined as an 279 increase of 1.0 or more on the EDSS and confirmed after six months. Progression could not 280 be confirmed during a relapse, and the final EDSS score was confirmed six months after the 281 end of the study. A post-hoc analysis was performed to assess the proportion of patients free 282 from new or enlarging T2 lesions on brain MRI scans at the end of the study for the per-283 protocol participants of the group receiving the most effective intervention versus placebo. 284 This comparison was made versus the available archival MRI scans up to three months before 285 the enrolment date. The MRI scans were performed and blindly analysed at an MRI 286 evaluation centre. The patients were monitored for an additional 12 months after completion 287 of the trial, and relapses were recorded. The patients were strongly encouraged to remain in 288 the study for follow-up assessments even if they had discontinued the study drug. 289 290 Blood samples were collected from all randomised patients at the time of enrolment, at every 291 scheduled clinical assessment and during relapses. To evaluate the compliance, the fatty acid 292 composition of the patients' red blood cell membranes was determined by gas 293 chromatography, according to a standard protocol. The fatty acid analyses were performed

after study termination and thus did not influence the blinding. Safety measures were

Page 13 of 120

BMJ Open

2 3	295	assessed from the time of enrolment until 12 months following the study completion.
4 5 6	296	Haematological and biochemical tests were performed at enrolment and every 12 months,
6 7 8	297	including a full blood count, renal and liver function tests, and protein, cholesterol,
9 10	298	triglyceride, glucose and electrolyte levels.
11 12 13	299	
13 14 15	300	The involved neurologist was experienced with more than 20 years in practice. He was
16 17 18 19	301	trained to standardise the EDSS scoring procedures, examined the patients, made all medical
	302	decisions, determined the EDSS score and reviewed the adverse effects or side effects. The
20 21 22	303	medical biochemist, who was a specialist in lipidology and immunology, and the registered
23 24	304	clinical dietitian were both members of the investigative team with more than 25 years of
25 26	305	experience in practice. The patients were able to contact the involved neurologist at any time
27 28	306	if there was any adverse event, side effect or allergic reaction. The study drug was not
29 30	307	expected to have any clinical or laboratory adverse effects different from those of the placebo
31 32 33	308	that could disturb the double-blind nature of the trial. Therefore, the study neurologist
34 35	309	functioned as both the treating and evaluating physician.
36 37	310	
38 39	311	The whole procedure followed the clinical trial guidelines as required by the USA Food and
40 41 42	312	Drug Administration, European Medicines Agency, and the Committee for Medicinal
42 43 44	313	Products for Human Use. ⁴⁸
45 46	314	
47 48	315	Statistical analysis
49 50 51	316	Power calculations could not be performed before the study because of the lack of
52 53	317	information from previous studies on the potential effect sizes. In 2005, the prevalence of MS
54 55	318	in Cyprus (600,000 population) was 120/100,000. Based on the aforementioned MS patient
56 57 58 59 60	319	numbers in our country and the reference centre, the CING, we were able to enrol 20% of the

320	total RRMS patients eligible for treatment. The sample size was strictly based on the	
322	subjects' availability and the novelty of the assessed intervention.	
322		
323	The baseline characteristics were compared across all intervention groups by ANOVA or the	
324	Kruskal-Wallis rank test for continuous variables and by mean Fisher's exact test for	
325	categorical variables, as appropriate.	
320		
32	For the primary outcome, the ARR was analysed in a pair-wise fashion for the active	
328	interventions compared with the placebo using negative binomial regression models adjusted	l
329	for the number of relapses within two years, the EDSS score at baseline and DMT. The	
330	relapse rate was calculated as the total number of relapses divided by the total number of	
333	patient-years followed for each treatment group. ARR differences were also calculated	
332	among all comparable parameters and reported as the per-cent difference.	
333		
333 334	For the secondary end-point, the time to disability progression, Kaplan–Meier curves were	
	For the secondary end-point, the time to disability progression, Kaplan–Meier curves were constructed. The progression of disability and time thereof were compared in a pair-wise	
334		
334 335	constructed. The progression of disability and time thereof were compared in a pair-wise	
334 331 331	constructed. The progression of disability and time thereof were compared in a pair-wise fashion for the active interventions versus placebo by the log-rank test in the main analysis	
334 331 330 331	constructed. The progression of disability and time thereof were compared in a pair-wise fashion for the active interventions versus placebo by the log-rank test in the main analysis and by the Cox proportional-hazards models with adjustments for the baseline EDSS score,	
334 331 331 331 333	constructed. The progression of disability and time thereof were compared in a pair-wise fashion for the active interventions versus placebo by the log-rank test in the main analysis and by the Cox proportional-hazards models with adjustments for the baseline EDSS score, age and DMT in the supportive analysis. Multivariate models considered all variables with P	
334 331 336 337 338 338	constructed. The progression of disability and time thereof were compared in a pair-wise fashion for the active interventions versus placebo by the log-rank test in the main analysis and by the Cox proportional-hazards models with adjustments for the baseline EDSS score, age and DMT in the supportive analysis. Multivariate models considered all variables with P	
334 331 336 337 338 338 339	constructed. The progression of disability and time thereof were compared in a pair-wise fashion for the active interventions versus placebo by the log-rank test in the main analysis and by the Cox proportional-hazards models with adjustments for the baseline EDSS score, age and DMT in the supportive analysis. Multivariate models considered all variables with P <0.1 in the univariate models. There was no overt violation of the proportionality assumption	
334 331 331 331 331 331 331 341 341	constructed. The progression of disability and time thereof were compared in a pair-wise fashion for the active interventions versus placebo by the log-rank test in the main analysis and by the Cox proportional-hazards models with adjustments for the baseline EDSS score, age and DMT in the supportive analysis. Multivariate models considered all variables with P <0.1 in the univariate models. There was no overt violation of the proportionality assumption Both per-protocol and intention to treat (ITT) analyses were performed for different sets of	
334 331 336 337 338 339 340 341 342	constructed. The progression of disability and time thereof were compared in a pair-wise fashion for the active interventions versus placebo by the log-rank test in the main analysis and by the Cox proportional-hazards models with adjustments for the baseline EDSS score, age and DMT in the supportive analysis. Multivariate models considered all variables with P <0.1 in the univariate models. There was no overt violation of the proportionality assumption Both per-protocol and intention to treat (ITT) analyses were performed for different sets of research questions to be answered, and both are reported. Missing data of the five patients	

Page 15 of 120

1

BMJ Open

~	
3	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
47	
17	
18	
19	
20	
21	
~ 1	
22	
9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25	
24	
25	
20	
27	
28	
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	
30	
21	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

and the resulting interpretation issues regarding the ITT analysis, the per-protocol analysis
was considered to be the more informative and appropriate method to answer the research
questions addressing the efficacy of the interventions when the subjects continuously
followed the protocol. All statistical analyses were well defined a priori. All analyses were
performed with STATA SE 10.0 (College Station, TX, USA). P-values were two-tailed. **Role of the funding source**The funders had no role in the study design, data collection and analysis, decision to publish,

or preparation of the manuscript. All members of the writing group had full access to all
study data, contributed to its interpretation and prepared, reviewed, and approved the
manuscript for submission. All authors had the final responsibility for the decision to submit

the paper for publication.

357

358

359 **Results**

360 Study population

361 Among the 80 patients, 20 patients were randomly assigned to each of the three groups to 362 receive the interventions, and 20 to receive the placebo (Fig 1). The baseline characteristics 363 of both the ITT and per-protocol populations were similar across the groups (Table 2A and 364 2B). All patients who dropped out completed the follow-up until the study completion and 365 were included in the ITT analyses (Table 4). Five patients were lost to follow-up before their 366 first scheduled visit. Two other patients who dropped out before their first scheduled visit 367 progressed to secondary progressive MS. Fifteen patients dropped out without successfully 368 completing the "normalisation" period, including five pregnancies. Another 17 patients 369 dropped out early after the entry baseline. Seven patients who dropped out were given

monoclonal antibody treatment (natalizumab). Overall, a total of 41 (51%) patients completed the 42-month study, one patient from group A and two from the placebo group transferred to natalizumab, and 39 (49%) patients either withdrew (dropped out) or were lost to follow-up. The reasons for discontinuation are listed in Figure 2. Efficacy Relapses As a proof-of-concept trial, we primarily needed to answer whether the interventions were effective for those patients who adhered to the assigned treatment, which was the perprotocol analysis.⁴⁹ For methodological comprehensiveness, we also performed the ITT analysis as a secondary analysis to answer different questions that were complementary to our core hypothesis, such as what happened to all MS patients who were placed on the interventions (the effect of assignment).⁴⁹ In the per-protocol analysis, during the first year of the treatment, the ARR was 0.80, 0.40, 0.78 and 0.83 for the four intervention groups, respectively. During the second year, the ARR was 0.90, 0.40, 0.67 and 1.25 for the four intervention groups, respectively. Overall, for the two-year primary end point, 8 relapses were recorded for the 10 patients in the PLP10 group (0.40 ARR) versus 25 relapses for the 12 patients on the placebo (1.04 ARR), a 64% adjusted relative rate reduction (RRR) for the PLP10 group (RRR 0.36, 95% confidence interval [CI] 0.15 to 0.87, p=0.024) (Tables 3A, 5 and Fig 3A and 3C). After excluding patients on monoclonal antibody (natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016, Tables 3B and 5). Pair-wise comparisons for the other two groups against the placebo did not yield significant results (Tables 3A, 3B). The proportion of patients with ≤ 1 relapse for the two years on-study was

Page 17 of 120

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

1 2

BMJ Open

higher in the PLP10 group than in the placebo group (90% versus 42%, p=0.030, Table 5).

Seeking to further investigate the observed difference, we compared the relapse rate during

intervention group. We observed a significant relative reduction in the ARR (70%) only in

remained not significant when the natalizumab-treated patients were further excluded from

the analysis. The effect of PLP10 through time at different time-windows versus placebo for

all-time on-study patients is shown in Figures 3A to 3D. Although the ARR analysis within

parallel information, such as the efficacy profile through time. PLP10 reached its maximum

effect within one year on-treatment (counted from the entry baseline) and remained stable

afterwards at an ARR of 0.4 with some free-relapse time-windows. Figure 3D demonstrates

patients on natalizumab) for PLP10 (n=10) versus placebo (n=10). The placebo group, in line

with the existing knowledge of how the relapse history works in relation to future relapses in

the dispersion of relapses throughout the 2-year period of all-time on-study (excluding

MS patients (contagion phenomenon), showed the expected trend of increased relapse

incidences.⁵⁰ The same phenomenon was true for groups A and C. Finally, during the 12

month post-study extended period, the on-study patients who received PLP10 showed a

persistent benefit in the ARR compared with the placebo (six relapses for the 10 subjects

within the PLP10 group, 0.6 ARR versus 19 for the 12 subjects within the placebo group,

1.58 ARR), indicating a statistically significant 62% adjusted relative rate reduction in the

ARR for the PLP10 group (RRR 0.38, 95% CI 0.12 to 0.99, p=0.046).

time-windows was not an assigned endpoint, it could help with the process of evaluating

the 24 months before the entry into the study to the 24 months on-treatment for each

the PLP10 group (RRR 0.30; 95% CI 0.14 to 0.65, p=0.003, Table 3A); within-group

comparisons for the ARR reduction of the three other groups were not significant and

2 3
3
4
5 6
6
1
8
9
10
9 10 11 12 13 14 15
12
12
14
14
10
16 17
17
18
19
20
21
22
23
18 19 20 21 22 23 24 25 26 27 28
25
26
27
28
28 29 30 31
20
21
31
32
33
33 34 35 36 37 38 39 40
35
36
37
38
39
40
41
42
43
44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
59 60
60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

419	Regarding the ITT analysis, the relapses of the drop-out patients are reported in Table 4A. As
420	expected, no statistically significant differences in the ARR were calculated for the
421	comparison of any group versus placebo for the 24 months on-treatment (Table 4B). The ITT
422	population on DMT and/or on natalizumab is shown within the Supplementary Information
423	Fig 1. Interestingly, despite the high non-adherence rate, there was a statistically significant
424	difference for the comparison of the ARR in the 24 months before entry baseline with the 24
425	months on-treatment for the PLP10 group (RRR 0.45, 95% CI 0.26 to 0.78, p=0.005).
426	
427	Disability progression
428	In the per-protocol analysis, at two years, the time to disability progression was significantly
429	longer only with PLP10. The cumulative probability of disability progression was 10% in the
430	PLP10 group and 58% in the placebo group (p=0.019) (Supplementary Information Fig 2).
431	After excluding the patients on natalizumab, there was again a statistically significant
432	difference between the PLP10 and placebo groups for the same analysis (p=0.006) (Fig 4A).
433	At two years, the cumulative probability of disability progression was 10% in the PLP10
434	group and 70% in the placebo group, which represents a decrease of 60 percentage points or a
435	relative 86% decrease in the risk of the sustained progression of disability within the PLP10
436	group (adjusted hazard ratio, 0.11; 95% CI 0.01 to 0.97, p=0.047). One versus seven out of
437	ten patients progressed to confirmed disability in the PLP10 and placebo groups, respectively,
438	when patients on natalizumab were excluded. No statistically significant difference was
439	observed for any comparison of the other two groups with the placebo group (Fig 4A and
440	Supplementary Information Fig 2).

In the ITT analysis, at two years, the cumulative probability of progression was 10% in the
PLP10 group and 35% in the placebo group (p=0.052, a trend for an effect), which represents

BMJ Open

444	a decrease of 25 percentage points or a relative 71% decrease for the PLP10 group with
445	respect to the risk of sustained progression of disability (adjusted hazard ratio 0.22, 95% CI
446	0.04 to 1.07, p=0.06) (Fig 4B). Two versus seven out of the total randomised patients
447	progressed to confirmed disability in the PLP10 and placebo groups, respectively. No
448	significant differences were observed for groups A or C compared with the placebo group
449	(Fig 4B). The mean change in the EDSS score as a function of visit number is shown in
450	Figure 5.
451	
452	MRI
453	Over two years, the MRI results supported a PLP10-related positive effect as only 29% from
454	the PLP10 group, in contrast to 67% from the placebo group, developed new or enlarging T2
455	lesions (57% relative risk reduction). After excluding the patients on natalizumab, there was
456	an increased relative risk reduction (64%) for PLP10 compared with the placebo, with 29%
457	of patients on PLP10 and 80% on placebo developing new or enlarging T2 lesions (Table 5).
458	
459	Safety
460	Over the course of the 30 month study, no significant adverse events were reported for any
461	group. The only aetiology for the drop-outs was the palatability and smell of the formula
462	preparations in addition to pregnancy. Nausea was reported by two patients. No abnormal
463	values were observed on any of the biochemical and haematological blood tests. No allergic
464	reactions were reported.
465	
466	
467	Discussion

468	In this proof-of-concept, randomised, double-blind clinical trial assessing the safety and
469	efficacy of three variations of a novel nutritional formula in RRMS, we observed a significant
470	association for a formula containing a balanced mixture of specific omega-3 and omega-6
471	PUFAs, MUFAs, SFAs, vitamin A, vitamin E and γ -tocopherol (PLP10) compared with the
472	placebo for both the ARR and the progression of disability in the per-protocol analysis. Our
473	results included analyses pertaining to a total of 42 months of study-collected data, including
474	the 12-month intervention-free treatment extension period. We also observed a high drop-out
475	rate that was mostly the result of formula palatability, a common phenomenon in trials using
476	oily interventions. Interestingly, a statistically significant reduction in the ARR and disability
477	progression was also observed when comparing the ARR of the PLP10 patients in the 24-
478	month period prior to the study with the ARR of the 24 months on-study; the observed
479	differences became larger when the patients who received natalizumab (the currently most
480	potent disease modifier) were excluded. The ARR decreased within a year on PLP10 and
481	remained stable until the study completion. The statistically significant difference in the ARR
482	between patients on PLP10 and those on placebo continued for the 12 month extended period
483	(persistent effect) without a significant difference on the DMT. These clinical findings are
484	supported by the results from the MRI analysis, in which the proportion of patients free from
485	new or enlarging brain T2 lesions was also higher in the PLP10 group than the placebo
486	group. No severe side effects have been reported.
487	
488	To the best of our knowledge, this study is the first randomised clinical trial assessing the

488 To the best of our knowledge, this study is the first randomised clinical trial assessing the 489 proposed combination of active ingredients in a standardized proportion and dosing scheme 490 for MS treatment designed according to the systems medicine approach. Nutrition is 491 commonly accepted as one of the possible environmental factors involved in the pathogenesis 492 of MS, but its role as a complementary MS treatment is unclear and largely disregarded.⁵¹ It

Page 21 of 120

1

BMJ Open

2	
3	
4	
5	
6	
3 4 5 6 7 8	
0 0	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20 24	
11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27	
22	
23	
25	
26	
27	
28	
27 28 29	
31 32	
32	
33	
34 35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
59	
60	
-	

493	is well known that the majority of the patients suffering from MS do use dietary supplements
494	for a variable length of time. ⁵² Dietary antioxidants and fatty acids may influence the disease
495	process in MS by reducing immune-mediated inflammation, oxidative stress and excitotoxic
496	damage. ¹² Published data have revealed that healthy dietary molecules have a pleiotropic role
497	and are able to change cell metabolism and down-regulate inflammation by interacting with
498	enzymes, nuclear receptors and transcriptional factors. ⁵¹ Current available treatments are the
499	products of reductionism, partially effective and associated with severe side effects.
500	Interferons and glatiramer acetate, the most widely used first-line MS drugs available today,
501	are associated with the least severe side effects among the MS therapies, but they are reported
502	to reduce the ARR only by about one third and with no significant effect on the progression
503	of disability. ⁵³ Natalizumab reduces the ARR by 68% and decreases the possibility of
504	disability progression by 43%, with 57% of patients free of new or enlarging T2 lesions on
505	MRI scans, compared with 15% on placebo. ⁵⁴ Fingolimod is associated with a 54% ARR
506	reduction (without a significant benefit on the progression of disability). Both natalizumab
507	and fingolimod are second-line drugs associated with severe side-effects. ⁵⁵
508	
509	Mehta in a review paper, in 2009, reported different clinical studies on interventions
510	formulated based on the individual aforementioned molecular ingredients or based on a
511	specific ratio of the aforementioned molecular ingredients for MS treatment; although no one

512 was reported using the antioxidant vitamin γ -tocopherol.⁵⁶ In our study, the choice of

513 ingredient proportion and dosing scheme was based upon evidence derived form *in vivo* and

514 *in vitro* data. In the Western diet, the ratio of omega-3 to omega-6 is approximately 1:20–30;

in populations that consume fish-based diets, the ratio is approximately 1:1-2.^{57 58} The

516 intervention daily dose was aiming to be, and believed to be, high enough to restore/amplify

517 body-efficient antioxidant activity and ensure cellular membranes lipid profile normalisation

Page 22 of 120

(PUFA content) and simultaneously potentiate the involvement of the ingredients in the anti-inflammatory and recovery mechanisms. Dietary fatty acid molecules need an approximately six month period to exert their beneficial effect, and this essential parameter was under consideration for the first time in our study design (normalisation period).⁴⁶ This chronotherapy parameter might be of major importance and is in line with the systems medicine treatment philosophy. We believe that the persistent effect within the post-study period is in agreement with the reported very long washout phase for omega-3 fatty acids, especially DHA, to return to the pre-treatment values.⁴⁶ Considering that omega-3 PUFA supplementation can promote the replacement of AA within the cellular membranes, we can speculate that an increased inflammatory activity can possibly result during the first six months of supplementation. In addition to EPA, DHA, LA, and GLA, PLP10 contained limited quantities of other structural/active PUFAs, specific MUFAs (mostly oleic acid) and SFAs (palmitic and stearic

acids), specifically to provide a direct source for neuronal cell membrane rehabilitation and
for (re)myelination and neuroprotection because these compounds are all major components,
precursors and building blocks of any new physiological myelin and cellular membranes in
general. Assembly of the correct molecules into the myelin membrane may be especially
critical during active synthesis. If these critical constituents are not directly or indirectly
available, amyelination, dysmyelination or demyelination may ensue.⁵⁹ The maintenance of

538 myelin requires continued turnover of its components throughout life.^{60 61}

540 Different factors and molecular entities appear to be part of the possible aetiology for MS,

541 with specific PUFAs and antioxidants found to be key substances related to all known

542 pathogenic and recovery mechanisms. In our study, we further propose that a holistic systems

Page 23 of 120

1 2

BMJ Open

2
3
4
5
6
7
8
g
10
11
10
12
13
14
15
16
1/
18
19
20
21
22
23
2 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 7 8 9 10 112 3 4 5 8 9 10 112 3 4 5 8 9 10 112 3 4 5 8 9 10 112 3 4 5 8 9 10 112 3 4 5 8 9 10 112 3 112 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
25
26
27
28
20
20
21
31 22
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
4 5 50
51
51 52 53 54 55
52 52
00 54
54 55
55
56
57
58
59
60

543	medicine model approach can be applied by synchronised action. First, there is an obvious
544	convenience in administering one formula containing different specific active ingredients.
545	The currently available evidence supports that nutritional interventions would confer a small
546	to medium treatment effect with an accompanying appropriate safety profile. ^{12 52 56}
547	Combining these specific active ingredients together with γ -tocopherol and other specific
548	active molecules into one stable formulation is expected to enhance adherence while still
549	offering an appropriate safety profile. A similar approach could not be adopted for
550	pharmaceutical interventions with common and severe adverse events, such as those
551	indicated today for patients with MS. Given the advantages of the simultaneous use and that
552	all the included ingredients have proven individually a valid biological plausibility and have
553	been tested in various settings and under various dose schemes, we also assessed the
554	hypothesis that a novel mixture of these ingredients would have a postulated efficacy attained
555	synergistically through different mechanisms of action. ^{52 56} Interestingly, the observed
556	magnitude of the treatment effect cannot be explained by adding up the postulated efficacy
557	estimates of the individual ingredients. Findings from in vitro and in vivo studies support this
558	notion of proposed synergy although this hypothesis can only be taken forward when the
559	observed treatment effect is validated in various settings and in a larger number of patients.
560	
561	We acknowledge that our study has two considerable limitations: the small sample size and
562	the high drop-out rate. Regarding the sample size, one should bear in mind that this study is a

the high drop-out rate. Regarding the sample size, one should bear in mind that this study is a small, phase-2 clinical trial assessing a novel intervention and thus has comparable size in the appropriate literature. Questions taken forward from this trial can be assessed in a larger randomised trial in which appropriate power calculations would be possible, taking into consideration the findings of the present study. The adherence of the subjects is another limitation of our study, but the total duration of the study that covers a total of 42 months

0		
2 3 4	568	follow-up adds power to the results. ⁴⁸ We acknowledge that we had to deliver the
4 5 6	569	intervention in the way most frequently associated with low compliance, i.e., an oral, liquid
7 8	570	formula, thus triggering maximum intolerance due to taste. Nevertheless, the observed
9 10	571	suboptimal compliance is in accordance with the published literature in which clinical trials
11 12	572	assessing liquid fatty acid interventions show a weaker adherence compared with clinical
13 14	573	trials of pharmaceutical interventions. Indeed, in our study, we consistently recorded the
15 16	574	reasons for withdrawal: most of the participants did not discontinue due to safety issues, but
17 18	575	rather due to palatability issues. Controlling non-compliance due to palatability issues is by
19 20 21	576	far easier to address compared with non-compliance related to adverse events and can be
21	570	fur easier to address compared with non compliance related to adverse events and can be
23 24	577	resolved when optimisation of the formulation is achieved in future trials. At this stage of the
25 26	578	development of the intervention, we would by far exceed the cost-effectiveness threshold if
27 28	579	we were to invest in improving these features of the intervention. Moreover, we should also
29 30	580	note that MS patients are subject to far more frequent and more serious adverse events related
~ ~ ~		
31 32	581	to the current standard treatments.
32 33 34	581 582	to the current standard treatments.
32 33 34 35 36		to the current standard treatments. As a direct consequence of the low compliance and the loss of power, the performed
32 33 34 35 36 37 38	582	
32 33 34 35 36 37 38 39 40	582 583	As a direct consequence of the low compliance and the loss of power, the performed
32 33 34 35 36 37 38 39 40 41 42	582 583 584 585	As a direct consequence of the low compliance and the loss of power, the performed intention-to-treat analysis was far less robust than intended, and we would then have to take into serious consideration the performed per-protocol analysis. We focused on the per-
32 33 34 35 36 37 38 39 40 41 42 43 44	582 583 584 585 586	As a direct consequence of the low compliance and the loss of power, the performed intention-to-treat analysis was far less robust than intended, and we would then have to take into serious consideration the performed per-protocol analysis. We focused on the per- protocol data analysis because it is the appropriate method to best provide the answer for the
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	582 583 584 585 586 587	As a direct consequence of the low compliance and the loss of power, the performed intention-to-treat analysis was far less robust than intended, and we would then have to take into serious consideration the performed per-protocol analysis. We focused on the per-protocol data analysis because it is the appropriate method to best provide the answer for the proof-of-concept trial-addressed question. ²⁴ To validly incorporate the results of the per-
32 33 34 35 36 37 38 39 40 41 42 43 44 45	582 583 584 585 586 587 588	As a direct consequence of the low compliance and the loss of power, the performed intention-to-treat analysis was far less robust than intended, and we would then have to take into serious consideration the performed per-protocol analysis. We focused on the per-protocol data analysis because it is the appropriate method to best provide the answer for the proof-of-concept trial-addressed question. ²⁴ To validly incorporate the results of the per-protocol analysis into the interpretation of the overall results of the trial, we needed to ensure
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	582 583 584 585 586 587	As a direct consequence of the low compliance and the loss of power, the performed intention-to-treat analysis was far less robust than intended, and we would then have to take into serious consideration the performed per-protocol analysis. We focused on the per-protocol data analysis because it is the appropriate method to best provide the answer for the proof-of-concept trial-addressed question. ²⁴ To validly incorporate the results of the per-protocol analysis into the interpretation of the overall results of the trial, we needed to ensure that the randomisation was not seriously violated due to the exclusion of the non-compliers.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	582 583 584 585 586 587 588	As a direct consequence of the low compliance and the loss of power, the performed intention-to-treat analysis was far less robust than intended, and we would then have to take into serious consideration the performed per-protocol analysis. We focused on the per-protocol data analysis because it is the appropriate method to best provide the answer for the proof-of-concept trial-addressed question. ²⁴ To validly incorporate the results of the per-protocol analysis into the interpretation of the overall results of the trial, we needed to ensure
$\begin{array}{c} 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\end{array}$	582 583 584 585 586 587 588 588	As a direct consequence of the low compliance and the loss of power, the performed intention-to-treat analysis was far less robust than intended, and we would then have to take into serious consideration the performed per-protocol analysis. We focused on the per-protocol data analysis because it is the appropriate method to best provide the answer for the proof-of-concept trial-addressed question. ²⁴ To validly incorporate the results of the per-protocol analysis into the interpretation of the overall results of the trial, we needed to ensure that the randomisation was not seriously violated due to the exclusion of the non-compliers.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	582 583 584 585 586 587 588 589 590	As a direct consequence of the low compliance and the loss of power, the performed intention-to-treat analysis was far less robust than intended, and we would then have to take into serious consideration the performed per-protocol analysis. We focused on the per-protocol data analysis because it is the appropriate method to best provide the answer for the proof-of-concept trial-addressed question. ²⁴ To validly incorporate the results of the per-protocol analysis into the interpretation of the overall results of the trial, we needed to ensure that the randomisation was not seriously violated due to the exclusion of the non-compliers. The comparison between the baseline characteristics of the patients included in the per-

1

60

24

BMJ Open

593	cannot be excluded despite non- significant differences in the baseline characteristics. As an
594	additional safeguard towards that end, we also performed adjusted analyses for the primary
595	and secondary analyses for important clinical and demographic parameters, i.e., relapses,
596	EDSS, age and DMT.
597	
598	The present preliminary, small-size, randomised, controlled phase II clinical trial provides
599	evidence for a novel nutraceutical formula based on dietary, metabolic, immunological, and
600	neurobiological pathways possibly involved with disease progression in MS. This novel
601	intervention showed signs of efficacy in the observed annualised relapse rate and disability
602	progression. We took the appropriate methodological measures to control for potential
603	sources of bias and to enable a valid interpretation to be reached. We acknowledge that the
604	presence of bias can only be minimised, not excluded, in any clinical research setting and
605	also that random error is always a possible scenario in small trials. Thus, we present the
606	observed results as an additional piece of randomized evidence and anticipate the replication
607	of our study findings in a larger randomised controlled clinical trial.
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	

	Trootm	ent Arms	
A†	B (PLP10)†	C†	Placebo†
Intervention:	Intervention:	Intervention:	Intervention:
EPA (1,650 mg) / DHA (4,650 mg) / GLA (2,000 mg) / LA (3,850 mg) / total other omega-3 (600 mg)* / total MUFA** (1,714 mg) + total SFA (18:0 160 mg, 16:0 650 mg) / vitamin A (0.6 mg) / vitamin E (22 mg) plus citrus aroma	EPA (1,650 mg) / DHA (4,650 mg) / GLA (2,000 mg) / LA (3,850 mg) / total other omega-3 (600 mg)* / total MUFA** (1,714 mg) + total SFA (18:0 160 mg, 16:0 650 mg) / vitamin A (0.6 mg) / vitamin E (22 mg) + pure γ -tocopherol (760 mg) plus citrus aroma	pure γ -tocopherol (760 mg) dispersed in pure virgin olive oil (16,137 mg) as delivery vehicle plus citrus aroma	Olive oil (pure virgin) plus citrus aroma
	8n-3 37 mg, C18:4n-3 73 mg, 9 g, 20:1 250 mg, 22:1 82 mg, 24 nl		392 mg
glycerides from fish bod International GmbH, Edli triglycerides. The pure y	Aalesund, Norway, was used y oils; borage seed oil (organ ng, Germany, was used as the -tocopherol was purchased f carotene, from HealthAid Ltd pubendorf, Switzerland.	nic, cold pressed) "Borago o e source for the omega-6 PU from Tama Biochemical Co	officinalis" Goerlich Phar JFAs, MUFAs and SFAs, D. Ltd., Shinjuku-ku Tok
Table 1. Intervention	ingredients per treatmen	t arm.	
Table 1. Intervention	ingredients per treatmen		
Table 1. Intervention	ingredients per treatmen	t arm.	
Table 1. Intervention	ingredients per treatmen	°L2	
Table 1. Intervention	ingredients per treatmen	°L2	
Table 1. Intervention	ingredients per treatmen	°L2	
Table 1. Intervention	ingredients per treatmen	°L2	
Table 1. Intervention	ingredients per treatmen	°L2	
Table 1. Intervention	ingredients per treatmen	°L2	
Table 1. Intervention	ingredients per treatmen	°L2	

2A.					
Characteristics	Group A (n=20)	Group B† (n=20)	Group C (n=20)	Placebo (n=20)	P- valı
Sex					
Female - no. (%)	15 (75)	15 (75)	15 (75)	15 (75)	1.0
Age (yr)					
Mean ± Standard Deviation (SD)	38.0±11.9	36.9±8.4	37.7±8.7	38.1±10.9	0.9
Median (Range)	38.0 (22 - 65)	37.0 (25 –61)	36.5 (24 - 54)	36.0 (21–58)	
Treatment history					
Patients on DMT- no. (%)	11 (55)	9 (45)	12 (60)	10 (50)	0.8
Pre-treatment disease duration (yr)					
Mean ± SD	9.0±7.6	8.6±4.8	8.6±5.3	7.7±5.7	0.9
Median (Range)	7.5 (2 – 37)	8.0 (2 – 20)	8.0 (3 – 24)	6.5 (2 – 25)	
Pre-treatment relapses‡					
Mean ± SD	2.33±1.68	2.41±1.73	2.31±1.66	2.10±1.32	0.9
Median (Range)	2.0 (1 – 6)	2.0 (1 – 7)	2.0 (1 – 6)	2.0 (1 – 4)	
ARR	1.17	1.21	1.16	1.05	0.9
Patients -% with ≤ 1 relapse	40	45	40	35	
Baseline EDSS score‡					
Mean \pm SD	2.52±1.23	2.15±1.05	2.42±1.21	2.39± 0.93	0.7
Median (Range)	2.5 (1.0–5.5)	2.0 (1.0–4.0)	2.5 (0.0–5.0)	2.5 (1.0-4.0)	
2B.					
Characteristics	Group A (n=10)	Group B† (n=10)	Group C (n=9)	Placebo (n=12)	P- val
Sex					
Female - no. (%)	5 (50)	7 (70)	6 (66.6)	10 (83.3)	0.4
Age (yr)					
Mean \pm SD	36.6±13.5	34.80±5.4	40.9±8.1	39.8±13.2	0.5
Median (Range)	34.5 (22–65)	34.5 (26–43)	40.0 (29–54)	37.5 (21–58)	
Treatment history					
Patients on DMT- no. (%)	6 (60)	4 (40)	6 (67)	6 (50)	0.9
Pre-treatment disease duration (yr)					
Mean ± SD	9.7±10.0	8.3±5.3	11.3±6.1	8.7± 7.1	0.8

Mean \pm SD	2.20±1.47	2.70±1.25	1.78±0.66	1.67±1.37	0.241
Median (Range)	2.0 (1 – 6)	2.5 (1 – 4)	2.0 (1 – 3)	1.5 (1 – 4)	
ARR	1.10	1.35	0.89	0.83	
Patients -% with ≤ 1 relapse	30	20	33	50	
Baseline EDSS score					
Mean \pm SD	2.65±1.37	2.40±1.12	2.11±1.02	2.16±0.96	0.69
Median (Range)	3.0 (1.0-5.5)	2.5 (1.0-4.0)	2.0 (1.0-4.0)	2.0 (1.0-3.5)	
† PLP10 group ‡ Available data at entry baseline (n=1	8 for group A, n=1	7 for group B, n=	-19 for group C, n	=19 for group D)	I
Table 2. Section 2A reports the	demographics a	und baseline di	sease character	istics for the to	otal
randomised population by treatr	nent arm.				
Section 2B reports the demogra	phics and baseli	ne disease cha	racteristics of t	he all-time on-	study
	•				-
population by treatment arm. The	iere were no sig	nificant betwe	en study-group	differences at	
baseline for any characteristic.					
		2.0			

Characteristics	Grou (N =		Grou (N =			up C =9)	Plac (N =	ebo =12)
End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	22	17	27	8	16	13	20	25
Annual Relapse Rate (ARR)	1.10	0.85	1.35	0.40	0.88	0.72	0.83	1.04
% Reduction Compared with Placebo (primary endpoint) (Ys)¶		-18		-62		-30		N/A
P Value against placebo		0.468		0.024		0.578		
	-2		-7		_	0.578 18	+:	25

X: Total number of relapses for the 24 months pre-treatment (baseline)

Y: Total number of relapses for the 24 months on-treatment

¶ Unadjusted estimate

3B.								
<u>Excluding patients on</u> <u>natalizumab</u>		oup A =9)	Grou (N =			up C =9)		cebo =10)
End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	16	15	27	8	16	13	13	19
Annual Relapse Rate (ARR)	0.88	0.83	1.35	0.40	0.88	0.72	0.65	0.95
% Reduction Compared with Placebo (primary endpoint) (Ys)¶		-13		-58		-24		N/A
P Value against placebo		0.493		0.016		0.412		
ARR change -% (Y to X)¶		-6	-7	0	- 1	18	+	46
P value against baseline	0.	857	0.0	003	0.5	578	0.3	354

X: Total number of relapses for the 24 months pre-treatment (baseline)

Y: Total number of relapses for the 24 months on-treatment

¶ Unadjusted estimate

Table 3. Section 3A reports the two-year primary end points of the ARR for the all-time on-study

population by treatment arm and per-cent difference from the placebo. During the 24 mo period on-

[†] PLP10 group

treatment, the ARR of group A was 0.85, with an 18% decrease compared with placebo (p=0.468); that of the PLP10 group was 0.40, with a 62% decrease (p=0.024); and that of group C was 0.72, with a 30% decrease (p=0.578). This section also reports the comparison of the 24 mo pre-treatment ARR (baseline ARR) with the 24 mo on-treatment ARR of the all-time on-study population, including patients on natalizumab.

Section 3B reports the comparison of the 24 mo pre-treatment ARR with the 24 mo on-treatment ARR of the all-time on-study population excluding patients on natalizumab and the comparison of the ARR during the 24 mo period on-treatment (primary end point) for each treatment group compared with the placebo.

643	
644	
645	
646	
647	
648	
649	
650	
651	
652	
653	
654	
655	
656	
657	
658	
659	

4A. Characteristics	Grou (N =			up B† =7)	Grou (N =		Plac (N=	
	Х	Y	Х	Y	Х	Y	Х	Y
No. of Relapses	20	14	14	14	27	26	20	13
Annual Relapse Rate (ARR)	1.25	0.88	1.00	1.00	1.35	1.30	1.42	0.92

X: Total number of relapses for the 24 months pre-treatment

Y: Total number of relapses for the 24 months on-treatment

4B.				
Characteristics	Group A (N=20)	Group B† (N=20)	Group C (N=20)	Placebo (N =20)
End Point	X Y	X Y	X Y	X Y
No. of Relapses	45 34	49 30	46 41	43 41
Annual Relapse Rate (ARR)	1.13 0.85	1.23 0.75	1.15 1.03	1.08 1.03
ARR Reduction -% (Y to X)¶	-25	-39	-10	-5
P value against baseline	0.120	0.005	0.475	0.652
% Reduction of the ARR Compared with Placebo (Ys)¶	-18	-27	0.0	N/A
P Value against placebo	0.447	0.121	0.996	

X: Total number of relapses for the 24 months pre-treatment (baseline)

Y: Total number of relapses for the 24 months on-treatment

¶ Unadjusted estimate

† PLP10 group

Table 4. Section 4A reports the two year primary end point of relapses based on the study design as reported by the drop-out patients by treatment arm. The most drop-out patients who transferred to disease-modified therapy (DMT) were from group A and the placebo group, with three and two patients, respectively, on natalizumab. These parameters justify the decreased number of relapses recorded within the group A and placebo drop-outs and could affect the ITT analysis in favour of the placebo when the total two-year recorded data are used. For the PLP10 group, 14 relapses were reported at baseline, which remained the same during the two-year study period. For the placebo group, 20 relapses were reported at

baseline and decreased to 13 during the two-year study period. These results are expected because for the PLP10 group, 43% of the drop-outs were under DMT at entry baseline and remained the same until the end of the study, with no patient on natalizumab, but the 57% of the placebo group drop-outs who were under DMT at entry baseline increased to 86% at the end of the study, including two patients on natalizumab.

Section 4B reports the comparison of the 24 month pre-treatment ARR (baseline) with the 24 month on-treatment ARR for the total randomised population by treatment arm. The ARR of the PLP10 group was 1.23 at baseline and 0.75 at the end of the study (39% reduction, p=0.005), and that for the placebo group was 1.08 at baseline and 1.03 at the end of the study (5% reduction, p=0.652). No significant difference was calculated for the other two treatment arms. During the 24 months on-treatment, the PLP10 group presented a 27% reduction in the ARR versus the placebo group (p=0.121), with all groups lacking statistically significant results.

Characteristics*	Group A (n=10)	Group B PLP10 (n=10)	Group C (n=9)	Placebo (n=12)	P-va Grou B vs. Place
Annual relapse rate over 1 year**	0.80	0.40	0.78	0.83	
Total number of relapses**	8	4	7	10	
Primary end points					
Annual relapse rate over 2 years (95% CI)**	0.85	0.40 (0.15-0.87)	0.72	1.04	0.02
Total number of relapses**	17	8	13	25	
Excluding patients on natalizumab	(n=9)	(n=10)	(n=9)	(n=10)	
Annual relapse rate over 2 years (95% CI)	0.83	0.40 (0.10-0.79)	0.72	0.95	0.0
Total number of relapses	15	8	13	19	
Secondary end points					
Cumulative probability of sustained progression increase by 1 point on EDSS, confirmed after 6 mo, over 2 years -% **	43	10 (1/10)	24	58 (7/12)	0.0
Excluding patients on natalizumab Cumulative probability of sustained progression increase by 1 point on EDSS, confirmed after 6 mo, over 2 years -%	33	10 (1/10)	24	70 (7/10)	0.0
Exploratory Results					
Patient proportion with ≤1 relapse over 2 years -% **	50 (5/10)	90 (9/10)	56 (5/9)	42 (5/12)	0.0
MRI					
Patient proportion with new or enlarging T2 lesions-% **		29 (2/7)		67 (4/6)	
Excluding patients on natalizumab Patient proportion with no new or enlarging T2 lesions-%		29 (2/7)		80 (4/5)	
DMT (interferons, glatiramer acetate) and natalizumab					
Patient proportion on DMT and natalizumab at the end of 2 years-% **	80 (8/10)†	60 (6/10)	67 (6/9)	75 (9/12) ‡	0.7
 CI denotes confidence interval. Including patients on natalizumab 1 out of 10 on natalizumab 2 out of 12 on natalizumab 					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
4
5
6
7
γ Q
0
9
10
11
12
13
14
15
16
17
18
19
20
21
3 4 5 6 7 8 9 10 11 2 3 4 15 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 3 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 3 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 3 3 4 5 6 7 8 9 10 11 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
23
24
25
26
20
21
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45 46
40 47
48
49
50
51
52
53
54
53 54 55
56
57
58
59
60

1

668	Acknowledgments: We thank all participating patients. We thank Thyrsos Posporis MD and
669	the central reading centre (Ayios Therissos Medical Diagnostic Centre, Nicosia, Cyprus) as
670	well as Eleni Eracleous, MD (neuroradiologist) for contributing the MRI scans and their
671	teams for the MRI reading. Special thanks to Elena Kkolou, the pharmacist involved in the
672	study, and Eftychia Gaglia for her nursing contribution and collection of blood from the
673	patients. We also thank Demetris Hadjisofoklis and Ioanna Leontiou (University of Nicosia,
674	Helix Business incubator) for their contributions to the randomisation process, data
675	collection, filing and blind code keeping. Additionally, we would like to thank the CING for
676	hosting the project. Moreover, we thank the Cyprus Ministry of Commerce, Industry and
677	Tourism for funding the project and Yasoo Health Ltd. for providing some of the raw
678	materials in exchange of investigating, on their behalf, the efficacy and safety of γ -
679	tocopherol.
680	
681	Contributors: All authors interpreted the data. I.S.P drafted the report and figures, and all
682	authors critically revised and approved the final version. M.C.P and I.S.P were responsible

684 signs and the treating physician. I.S.P and G.N.L were involved in the non-pharmacologic

for the protocol and study design. M.C.P was the evaluator of the patients' clinical progress

treatment-related care. I.S.P performed the literature search, and both I.S.P and G.N.L

686 contributed on the intervention formulation and composition rationale. I.S.P supervised the

687 composition procedure of the interventions and the fatty acid profile analysis of the red blood

cell membranes. E.E.N and I.S.P performed the statistical analyses. E.E.N was an

689 independent scientist. All authors vouch for the accuracy and completeness of the data and690 the statistical analyses.

691

Page 35 of 120

BMJ Open

692	Funding: Supported by a grant from the Cyprus Ministry of Commerce, Industry and
693	Tourism, as part of a program for the creation of new high technology and innovation
694	enterprises through the business incubator.
695	
696	Competing interests: M.C.P, G.N.L, I.S.P received grant support from the Cyprus Ministry of
697	Commerce, Industry and Tourism, the Program for the Creation of New High Technology
698	and Innovation Enterprises through the Business Incubator. PALUPA Medical Ltd. is a
699	research company formed and registered for the completion of the study, as required by the
700	Governments' funding grant program. M.C.P, G.N.L, I.S.P, and CING are all stockholders of
701	the PALUPA Medical Ltd. M.C.P is an employee at the CING. I.S.P is a senior research
702	collaborator hosted by the CING. G.N.L is a CING collaborator. E.E.N declares no
703	competing interests. No pharmaceutical companies were involved in this phase II clinical
704	trial. The intervention is under a USA provisional patent; Application Number 61469081.
705	
706	Ethical approval: Cyprus National bioethics committee (reference EEBK/EII/2005/10).
707	
708	All authors have completed the Unified Competing Interest form at
709	www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and
710	declare that (1) M.C.P, G.N.L, I.S.P have support from the Cyprus Ministry of Commerce,
711	Industry and Tourism, the Program for the Creation of New High Technology and Innovation
712	Enterprises through the Business Incubator for the submitted work; (2) E.E.N has had no
713	relationships with the Cyprus Ministry of Commerce, Industry and Tourism or PLUPA
714	Medical Ltd., which might have an interest in the submitted work, in the previous 3 years; (3)
715	their spouses, partners, or children have no financial relationships that may be relevant to the

3
4
5
6
7
8
9
10
10
11
12
13
14
10 11 12 13 14 15 16
16
17 18
18
19
20
21
22
21 22 23
24
23 24 25 26 27 28 29 30
26
27
20
20
29
30
31
20
33
33 34 35
35
36
36 37
37
38
39
40
41
42
43
44
45
-
47
48
49
50
51
52
53
53 54
55
56
57
58
59
60

submitted work; and (4) E.E.N has a non-financial interest that may be relevant to thesubmitted work.

718

1 2

The Corresponding Author has the right to grant on behalf of all authors and does grant on
behalf of all authors, an exclusive license on a worldwide basis to the BMJ Publishing Group
Ltd and its Licensees to permit this article (if accepted) to be published in BMJ editions and
any other BMJPGL products and sublicenses to exploit all subsidiary rights, as set out in our
license (http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication)."

724

Article Summary

Article focus:

- The increasing prevalence of multiple sclerosis (MS) combined with the limited efficacy and side effects of the existing treatments urge the development of new, innovative, more effective, safe, and preventive treatment strategies.
- We propose three novel nutraceutical treatment interventions, formulated based on a systems medicine rational through nutritional systems biology; with PLP10 representing the complete composition of the formulation and the other two treatments represent partial formulations.
- We have studied the proposed interventions on 80 relapsing remitting MS patients (four groups of 20 each) for a total of 42 months (including the 12-month extended period) in a randomised, double-blind, placebo-controlled, phase II proof-of-concept clinical trial.

Key messages:

1	
2	
3 4 5 6 7 8	
5	
6	
7	
8 Q	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20 21	
22	
23	
24	
25	
20 27	
28	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 324 25 26 27 28 29 30	
30	
31 32 33 34 35	
33	
34	
35	
36 37	
37 38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

• In this small proof-of-concept, randomised, double-blind clinical trial, the PLP10 treatment statistically significantly reduced the ARR and the risk of sustained disability progression without any reported serious adverse events.

Overall, a total of 41 (51%) patients completed the 30-month trial. For the per-protocol analysis of primary end point, we observed a 64% relative rate reduction for the PLP10 group (adjusted RRR 0.36, 95% CI 0.15 to 0.87, p=0.024). The cumulative probability of disability progression at two years was 10% in the PLP10 group and 58% in the placebo group (unadjusted log-rank p=0.019).

Strengths and limitations of this study:

- The randomisation, blinding, the use of placebo, the definite inclusion/exclusion criteria and primary/secondary end points, along with the 30 month duration of the study, as well as the inclusion of a 6-month normalisation (chronotherapy) period allow for an appropriate overview of the safety and efficacy of the assessed interventions.
- The small sample size and the high rate of drop-outs (due to the palatability of the formula) are the limitations associated with the present study.

725			
727			
728			
729			
730			

3
4
5
6
5 6 7
0
0
9
10
11
12
13
1/
14
15
16
17
18
19
20
21
22
22
23
8 9 10 11 23 14 15 16 7 8 9 10 11 23 24 26 27 28 29 31 23 34 56 37 38 9 0 1
25
26
27
28
20
29
30
31
32
33
34
35
36
30
3/
38
39
40
41
42
43
44
44
45
46
47
48
49
50
51
50
52
53
54
55
56
57
58
59
60

References

732	1.	Baranzini SE, Oksenberg JR, Hauser SL. New insights into the genetics of multiple
733		sclerosis. Journal of Rehabilitation Research and Development 2002;39(2):201-10.
734	2.	Goni J, Esteban FJ, de Mendizabal NV, Sepulcre J, Ardanza-Trevijano S, Agirrezabal I,
735		et al. A computational analysis of protein-protein interaction networks in
736		neurodegenerative diseases. BMC Syst Biol 2008;2:52.
737	3.	Lobo I. Multifactorial inheritance and genetic disease. <i>Nature Education</i> 2008; 1(1).
738	4.	Compston A, Coles A. Multiple sclerosis. Lancet 2002;359(9313):1221.
739	5.	Evans PH. Free radicals in brain metabolism and pathology. British Medical Bulletin
740		1993;49(3):577-87.
741	6.	Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci
742		1997;27(1):11-25.
743	7.	Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez
744		MV. The link between excitotoxic oligodendroglial death and demyelinating diseases.
745		Trends in Neurosciences 2001;24(4):224-30.
746	8.	Owens T. The enigma of multiple sclerosis: inflammation and neurodegeneration cause
747		heterogeneous dysfunction and damage. Current Opinion in Neurology 2003;16(3):259-
748		65.
749	9.	Smith KJ, Kapoor R, Felts PA. Demyelination: The role of reactive oxygen and nitrogen
750		species. Brain Pathology 1999;9(1):69-92.
751	10	. Ahn AC, Tewari M, Poon C-S, Phillips RS. The Clinical Applications of a Systems
752		Approach. <i>PLoS Med</i> 2006;3(7):e209.
753	11	. Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and
754		healthcare. Genome Med 2009;1(1):2.

Page 39 of	120	BMJ Open
1		
2 3	755	12. van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF. Antioxidants and
4 5 6	756	polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 2005;59(12):1347-61.
7 8	757	13. Cunnane S, Ho S, Dore-Duffy P, Ells K, Horrobin D. Essential fatty acid and lipid
9 10	758	profiles in plasma and erythrocytes in patients with multiple sclerosis. The American
11 12	759	Journal of Clinical Nutrition 1989;50(4):801-06.
13 14	760	14. Harbige LS ea. Polyunsaturated fatty acids in the pathogenesis and treatment of multiple
15 16 17	761	sclerosis. Proc Nutr Soc 2008;67:E21.
18 19	762	15. Wilson R, Tocher D. Lipid and fatty acid composition is altered in plaque tissue from
20 21	763	multiple sclerosis brain compared with normal brain white matter. <i>Lipids</i> 1991;26(1):9-
22 23	764	15.
24 25 26	765	16. Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases.
27 28	766	The American Journal of Clinical Nutrition 2006;83(6):S1505-19S.
29 30	767	17. Piani D, Fontana A. Involvement of the cystine transport system xc- in the macrophage-
31 32	768	induced glutamate-dependent cytotoxicity to neurons. The Journal of Immunology
33 34 35	769	1994;152(7):3578-85.
36 37	770	18. Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health
38 39	771	implications. International Journal of Developmental Neuroscience 2000;18(4-5):383-
40 41	772	99.
42 43	773	19. Calder PC. Dietary modification of inflammation with lipids. Proceedings of the
44 45 46	774	Nutrition Society 2002;61(03):345-58.
47 48	775	20. Gil Á. Polyunsaturated fatty acids and inflammatory diseases. Biomedecine &
49 50	776	<i>Pharmacotherapy</i> 2002;56(8):388-96.
51 52	777	21. Ariel A, Serhan CN. Resolvins and protectins in the termination program of acute
53 54 55	778	inflammation. Trends in Immunology 2007;28(4):176-83.
56 57		
58 59		
60		

779	22. Arita M, Ohira T, Sun Y-P, Elangovan S, Chiang N, Serhan CN. Resolvin E1 selectively
780	interacts with leukotriene B4 receptor BLT1 and chemR23 to regulate inflammation. The
781	Journal of Immunology 2007;178(6):3912-17.
782	23. Janakiram NB, Rao CV. Role of Lipoxins and Resolvins as Anti-Inflammatory and
783	Proresolving Mediators in Colon Cancer. Current Molecular Medicine 2009;9(5):565-79.
784	24. Serhan C, Arita M, Hong S, Gotlinger K. Resolvins, docosatrienes, and neuroprotectins,
785	novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids
786	2004;39(11):1125-32.
787	25. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory
788	and pro-resolution lipid mediators. Nat Rev Immunol 2008;8(5):349-61.
789	26. Rossetti RG, Seiler C, DeLuca P, Laposata M, Zurier R. Oral administration of
790	unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation.
791	Journal of Leukocyte Biology 1997;62(4):438-43.
792	27. Vatassery G. Vitamin E and other endogenous antioxidants in the central nervous system.
793	Geriatrics 1998a;53(Suppl 1): S25–S27.
794	28. Fukuzawa K, Gebicki JM. Oxidation of [alpha]-tocopherol in micelles and liposomes by
795	the hydroxyl, perhydroxyl, and superoxide free radicals. Archives of Biochemistry and
796	<i>Biophysics</i> 1983;226(1):242-51.
797	29. Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames BN.
798	γ -Tocopherol traps mutagenic electrophiles such as NOx and complements α -tocopherol:
799	Physiological implications. Proceedings of the National Academy of Sciences of the
800	United States of America 1997;94(7):3217-22.
801	30. Brigelius-Flohé R, Kelly FJ, Salonen JT, Neuzil J, Zingg J-M, Azzi A. The European
802	perspective on vitamin E: current knowledge and future research. The American Journal
803	of Clinical Nutrition 2002;76(4):703-16.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 41 of 120

BMJ Open

2 3 4	804	31. Calder P. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel
4 5 6	805	diseases Mol. Nutr. Food. Res. 2008;52:885-97
7 8	806	32. Edwards IJ, O'Flaherty JT. Omega-3 Fatty Acids and PPARγ in Cancer. PPAR Research
9 10	807	2008;2008:1-15.
11 12	808	33. Groeger AL, Cipollina C, Cole MP, Woodcock SR, Bonacci G, Rudolph TK, et al.
13 14	809	Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat
15 16 17	810	Chem Biol 2010;6(6):433-41.
18 19	811	34. Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol
20 21	812	2008;9(2):162-76.
22 23	813	35. Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related
24 25 26	814	decreases in nuclear receptors and increase neurogenesis in old rats. Journal of
27 28	815	Neuroscience Research 2010;88(10):2091-102.
29 30	816	36. Salvati S, Natali F, Attorri L, Di Benedetto R, Leonardi F, Di Biase A, et al.
31 32	817	Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. Journal
33 34 35	818	of Neuroscience Research 2008;86(4):776-84.
36 37	819	37. Abraham M, Shapiro S, Karni A, Weiner HL, Miller A. Gelatinases (MMP-2 and MMP-
38 39	820	9) are preferentially expressed by Th1 vs. Th2 cells. Journal of Neuroimmunology
40 41	821	2005;163(1–2):157-64.
42 43 44	822	38. Ffrench-Constant C. Pathogenesis of multiple sclerosis. <i>The Lancet</i> 1994;343(8892):271-
45 46	823	75.
47 48	824	39. Leppert D, Lindberg RLP, Kappos L, Leib SL. Matrix metalloproteinases:
49 50	825	multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis.
51 52	826	Brain Research Reviews 2001;36(2–3):249-57.
53 54 55		
56 57		
58		

- 3 4	827
5 6	828
7 8	829
9 10	830
11 12 13	831
13 14 15	832
16 17	833
18 19	834
20 21	835
22 23 24	836
25 26	837
27 28	838
29 30	839
31 32 33	840
34 35	841
36 37	842
38 39	843
40 41 42	844
42 43 44	845
45 46	846
47 48	847
49 50	848
51 52 53	849
54 55	850
56 57	
58 59	
60	

1 2

> 40. Curtis CL, Rees SG, Cramp J, Flannery CR, Hughes CE, Little CB, et al. Effects of n-3 fatty acids on cartilage metabolism. Proceedings of the Nutrition Society 2002;61(03):381-89. 41. Harris MA, Hansen RA, Vidsudhiphan P, Koslo JL, Thomas JB, Watkins BA, et al. Effects of conjugated linoleic acids and docosahexaenoic acid on rat liver and reproductive tissue fatty acids, prostaglandins and matrix metalloproteinase production. Prostaglandins, Leukotrienes and Essential Fatty Acids 2001;65(1):23-29. 42. McCabe A, Wallace J, Gilmore W, Strain J, McGlynn H. The effect of eicosapentanoic acid on matrix metalloproteinase gene expression. *Lipids* 1999;34(0):S217-S18. 43. Shinto L, Marracci G, Bumgarner L, Yadav V. The Effects of Omega-3 Fatty Acids on Matrix Metalloproteinase-9 Production and Cell Migration in Human Immune Cells: Implications for Multiple Sclerosis. Autoimmune Diseases 2011;2011. 44. McNamara RK. DHA Deficiency and Prefrontal Cortex Neuropathology in Recurrent Affective Disorders. The Journal of Nutrition 2010;140(4):864-68. 45. Huang WL, King VR, Curran OE, Dyall SC, Ward RE, Lal N, et al. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 2007;130(11):3004-19. 46. Marangoni F, Angeli MT, Colli S, Eligini S, Tremoli E, Sirtori CR, et al. Changes of n – 3 and n - 6 fatty acids in plasma and circulating cells of normal subjects, after prolonged administration of 20:5 (EPA) and 22:6 (DHA) ethyl esters and prolonged washout. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1993;1210(1):55-62. 47. Martínez M, Vázquez E, García-Silva MT, Manzanares J, Bertran JM, Castelló F, et al. Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized

BMJ Open

2 3 4	851	peroxisomal disorders1. The American Journal of Clinical Nutrition 2000;71(1):376S-
5 6	852	85S.
7 8	853	48. Committee for medicinal products for human use. Guideline on clinical trials in small
9 10	854	populations European Medicines Agency, 2006:1-10.
11 12	855	49. Gerard E Dallal. The Little Handbook of Statistical Practice. In:
13 14 15	856	http://www.tufts.edu/~gdallal/LHSP.HTM, editor, 2008.
16 17	857	50. Wang YC, Meyerson L, Tang YQ, Qian N. Statistical methods for the analysis of relapse
18 19	858	data in MS clinical trials. Journal of the Neurological Sciences 2009;285(1):206-11.
20 21	859	51. Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative
22 23	860	review. Complement Ther Med 2011;19(4):228-37.
24 25	861	52. Farinotti M, Simi S, Di Pietrantonj C, McDowell N, Brait L, Lupo D, et al. Dietary
26 27 28	862	interventions for multiple sclerosis (Review). Cochrane Database Syst Rev 2007(1, Art.
29 30	863	No.:CD004192.).
31 32	864	53. Marvin MG. Multiple Sclerosis Review. P&T 2012;37(3):175-184
33 34	865	54. Polman CH, O'Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A
35 36 37	866	randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. The
37 38 39	867	New England Journal of Medicine 2006;354(9):899-910.
40 41	868	55. Kappos L, Radue E-W, O'Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A
42 43	869	placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. The New
44 45	870	England Journal of Medicine 2010;362(5):387-401.
46 47 48	871	56. Mehta LR, Dworkin RH, Schwid SR. Polyunsaturated fatty acids and their potential
48 49 50	872	therapeutic role in multiple sclerosis. <i>Nature Clinical Practice Neurology</i> 2009;5(2):82-
51 52	873	92.
53 54		
55 56		

874	57. Rafat AS, Saame RS, Laura AS, Heidi RY, William S, Gary PZ. Omega 3-Fatty Acids:
875	Health Benefits and Cellular Mechanisms of Action. Mini Reviews in Medicinal
876	<i>Chemistry</i> 2004;4(8):859-71.
877	58. Shaikh SR, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells, and
878	antigen presentation. The American Journal of Clinical Nutrition 2006;84(6):1277-89.
879	59. Yao JK. Increased polyunsaturated fatty acids in developing and regenerating peripheral
880	nerve. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism
881	1982;712(3):542-46.
882	60. Lajtha A, Toth J, Fujimoto K, Agrawal CH. Turnover of Myelin Proteins in Mouse Brain
883	in vivo. Biochem. J. 1977;164:323-29.
884	61. LeBaron FN, Sanyal S, Jungalwala FB. Turnover rate of molecular species of
885	
886	
887	
888	
889	
890	
891	
892	
893	
894	

Page 45 of 120

895

896

897

898

899

900

901

902

903

Figure legends

inflammation.

Figure 1. Study Flowchart

possible effects on inflammation.

1

Figure 2. Omega-6 and omega-3 PUFAs, their respective metabolic derivatives and their

After consumption, the PUFAs are metabolised via several pathways (not shown) to active

compounds that mediate inflammation and to products that promote the resolution of

Abbreviations: PL, phospholipid; IFN- γ , interferon γ ; IL-2, interleukin 2; NF κ B, nuclear

factor kappa B; PGE2, prostaglandin E2; PPARy, peroxisome proliferator-activated receptor

2	
3	
1	
4	
5	
3 4 5 6 7	
7	
8	
0	
9	
10	
11	
12	
40	
13	
14	
15	
16	
17	
11	
18	
19	
20	
21	
9 10 11 12 13 14 15 16 17 18 20 21 22 23 25 26 27 28 20 31 22 30 32 23	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
24	
31	
32	
33	
32 33 34 35 36 37 38 39	
25	
30	
36	
37	
38	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

904	γ ; PUFAs, polyunsaturated fatty acids; TGF β , transforming growth factor β ; TNF, tumour
905	necrosis factor; COX, cyclooxygenase; hydroxyeicosatetraenoic acid; HPETE,
906	hydroperoxyeicosatetraenoic acid; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin;
907	TX, thromboxane; RXR-γ, retinoid X receptor-gamma; Nrf2, nuclear respiratory factor;
908	MMP, metalloproteinase.
909	Figure 3. Panel A demonstrates the ARR of the all-time on-study patients during the 24 mo
910	pre-treatment (baseline ARR) and at different on-study intervals (6, 12, 18, 24 mo) per
911	treatment arm. **
912	Panel B demonstrates the ARR of the all-time on-study population between the 0-6, 6-12, 6-
913	18, and 6-24 mo period intervals for the PLP10 vs. placebo groups. **
914	Panel C demonstrates the ARR of the all-time on-study population for the PLP10 vs. placebo
915	groups at baseline, during the 1 st year, and during the 2 nd year on-treatment. **

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
5	
6	
7	
8	
à	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
9 10 11 12 14 15 16 17 18 19 21 22 22 22 22 22 23 33 33 33 33	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
20	
32	
33	
34	
35	
26	
30	
37	
38	
39 40	
10	
14	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

916	Panel D demonstrates the dispersion of relapses throughout the 2-year period of all-time on-
917	study (excluding patients on natalizumab) for PLP10 (n=10) vs. placebo (n=10). The placebo
918	group showed an irregular dispersion of relapses compared with the PLP10 group, with a
919	linear increasing trend, whereas the PLP10 group showed a stabilised linear trend. Using the
920	per-protocol model in which the patients on natalizumab were excluded, the number of
921	relapses could be compared on the same number of patients.
922	** Including the patients on natalizumab.
923	Figure 4. Panel 4A demonstrates the Kaplan–Meier plot of the time to sustained progression
924	of disability among the all-time on-study patients, excluding the patients on natalizumab,
925	receiving interventions A, PLP10 and C compared with placebo. PLP10 reduced the risk of
926	the sustained progression of disability by 86% over two years (p=0.006). Intervention
927	formula A reduced the risk of the sustained progression of disability by 53% (p=0.266), and
928	intervention formula C, by 67% (p=0.061).
929	Panel 4B demonstrates the Kaplan–Meier plot of the time to sustained progression of
930	disability among the ITT population receiving interventions A, PLP10 and C compared with
931	placebo. PLP10 reduced the risk of the sustained progression of disability by 71% over two
932	years (p=0.052, trend). Intervention formula A reduced the risk of the sustained progression
933	of disability by 22% (p=0.727), and intervention formula C, by 40% (p=0.447).
934	Figure 5. Mean change in the expanded disability status scale score as a function of visit
935	number. The values are expressed as the mean \pm standard error of the mean (s.e.m.)
936	¶ Including patients on natalizumab
937	¶¶ Excluding patients on natalizumab
938	

BMJ Open

A novel oral nutraceutical formula of omega-3 and omega-6 fatty acids with vitamins (PLP10) in relapsing remitting Formatted: English (U.S.) multiple sclerosis: a randomized randomised, double-blind, placebo-controlled proof-of-concept clinical trial Marios C. Pantzaris*, George N. Loukaides, Evangelia E. Ntzani, Ioannis S. Patrikios* * Both M.C.P and I.S.P are the first authors and both are the corresponding authors The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus Marios C. Pantzaris Senior Consultant Neurologist Neurology Clinic C and PALUPA Medical Ltd., The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus George N. Loukaides Clinical Dietitian/Nutritionist Neurology Clinic and PALUPA Medical Ltd., University of Ioannina School of Medicine (UISM) 45110 Ioannina, Greece Evangelia E. Ntzani Assistant Professor Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, PALUPA Medical Ltd at The Cyprus Institute of Neurology and Genetics (CING) 1683 Nicosia, Cyprus Ioannis S. Patrikios Senior Research Scientist, visiting Professor at European University Cyprus Nicosia, Cyprus, Department of Health and Science. Correspondence should be addresses to e-mail: <u>I.Patrikios@euc.ac.cy</u> or pantzari@cing.ac.cy

Formatted: English (U.S.)

Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Field Code Changed Field Code Changed Formatted: English (U.S.) Formatted: English (U.S.)

2 3 4	
5	
6 7	22
8 9	23
10 11	24
12 13	25
14 15	26
16 17	27
18 19	28
20 21	29
22 23	30
24 25	31
26 27	32
28 29	33
30 31	34
32 33	35
34 35	36
36 37	37
38 39	38
40 41	39
42 43	40
44 45	41
46 47	42
48 49	43
50 51	44
52 53	45
54 55	
56 57	
58	
59 60	

22	Correspondence to:	Formatted: No underline, Font color: Auto, English (U.S.)
3	Joannis Patrikios	Formatted: English (U.S.)
		Formatted: No underline, Font color: Auto, English (U.S.)
4	The Cyprus Institute of Neurology and Genetics (CING)	Formatted: English (U.S.)
5	Neurology Clinic C (PALUPA Medical),	Formatted: No underline, Font color: Auto, English (U.S.)
6	6 International Airport Av.	Formatted: English (U.S.)
		Formatted: No underline, Font color: Auto, English (U.S.)
7	P.O.Box 23462, 1683 Ayios Dometios. Nicosia, Cyprus	Formatted: English (U.S.)
8	Tel: +357 22 358 600, +357 99 097 856;	Formatted: No underline, Font color: Auto, English (U.S.)
0		Formatted: English (U.S.)
9	<u>i.patrikios@euc.ac.cy</u>	Formatted: No underline, Font color: Auto, English (U.S.)
0	patrikiosioannis@gmail.com	Formatted: English (U.S.)
1		Formatted[1]
1		Formatted: English (U.S.)
2	AND	Formatted: English (U.S.)
2		Formatted: English (U.S.)
3		Field Code Changed
5		Field Code Changed Formatted: English (U.S.)
4	Marios Pantzaris	Formatted: English (U.S.)
		Formatted[2]
5	The Cyprus Institute of Neurology and Genetics (CING)	Formatted: English (U.S.)
c	Neurology Clinic C (DALLIDA Medicel)	Formatted
6	Neurology Clinic C (PALUPA Medical),	Formatted: English (U.S.)
7	6 International Airport Av.	Formatted [4]
-		Formatted: English (U.S.)
8	P.O.Box 23462, 1683 Ayios Dometios, Nicosia Cyprus	Formatted [5]
		Formatted: English (U.S.)
9	Tel: +357 22 358 600; +357 99 677 067	Formatted [6]
0	pantzari@cing.ac.cy	Formatted: English (U.S.)
0		Formatted [7]
1		Formatted: English (U.S.)
		Formatted[8]
2	Keywords: antioxidant vitamins, polyunsaturated fatty acids, multiple sclerosis, systems	Formatted: English (U.S.) Field Code Changed
2		Formatted: English (U.S.)
3	medicine, randomized-randomised clinical trial.	Formatted: English (U.S.)
4		Formatted[9]
т		Formatted [[10]]
5	Word Count: 6299	Formatted: English (U.S.)
5		Formatted ([11])
		Formatted: English (U.S.)

5	Abstract	_
,	Objective To assess whether our three novel interventions, formulated based on systems	~ .
}	medicine therapeutic concept reduced disease activity in patients with relapsing remitting	 ```
)	multiple sclerosis who were either treated or not with disease disease-modifying treatment.	~ .
)	untreated.	
-	Design <u>A</u> 30-month randomized randomised double-blind, placebo-controlled, parallel	\ '\ '\ '\
	design, phase II proof-of-concept clinical study.	
Ļ		11 11 11
	Settings Cyprus Institute of Neurology and Genetics (CING)	
;		
,	Participants and Interventions 80 Eighty subjects were randomized randomised into four	
	groups of 20twenty. The first intervention (A) was composed of omega-3 and omega-6	
1	polyunsaturated fatty acids at 1:1 wt/wt. Specifically, the omega-3 fatty acids were	
)	docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at 3:1 wt/wt and the omega-6	11 11 11
	fatty acids were linoleic acid (LA) and gamma (γ)-linolenic acid (GLA) at 2:1 wt/wt. This	
	intervention also included minor quantities of other specific polyunsaturated,	
	monounsaturated and specific saturated fatty acids as well as vitamin A and vitamin E (alpha-	Ň
Ļ	tocopherol). The third intervention (C) was γ -tocopherol alone. The second intervention	
	(PLP10) was a combination of A and C. A fourth group of 20 received a vehicle placebo. The	
;	interventions were administered per os (by mouth) once daily.	
,		
	Main outcome measures The primary endpoint was the annualized annualised relapse rate	

Main outcome measures The primary endpoint was the annualized annualised relapse rate (ARR) of the three interventions versus the placebo at two years. The secondary end point was the time to confirmed disability progression at two years.

Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, English (U.S.)
Formatted: No underline, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, English (U.S.)
Formatted: English (U.S.)
Formatted: English (U.S.) Formatted: No underline, English (U.S.)
Formatted: No underline, English (U.S.) Formatted: No underline, Font color: Auto,
Formatted: No underline, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto,
Formatted: No underline, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto,
Formatted: No underline, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto,
Formatted: No underline, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, English (U.S.)
Formatted: No underline, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, English (U.S.) Formatted: No underline, English (U.S.)
Formatted: No underline, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, English (U.S.) Formatted: No underline, English (U.S.) Formatted: No underline, English (U.S.)

Formatted: No underline, English (U.S.)

ł	Formatted:	No underline,	English (U.S.)
ſ	Formatted:	English (U.S.)	1

Formatted: English (U.S.)		Font color: Auto,
Formatted:	No underline,	English (U.S.)
Formatted:	No underline,	English (U.S.)
Formatted:	No underline,	English (U.S.)
Formatted:	English (U.S.)	

1 2			
3 4			
5			
6 7	71		
8 9	72	Results A total of 41 (51%) patients completed the 30-month trial. Overall, for the per-	Formatte English (U
10 11	73	protocol analysis of the two-year primary end point, 8 relapses were recorded in the PLP10	
12 13	74	group (n=10) (0.40 ARR) versus 25 relapses in the placebo group (n=12) (1.04 ARR),	
14	75	representing a 64% adjusted relative rate reduction for the PLP10 group (RRR 0.36, 95% CI	Formatte
15 16	76	0.15 to 0.87, p=0.024). In a subgroup analysis that excluded patients on monoclonal antibody	
17 18	77	(natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two	
19 20	78	years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016). The Pper-protocol analysis for the	Formatte English (U
21 22	79	secondary outcome at two years, the time to disability progression, was significantly longer	Formatte English (U
23	80	only with for PLP10. The cumulative probability of disability progression at two years was	Formatte English (U
24 25	81	10% in the PLP10 group and 58% in the placebo group (unadjusted log-rank p=0.019). In a	Formatte English (U
26 27	82	subgroup analysis that excluded patients on natalizumab the cumulative probability of	Formatte English (U
28 29	83	progression was 10% for the 10 patients in the PLP10 group and 70% for the 12 patients in	
30 31	84	the placebo group, <u>representing</u> a relative 86% decrease in the risk of <u>the</u> sustained	- Formatte
32 33	85	progression of disability in the PLP10 group (unadjusted log-rank p=0.006; adjusted hazard	English (U
34			English (U
35 36	86	ratio, 0.11; 95% CI 0.01 to 0.97, p=0.047). No adverse events were reported. Interventions A	
37 38	87	(10 patients) and C (9 patients) showed no significant efficacy.	Formatte
39 40	88		
41 42	89	Conclusions In this small proof-of-concept randomized-randomised double-blind clinical	Formatte English (U
43	90	trial,-; the PLP10 treatment significantly reduced the ARR, and the risk of sustained disability	Formatte English (U
44 45	91	progression without any reported serious adverse events. Larger studies are needed to further	Formatte English (U
46 47	92	assess the safety and efficacy of PLP10.	Formatte English (U
48 49	93		Formatte
50 51	94	Trial registration International Standard Randomized Randomised Controlled Trial, number	- Formatte
52	95	ISRCTN87818535	English (U
53 54	96		English (U
55 56			
57 58			
59 60			
00		For peer review only - http://bmjopen.bmj.com/site/about/guideline	es.xhtml

1

Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)

1	Formatted: No underline, Font color: Auto, English (U.S.)
ĺ	Formatted: No underline, Font color: Auto, English (U.S.)
ĺ	Formatted: No underline, Font color: Auto, English (U.S.)
ĺ	Formatted: No underline, Font color: Auto, English (U.S.)
ĺ	Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: English (U.S.)

1	Formatted: No underline, Font color: Auto, English (U.S.)
1	Formatted: No underline, Font color: Auto, English (U.S.)
1	Formatted: English (U.S.)

BMJ Open

98 N 99 b 100 <u>b</u> 101 in 102 g	Introduction Multiple sclerosis (MS) is a complex multifactorial disease that results from the interplay between as yet unidentified environmental factors and a disease susceptible genetic mackgroundsusceptibility genes. ¹⁻⁴³ Together, these factors trigger a cascade of events, involving the engagement of the immune system, inflammatory injury of myelin, axons and glia, functional recovery and structural repair, gliosis, and neurodegeneration. ⁴ The bio- nechanisms involved areinclude: immune-mediated inflammation, oxidative stress and interview. 5 ²⁰⁰		Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
98 N 99 b 100 b 101 in 102 g	Multiple sclerosis (MS) is a complex multifactorial disease that results from the interplay between as yet unidentified environmental factors and <u>a disease susceptible genetic</u> <u>backgroundsusceptibility genes</u> . ¹⁻⁴³ Together, these factors trigger a cascade of events, involving the engagement of the immune system, inflammatory injury of myelin, axons and glia, functional recovery and structural repair, gliosis, and neurodegeneration. ⁴ The bio - nechanisms involved are<u>include</u>; immune-mediated inflammation, oxidative stress and		Formatted: No underline, Font color: Auto, English (U.S.)
99 b 100 b 101 in 102 g	between as yet unidentified environmental factors and <u>a disease susceptible genetic</u> <u>backgroundsusceptibility genes</u> . ¹⁻⁴³ Together, these factors trigger a cascade of events, involving <u>the engagement of the immune system</u> , inflammatory injury of myelin, axons and glia, functional recovery and structural repair, gliosis, and neurodegeneration. ⁴ The bio - nechanisms involved are<u>include</u>: immune-mediated inflammation, oxidative stress and		English (U.S.) Formatted: No underline, Font color: Auto,
100 <u>b</u> 101 in 102 g	backgroundsusceptibility genes. ¹⁻⁴³ Together, these factors trigger a cascade of events, nvolving the engagement of the immune system, inflammatory injury of myelin, axons and glia, functional recovery and structural repair, gliosis, and neurodegeneration. ⁴ The bio- nechanisms involved areinclude: immune-mediated inflammation, oxidative stress and		
101 in 102 g	nvolving the engagement of the immune system, inflammatory injury of myelin, axons and glia, functional recovery and structural repair, gliosis, and neurodegeneration. ⁴ The bio- nechanisms involved areinclude: immune-mediated inflammation, oxidative stress and		
102 g	lia, functional recovery and structural repair, gliosis, and neurodegeneration. ⁴ The bio - nechanisms involved areinclude: immune-mediated inflammation, oxidative stress and		
	nechanisms involved areinclude: immune-mediated inflammation, oxidative stress and		
103 n			
	5-910 1-1 771 1-1 7 11-1 - 11-1 - 11-1 - 11-1 - 11-1		
104 e	excitotoxicity. ^{5.910} and they These mechanisms may allall of which contribute to		Formatted: No underline, Font color: Auto, English (U.S.)
105 o	ligodendrocyte and neuronal damage and even cell death, hence promoting disease		
106 p	progression. The increasing prevalence of MS , limited <u>varying</u>combined with the partial		Formatted: No underline, Font color: Auto, English (U.S.)
107 e	fficacy and the side effects of the existing treatments have urged the elinical need for the		Formatted: No underline, Font color: Auto, English (U.S.)
108 d	levelopment of new, innovative, more effective, safe,_, and preventive treatment strategies		Formatted: No underline, Font color: Auto, English (U.S.)
109 🧲	<u>ref?),</u>		Formatted: English (U.S.)
110			Formatted: English (U.S.)
111 F	Recent Research has shown that multiple variables dynamically interact and many different		Formatted: No underline, Font color: Auto, English (U.S.)
112 c	omplex interrelated processes are simultaneously orchestrated for MS pathogenesis. The		Formatted: No underline, Font color: Auto, English (U.S.)
113 f	undamental uniqueness distinctiveness of systems medicine (SM) is not just the recognition		Formatted: No underline, Font color: Auto, English (U.S.)
114 ti	hat different specific complex factors are important in disease management, but and that they		Formatted: No underline, Font color: Auto, English (U.S.)
115 <u>t</u>	hese factors need to be incorporated in some meaningful way to for treatment selection and		Formatted: No underline, Font color: Auto, English (U.S.)
116 d	lelivery. ¹⁰ The primary challenge tackled by of a systems scientific approach is the		Formatted: No underline, Font color: Auto, English (U.S.)
117 e	lucidation of how these multiple variables dynamically interact and how one can apply this		Formatted: No underline, Font color: Auto, English (U.S.)
118 u	inderstanding <u>can be applied</u> to affect the system and achieve a desirable end. ¹⁰ One	, t	Formatted: No underline, Font color: Auto, English (U.S.)
119 <u>a</u>	pproach towards that end The answer might be the simultaneous interference intervention	1	Formatted: No underline, Font color: Auto, English (U.S.)
120 ¥	vith-in_multipleall involved perturbed mechanismspathways, by using a cocktail combination	ľ	Formatted: No underline, Font color: Auto, English (U.S.)
121 o	of different specific active ingredients which that could exert a , potentially able through		Formatted: No underline, Font color: Auto, English (U.S.)
			Formatted: No underline, Font color: Auto, English (U.S.)

synergistic effect and provide to give a comprehensive, sustainable treatment effect

(Supplementary Information Methods 1).

long, holistic and effective treatment (Supplementary Information Methods 1).

The polyunsaturated fatty acids (PUFA) composition of membrane phospholipids plays an direct-important_role in immune_and non-immune_related inflammation. PUFA and antioxidant deficiencies along with a decreased cellular antioxidant defense mechanisms have been reported in MS patients.¹¹ The cause of these-PUFA deficiencies is not entirely clear and may involve metabolic and nutritional alterations.¹¹

Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.)

 Formatted: No underline, Font color: Auto, English (U.S.)

 Formatted: No underline, Font color: Auto, English (U.S.)

 Formatted: No underline, Font color: Auto, English (U.S.)

 Formatted: No underline, Font color: Auto, English (U.S.)

 Formatted: No underline, Font color: Auto, English (U.S.)

 Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: English (U.S.)

Formatted: Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

Formatted: No underline, Font color: Auto, English (U.S.)

134	Increased or uncontrolled inflammation contributes to several different acute and chronic	
135	diseases, and it is characterized by the production of inflammatory cytokines, arachidonic	
136	acid (AA)-derived eicosanoids (prostaglandins [(PGs]), thromboxanes [(TXs]), leukotrienes	
137	[(LTs]), and other oxidized derivatives), and other inflammatory agents such as reactive	
138	oxygen species (ROS), nitric oxide (NO), and adhesion molecules (Fig 2). ¹² -During	
139	inflammation, glutamate homeostasis is altered by the release of increased quantities of	
140	glutamate by activated immune cells, which can result in the over-activation of glutamate	
141	receptors and, in turn, excitotoxic oligodendroglial death. During inflammation glutamate	
142	homeostasis is altered by activated immune cells releasing increased quantities of glutamate	
143	that can result in over activation of glutamate receptors and in return excitotoxic	
144	oligodendroglial death. ^{7, 12, 13} As such, aAmong others, membrane-related pathology,	
145	immune-mediated inflammation, oxidative stress, and excitotoxicity provide potentially	
146	useful combined targets for intervention in MS	Formatted: English (U.S.)

★
In vitro and in vivo studies have demonstrated that dietary eicosapentaenoic acid (EPA),
docosahexaenoic acid (DHA), linoleic acid (LA), and gamma (γ)-linolenic acid (GLA) can be
implicated and modulate almost all known complex network of events and pathways
repertoire in MS pathophysiology. <u>The Bb</u> rain membrane fatty acid composition can be
modified with dietary supplementation, but the process has been showed shown to be age
dependent (it takesing much longer in adults versus developing brains) as well as and possibly
dependent on the quantities quantity of the dietary/supplemented PUFAs. ¹⁴ Both human and
animal studies proved that diets high in DHA and EPA can increase the proportion of these
PUFAs in the membranes of inflammatory cells and can also reduce the levels of AA, a
stress-related biomarker. ^{12, 14-15} The anti-inflammatory properties of omega-3 include the
production of PGs and TXs of the 3-series and LTs of the 5-series (Fig 2). ^{14, 16} Resolvins and
protectins are biosynthesized biosynthesised from omega-3 fatty acids via cyclooxygenase-
2/lipoxygenase (COX-2/LOX) pathways and they promote control of inflammation in neural
tissues (Fig 2). ¹⁷⁻²¹ T-cell proliferation in acute and chronic inflammation can be reduced by
supplementation with either omega-6 or omega-3 PUFAs. ²² Furthermore, vitamin E is an
important antioxidant that can interrupt the propagation of free radical chain reactions. ^{23,24}
Vitamin E (alpha-tocopherol, an isoform of vitamin E) efficiently detoxifies hydroxyl,
perhydroxyl and superoxide free radicals, whereas, $\frac{24}{1000}$ However γ_{-t} Ttocopherol (another
isoform of vitamin E) seems appears to be more efficiently implicated in trapping NO
radicals. ²⁴²⁵ In addition alpha–tocopherol exerts non-antioxidant properties, including the
modulation of cell signaling and immune functions, regulation of transcription, and induction
of apoptosis. ²⁶

Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text and numbers Formatted: No underline, Font color: Auto, English (U.S.) Formatted: Font: Not Italic, No underline, Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
English (U.S.) Formatted: Font: Not Italic, No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto,
English (U.S.)

Moreover, omega-3 fatty acids electrophilic derivatives formed by COX-2, in activated			
macrophages can stimulate the nuclear respiratory factor (Nrf2), which inducing induces the			
transcription of neuroprotective and antioxidant_related genes, and can activate the			
peroxisome proliferator-activated receptor (PPAR)γ for an anti-inflammatory response. ²⁷⁻²⁹			
In animal studies, EPA and DHA proved to be endogenous ligands of RXRs, with positive			
effects on neurogenesis. ³⁰ Additionaly, in 2008, Salvati and coworkers reported evidense	``		
evidence of accelerated myelination in DHA- and EPA-treated animals. ³² Moreover, DHA	~ ~		
and EPA are have been reported to significantly decrease the levels of metalloproteinases	, ' ' '		
(MMP) -2, -3, -9, and -13, with which have a significant role in the migration of lymphocytes	Ň		
into the <u>central nervous system (CNS)</u> by inducing the disruption of the blood brain barrier	Ì.		
(BBB), an important step in the formation of MS lesions. ³³⁻³⁹			
Based on the above observations, specific PUFA and antioxidant vitamins fulfill the criterion			
of biologic plausibility and have the potential to diminish the severity and activity of MS			
symptoms-severity and activity, potentially even promoting recovery (remyelination). ¹¹			
Overall, PLP10 contains multiple ingredients (omega 3, omega 6 and other fatty acids and			
vitamins) potentially able to modulate key interconnected components (i.e. genes, proteins)			
and structural molecules (i.e. cellular membrane lipids, receptors) within the functional	1		

network of events of MS pathogenesis.40

<u>We report here This is a randomized randomised phase II, single-center, double-blind,</u> placebo-controlled, proof-of-concept clinical trial evaluating the therapeutic ability of a nutraceutical formula (with PLP10 representing the complete composition of the formulation) and of two other interventions (A and C) consisting of PLP10-constituent partial fractions

Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)

BMJ Open

195	containing ingredients for the aforementioned substance categories on relapsing remitting		
196	(RR) MS patients.		
197	·		Formatted: English (U.S.)
198			
199	Methods		Formatted: No underline, Font color: Auto, English (U.S.)
200	Patients		Formatted: English (U.S.)
			Formatted: No underline, Font color: Auto, English (U.S.)
201	The eEligibility criteria were an age of 18 to 65; a diagnosis of RRMS according to the	``. `~`	Formatted: English (U.S.)
202	McDonald criteria; a score of 0.0 to 5.5 on the Expanded Disability Status Scale (EDSS), a		Formatted: No underline, Font color: Auto, English (U.S.)
203	rating that ranges from 0 to 10, with higher scores indicating more severe disability; MRI		Formatted: No underline, Font color: Auto, English (U.S.)
204	showing lesions consistent with MS; and at least one documented clinical relapse; and either		Formatted: No underline, Font color: Auto, English (U.S.)
205	receiving or not a disease modifying treatment (DMT) within the 24 months period before		Formatted: No underline, Font color: Auto, English (U.S.)
206	beginning (enrollment) inof the study. Patients were excluded because of a recent (<30 days)		Formatted: No underline, Font color: Auto, English (U.S.)
207			Formatted: No underline, Font color: Auto, English (U.S.)
207	relapse, prior immunosuppressant or monoclonal antibodies antibody therapy, pregnancy or		Formatted: No underline, Font color: Auto, English (U.S.)
208	nursing, other severe disease compromising organ function, progressive MS, history of recent		
209	drug or alcohol abuse, use of any additional food supplement, vitaming, or any form of		Formatted: No underline, Font color: Auto, English (U.S.)
210	PUFA, and history of severe allergic or anaphylactic reactions or known specific nutritional		Formatted: No underline, Font color: Auto, English (U.S.)
211	hypersensitivity. No monitor or limitations on <u>the patients' daily diearyt</u> habits were included		Formatted: No underline, Font color: Auto, English (U.S.)
212	consideredin the study design since because the high quantities of the ingredients within the		Formatted: No underline, Font color: Auto, English (U.S.)
213	formula <u>s daily dosage ccould not be significantly affected or spoiled by any particular</u>		Formatted: No underline, Font color: Auto, English (U.S.)
214	dietary pattern by any confounding factors within any known global daily food diet (see		
215	procedures, treatment regimen and end points)		Formatted: English (U.S.)
216			
217	The study was conducted in accordance with the standards of the International Conference of		Formatted: No underline, Font color: Auto, English (U.S.)
218	Harmonization Guidelines for Good Clinical Practice. The protocol was developed by the		
219	investigators and it was approved by the Cyprus National Bioethics Committee and was		
			9

2	
3	
4	
5 6	
7	22
8	
9	22
10	22
11	22
12	22
13	
14 15	22
15 16	
17	22
18	22
19	22
20	22
21	
22	22
23	
24 25	22
25 26	23
27	25
28	23
29	
30	23
31	2.2
32	23
33	23
34 35	_0
36 36	23
37	
38	23
39	23
40	25
41	23
42	
43 44	23
44 45	~ ~
46	24
47	24
48	
49	24
50	
51	24
52 53	
53 54	
55	
56	
57	
58	
59	
60	

220	overseen by an independent safety-monitoring committee evaluating the safety and over-all	
221	benefit-risk profiles. The adherence of care providers with the protocol was assessed by an	
222	external committee assigned by the funder of the project through reviews of case report	
223	forms. All patients gave written informed consent at the time of enrolment.	- Formatted: English (U.S.)
224		
225	Randomization Randomisation and masking	- Formatted: English (U.S.)
226	Patients were randomly assigned to four intervention groups in a 1:1:1:1 ratio stratified by	Formatted: English (U.S.)
227	gender (women to men, 3:1). Randomization Randomisation was facilitated by a lottery-type	English (U.S.)
228	pool of numbered balls. Patients were randomly assigned to treatment in blocks of four by	
229	flipping a coin as follows: for the first two drawn balls, heads stratified them to the groups	
230	A/B and tails stratified them to the groups C/D. The other two balls were stratified	
231	accordingly. A second toss of the coin assigned the two patients to group A (head)/B (tail) or	
232	group C (head)/D (tail). The randomization randomisation scheme was generated, performed	
233	and securely stored by the Helix Incubator Organization of Nicosia University (HIONU).	- Formatted: No underline, Font color: Auto,
234		English (U.S.)
235	The interventions had identical appearance and smell and were kept in dark bottles (15 daily-	- Formatted: No underline, Font color: Auto,
236	dose portions/bottle) under nitrogen bed and labeled by HIONU with code numbers,	English (U.S.) Formatted: No underline, Font color: Auto,
237	unidentifiable blinded for both patients and investigators. Study data were collected by the	English (U.S.)
238	investigators and saved by the HIONU, which that also held the blinded codes of the study.	- Formatted: No underline, Font color: Auto,
239	All study personnel involved in the conduct of the study were blinded throughout the study.	English (U.S.)
240	The Ftreating/examining physician, all other investigators, the pharmacist, the	
241	neuroradiologist and <u>all-patients</u> were masked to treatment allocation.	- Formatted: English (U.S.)
242		
243	Procedures and end points	- Formatted: No underline, Font color: Auto,
		English (U.S.) Formatted: English (U.S.)
		10
		10

BMJ Open

The specific omega-3 (re-esterified glycerides) and omega-6 (glycerides) raw materials were purchased according to the required interventions' PUFA-fraction specification (molecular structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant stabilizer-stabiliser by the supplier. The vitamins and masking aroma were purchased separately. The mixing of fractions to the final required intervention-composition specification was always performed by the same team of scientists under the supervision of the involved medical biochemist and lipidology specialist and, under appropriate conditions every six months. The Jinterventions were stored refrigerated in the dark until use. See Table 1 and Supplementary Information Methods 1 and 2 for the a detailed description of the interventions specification detailed description, and study/intervention rational.

The Pparticipants were randomly assigned to receive the following: in group A, a daily dose of a 19.5ml mixture of EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg) / total MUFA (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) plus citrus-aroma (intervention A); in group B PLP10, a daily dose of a 19.5ml mixture of EPA (1,650mg) / DHA (4,650mg) / GLA (2,000mg) / LA (3,850mg) / total other omega-3 (600mg) / total MUFA (1,714mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) plus pure γ_{-} tocopherol (760mg) plus citrus-aroma (intervention B); in group C, a daily dose of a 19.5ml mixture of pure γ_{-} tocopherol (760mg) dispersed in pure virgin olive oil (16,137 mg) plus citrus-aroma (intervention C); and in group D (placebo), a daily dose of a 19.5ml mixture of pure virgin olive oil (16,930mg) plus citrus-aroma (intervention D) (Table 1). The institution's-pharmacist of the institution was responsible for the appropriate storage and handling of the interventions to for the individual participants. The interventions were taken orally once daily 30 minutes before dinner by using a dosage calibrated cup for 30 months. Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)

• -[Formatted: No underline, Font color: Auto, English (U.S.)
• -[Formatted: No underline, Font color: Auto, English (U.S.)
	Formatted: No underline, Font color: Auto, English (U.S.)
	Formatted: No underline, Font color: Auto, English (U.S.)
	Formatted: No underline, Font color: Auto, English (U.S.)
, I	Formatted: No underline, Font color: Auto, English (U.S.)
1	Formatted: English (U.S.)
	Formatted: No underline, Font color: Auto, English (U.S.)
	Formatted: No underline, Font color: Auto, English (U.S.)
	Formatted: No underline, Font color: Auto, English (U.S.)

	Formatted: No underline, Font color: Auto, English (U.S.)
1	Formatted: No underline, Font color: Auto, English (U.S.)
./	Formatted: No underline, Font color: Auto, English (U.S.)
{	Formatted: No underline, Font color: Auto, English (U.S.)
]	Formatted: No underline, Font color: Auto, English (U.S.)
- 1	Formatted: No underline, Font color: Auto, English (U.S.)
-1	Formatted: No underline, Font color: Auto, English (U.S.)
-1	Formatted: No underline, Font color: Auto, English (U.S.)
	Formatted: No underline, Font color: Auto, English (U.S.)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	The ingredients, ratio and dose have been were selected based on their biophysical	
	interrelation to-with the total known multiple MS eausing causative factors, their biochemical	
	importance and the role they were expected to play in the normalisation and treatment of the	
	involved complex network of events in the disease pathophysiology. Moreover, the high	
	intervention intake dosage was selected with the aim of optimising the body composition of	
	omega-3 to omega-6 PUFAs to a 1:1 wt/wt ratio irrespective of dietary habits and	
	geographical origin.	
	used to overcome any abnormal dietary accumulation of related agents as a result of patients'	
	food intake habits, irrespective of geographical origin, in relation to the daily consumption	
	ratio of the total fatty acid intake; in order to end up with omega 3 to omega 6 PUFA	
	indicated physiological body ratio composition of 1:1 wt/wt.	Formatted: No underline, Font color: Auto, English (U.S.)
		Formatted: English (U.S.)
	The period beginning from July 1 st 2007 (enrollment) until to December 31 st 2007 (entry	Formatted: No underline, Font color: Auto, English (U.S.)
	baseline) was used for as the normalization normalisation period. This six-month	Formatted: No underline, Font color: Auto, English (U.S.)
	normalization normalisation period would allow the interventions ² agents to exert their	Formatted: No underline, Font color: Auto, English (U.S.)
	beneficial effects as (for the incorporation/normalization of cell membranes by oral PUFA,	Formatted: No underline, Font color: Auto, English (U.S.)
	since they oral PUFAs need four to six months to achieve exert pivotal action on immune and	Formatted: No underline, Font color: Auto, English (U.S.)
	neural cells, a correction of antioxidant deficiency deficiencies and body PUFA	Formatted: No underline, Font color: Auto, English (U.S.)
	redistribution, and an optimal normalization of the EPA and DHA levels/ratio), ⁴¹⁻⁴³ The study	Formatted: No underline, Font color: Auto, English (U.S.)
		Formatted: No underline, Font color: Auto, English (U.S.)
	was completed on December 31 st 2009 (30 months) and the recording of relapses continued	Formatted: No underline, Font color: Auto, English (U.S.)
	until December 31 st 2010 (42 months), More Overall, clearly the study included the a	Formatted: No underline, Font color: Auto, English (U.S.)
	"normalization period" (July 1 st 2007 to Dec 31 st 2007), the <u>an</u> "on treatment" period (Jan 1 st	Formatted: No underline, Font color: Auto, English (U.S.)
	2008 to Dec 31 st 2009) and the <u>a</u> 12-month "post study extended monitoring period" (Jan 1 st	Formatted: No underline, Font color: Auto, English (U.S.)
	2010– Dec 31 st 2010),	Formatted: English (U.S.)
	·•	

BMJ Open

Depending on their clinical status and in accordance with the common practicethe ethical issues governing elinical trials, the participants continued receiving their indicative indicated regular treatment— with persistent evaluation for any side-effects and adverse events. Clinical assessments assessmen visits were scheduled at_entry baseline— and 3, 9, 15, 21 and 24 months on-treatment. The Ppatients were also clinically examined by the treating neurologist within 48 hours after the onset of new or recurrent neurologic symptoms. The primary end point was the annualized relapse rate (ARR) at two years. A relapse was defined as new or recurrent neurologic symptoms not associated with fever or infection that lasted for at least 24 hours and was accompanied by new neurologic signs. Relapses were treated with methyl-prednisolone at a dose of 1g intravenous per day₇ for three days followed by prednisone orally at a dose of 1mg/kg of weight per day on a tapering scheme for three weeks. The secondary end point at two years was the time to confirmed disability progression, defined as an increase of 1.0 or more on the EDSS and confirmed after six months. (pProgression could not be confirmed during a relapse), and tPhe final EDSS score

was confirmed six months after the end of the study. A post-hoc analysis was performed to assess ing-the proportion of patients free from new or enlarging T2 lesions on brain MRI scans at the end of the study for the per-protocol participants of the group receiving the highest-most effective intervention versus placebo. This C comparison was made versus the available archival MRI scans up to three months before the enrolment date. The MRI scans were performed and blindly analyzed at an MRI evaluation centre. The patients continued to be followedwere monitored for an additional 12 months after completion of the trial and relapses were recorded. Finally, The patients were strongly encouraged to remain in the study for follow-up assessments even if they had discontinued the study drug.

Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)

Blood samples were collected from all randomized randomised patients at the time of enrolment, at every scheduled clinical assessment and during relapses. To eheck-evaluate the individual-compliance-with intake, the fatty acids composition of <u>the</u> patients' red blood cells² membranes was determined; by gas chromatography, according to a standard protocol. The fatty acid analyses were performed after study termination and thus did not influence the blinding. Safety measures were assessed from the time of enrollment until 12 months following the study completion. Haematological and biochemical tests were performed at enrolment and every 12 months, including full blood count, renal and liver function tests, and proteins, cholesterol, triglycerides, glucose and electrolyte levels.

The involved neurologist was experienced with more than 20 years in practice. He was and trained to standardise the EDSS scoring procedures, examined patients, made all medical decisions, determined the EDSS score and reviewed the adverse effects or side-effects. The medical biochemist, who was a specialist on in lipidology and immunology, and the registered clinical dietitian, were both members of the investigator investigative team were experienced with more than 25 years in practice. The Ppatients were able to contact the involved neurologist at any time if there was any adverse event, side-effect or allergic reaction. The study drug was not suspected expected to have any clinical or laboratory adverse effects different from those of the placebo that could disturb the double-blind nature of the trial. Therefore, the same study-neurologist functioned as both the treating and evaluating physician,

The whole procedure followed the clinical trial guidelines as required by the USA Food and Drug Administration, European Medicines Agency, and the Committee for Medicinal Products for Human Use.⁴⁴ Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Corrected. No underline. Controlory Auto
Formatted: No underline, Font color: Auto, English (U.S.)
English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto,
English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)

1			
2			
3			
4			
5 6			
7	344		
8	345	Statistical analysis	
9	545	Statistical analysis	
10 11	346	Power calculations could not be <u>done-performed</u> before the study because of the lack of	
12	347	information from previous studies on the potential effect sizes. In 2005, the prevalence of MS	
13	547	mormation nom previous studies on <u>me</u> potential effect sizes. In 2003, the prevalence of Wis	
14 15	348	in Cyprus (600,000 population) was 120/100.000. Based on the aforementioned MS patients'	
16	349	numbers of our country and the centre of reference centre, the CING, we were able to enrol	
17	349	numbers of our country and the centre of reference centre, the CINO, we were able to enror	
18	350	the-20% of the total RRMS patients eligible for treatment in the trial. The sample size was	
19 20	254	strictly based on this the subjects' availability parameter and the novelty of the assessed	
21	351	strictly based on this the subjects availability parameter and the noverty of the assessed	
22	352	intervention.	Formatted: English (U.S.)
23	252		
24 25	353		
26	354	The Bbaseline characteristics were compared across all intervention groups by ANOVA or	
27			
28	355	the Kruskal-Wallis rank test for continuous variables and by mean Fisher's exact test for	
29 30	356	categorical variables, as appropriate.	
31			
32	357		
33 34	358	For the primary outcome, the ARR was analysed in a pair-wise fashion for the active	Formatted: No underline, Font color: Auto,
35			English (U.S.)
36	359	interventions compared with the to placebo using negative binomial regression models	
37	360	adjusted for the number of relapses within two years before baseline, the EDSS score at	
38 39			
40	361	baseline and DMT. The relapse rate was calculated as the total number of relapses divided by	Formatted: No underline, Font color: Auto, English (U.S.)
41	362	the total number of patient-years followed for each treatment group. ARR differences were	
42			
43 44	363	also calculated among all comparable parameters and reported as <u>the per-cent difference</u> .	
45	364		
46			
47 10	365	For the secondary end-point-outcome, the time to disability progression, Kaplan-Meier	
48 49	366	curves were constructed. The Pprogression to of disability and time thereof was compared in	
50	500		
51	367	a pair-wise fashion for the active interventions versus placebo by the log-rank test in the main	
52 53	368	analysis and by the Cox proportional-hazards models with adjustment for the baseline EDSS	
53 54	500	analysis and by the cox proportional-nazards models with adjustment for the baseline EDSS	
55	I		
56			
57 58			15
58 59			
59			

1 2	
23	
4	
5	
6 7	369
8	
9	370
10 11	371
12 13	372
14 15	373
16	374
17 18	375
19 20	376
21 22	377
23 24	378
25	
26 27	379
28 29	380
30 31	381
32	382
33 34	383
35 36	384
37 38	385
39 40	386
41 42	387
43	388
44 45	389
46 47	390
48 49	391
50 51	
52 53	392
54	
55	
56	
57 58	
58 59	
60	

60

1

score, age and DMT in the supportive analysis. Each test was performed with a significance	
level of 0.05. Multivariate models considered all variables with $P < 0.1 \text{ on-in the}$ univariate	
models. There was no overt violation of the proportionality assumption	Formatted: No underline, Font color: Auto, English (U.S.)
	Formatted: English (U.S.)
Both, per-protocol and intention to treat (ITT) analyses were performedfor different sets of	Formatted: No underline, Font color: Auto, English (U.S.)
research questions to be answered, and both are reported. Missing data of the five lost to	Formatted: No underline, Font color: Auto, English (U.S.)
follow patients lost to follow-up were imputed by use of the last-observation-carried-forward	Formatted: No underline, Font color: Auto, English (U.S.)
(LOCF) approach. Due to the proof-of-concept design of the study, the considerable non-	Formatted: No underline, Font color: Auto, English (U.S.)
adherence rate (49%) and the <u>resulting interpretation issues</u> caused thereof regarding the ITT	Formatted: No underline, Font color: Auto, English (U.S.)
analysis, the per-protocol analysis was considered to be theeing more informative and	Formatted: No underline, Font color: Auto, English (U.S.)
appropriate method approach to answer the research addressed questions addressing of the	Formatted: No underline, Font color: Auto, English (U.S.)
efficacy of the interventions when subjects were continuously following followed the	Formatted: No underline, Font color: Auto, English (U.S.)
protocol. All statistical analyses were well defined a priori. All analyses were performed with	Formatted: No underline, Font color: Auto, English (U.S.)
STATA SE 10.0 (College Station, TX, USA). P-values are two-tailed.	Formatted: No underline, Font color: Auto, English (U.S.)
	Formatted: No underline, Font color: Auto, English (U.S.)
Role of the funding source	Formatted: No underline, Font color: Auto, English (U.S.)
Note of the funding source	Formatted: English (U.S.)
The funders had no role in study design, data collection and analysis, decision to publish, or	Formatted: No underline, Font color: Auto, English (U.S.)
preparation of the manuscript. All members of the writing group had full access to all study	Formatted: English (U.S.)
data and contributed to its interpretation and prepared, reviewed, and approved the	Formatted: No underline, Font color: Auto, English (U.S.)
manuscript for submission. All authors had final responsibility for the decision to submit the	
paper for publication.	
	Formatted: English (U.S.)
· · · · · · · · · · · · · · · · · · ·	Tormatten, English (0.3.)
Results	Formatted: No underline, Font color: Auto, English (U.S.)
Study population	Formatted: English (U.S.)
	Formatted: No underline, Font color: Auto, English (U.S.)
	Formatted: English (U.S.)

No underline, Font color: Auto, English (U.S.) No underline, Font color: Auto, English (U.S.) No underline, Font color: Auto,

-{	Formatted: English (U.S.)
1	Formatted: No underline, Font color: Auto, English (U.S.)
1	Formatted: English (U.S.)
-	Formatted: No underline, Font color: Auto, English (U.S.)
Ì	Formatted: English (U.S.)

BMJ Open

2 3 1			
4 5			
6 7	393	From July 2007 through December 2010 (including the 12 month extended period), aA total	Formatted: No underline, Font color: Auto, English (U.S.)
8 9	394	of 80 MS patients were randomly assigned to a study group at the CING (tertiary	
10 11	395	neurological center).	Formatted: English (U.S.)
12 13	396		
14 15	397	Among the 80 patients, 20 patients were randomly assigned to each of the three groups to	
16 16 17	398	receive the interventions, and 20 to receive placebo (Fig 1). <u>The-B</u> baseline characteristics of	
18 19	399	both the ITT and the per-protocol populations were similar across groups (Table 2A and 2B).	
20 21	400	All patients that who droped -out had a completed thed follow-up until the study completion	
21 22 23	401	and were included in the ITT analyses (Table 4). Five patients were lost to follow-up before	
24	402	their first scheduled visit. <u>Tand two</u> other patients who that dropped-out before their first	
25 26 27	403	scheduled visit progressed to secondary progressive MS. Fifteen patients droppedout	
28	404	without successfully completing the "normalization" periodincluding five pregnancies.	
29 30	405	Another 17 patients dropped-out early after the entry baseline. Seven patients that who	
31 32	406	dropped out were given monoclonal antibody treatment (natalizumab). Overall, a total of 41	
33 34	407	(51%) patients completed the 42-month study (July 2007 through December 31 st 2010,	Formatted: No underline, Font color: Auto, English (U.S.)
35 36	408	including the 12 month extended period, , where one patient from group A and two from the	Formatted: No underline, Font color: Auto, English (U.S.)
37 38	409	placebo group transferred on natalizumab, and 39 (49%) patients either withdrew (dropp-ed	
39 40	410	out) or lost to follow. The Rreasons for study interventions discontinuation are listed in	
41 42	411	Figure 2.	
43 44	412	•	Formatted: English (U.S.)
45 46	413	Efficacy	Formatted: No underline, Font color: Auto, English (U.S.)
47 48	414	Relapses	Formatted: No underline, Font color: Auto, English (U.S.)
49 50	415	As a proof-of-concept trial, we primarily needed to answer whether the interventions were	
50 51 52	416	effective for those MS patients who adhere to the assigned treatment, which was the per-	
53 54	417	protocol analysis. ⁴⁵ For the sake of methodological comprehensiveness, we also present	
55	I		
56 57			17
58 59			

performed the ITT analysis as a secondary analysis, to answer a-different questions, that were complementary to our core hypothesis, such as; like what happened to all MS patients who were placed on the interventions (the effect of assignment).⁴⁵ Regarding In the per-protocol analysis, during the first year of treatment, the ARR was 0.80, 0.40, 0.78 and 0.83 for the four intervention groups respectively. During the second year, the ARR was 0.90, 0.40, 0.67 and 1.25 for the four intervention groups respectively. Overall, for the two-year primary end point, 8 relapses were recorded for the 10 patients in PLP10 group (0.40 ARR) versus 25 relapses for the 12 patients in on the placebo (1.04 ARR), a 64% adjusted relative rate reduction (RRR) for the PLP10 group (RRR 0.36, 95% confidence interval [{CI]} 0.15 to 0.87, p=0.024) (Tables 3A, 5 and Fig 3A and 3C). After Eexcluding patients on monoclonal antibody (natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016, Tables 3B and 5). Pair-wise comparisons for the other two groups against placebo did not yield statistically significant results (Tables 3A, 3B). The proportion of patients with ≤ 1 relapse for the two years on-study was higher in the PLP10 group than in the placebo group (90% versus 42%, p=0.030, Table 5). Seeking to investigate further investigate the observed difference, we compared the relapse rate during the 24 months before the entry into the study to the 24 months on-treatment for each intervention group. We observed a statistically significant relative reduction in the ARR (70%) only in the PLP10 group (RRR 0.30; 95% CI 0.14 to 0.65, p=0.003, Table 3A); within-group comparisons for the three other groups-ARR reduction of the three other groups was were not significant and remained not significant when the natalizumab--treated patients were further excluded from the analysis. The effect of PLP10 through time at different time-windows versus placebo for all-time on-study patients is shown in Figures 3A to 3D. Although the The ARR analysis, within time-windows, was not

Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)

BMJ Open

an assigned endpoint, but it could help in with the process of evaluating parallel information, such as the time needed for a specific treatment intervention activity to be evident, as well as the efficacy profile through time. PLP10 reached its maximum effect within a-one year ontreatment (counting from the entry baseline) and remained stable afterwards at an ARR of 0.4, displaying a steadily reduced ARR with long_with some free-relapse time-windows. These group B characteristics are considered important parameters of a successful MS treatment where the rule than the exception is the heterogeneity among patients' disease evolution. Specifically, Figure 3D demonstrates the dispersion of relapses throughout the 2year period of all-time on-study (excluding patients on natalizumab) of PLP10 (n=10) versus placebo (n=10). The pPlacebo group, in line with the existing knowledge of how relapse history works in relation to future relapses on in MS patients (contagion phenomenon), showed indicates the expected linearly increased trend of the increased relapse incidences.⁴⁶ The same phenomenon was true for the groups A and C. Finally, during the 12 month poststudy extended period, the (January 1st 2010 to December 31st 2010) all time on-study patients that who received PLP10, showed a persistent benefit in the ARR compared with thete placebo (six relapses for the 10 subjects within PLP10 group, 0.6 ARR versus 19 for the 12 subjects within placebo group, 1.58 ARR) indicating a statistically significant 62% adjusted relative rate reduction in the ARR for the PLP10 group (RRR 0.38, 95% CI 0.12 to 0.99, p=0.046). Regarding the ITT analysis, within PLP10 group, none of the nine drop out patients changed

to natalizumab and two out of nine discontinued because of pregnancy, whereas two out of seven drop out patients from the placebo group changed to natalizumab (a total of four patients within the placebo arm population were on natalizumab, including the two patients that transferred while all time on study versus none within PLP10 group (Supplementary

Formatted: No underline, Font color: Auto, English (U.S.)	
Formatted: No underline, Font color: Auto, English (U.S.)	
Formatted: No underline, Font color: Auto, English (U.S.)	
Formatted: No underline, Font color: Auto,	

English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

Information Fig 1). As reported, natalizumab reduces ARR by 68%, decreases the possibility of disability progression by 43% with 57% of patients free of new or enlarging T2 lesions on MRI seans compared to 15% on placebo.⁴⁷ <u>t</u>The relapses of the drop-out patients are reported in Table 4A. As expected, no statistically significant differences in the ARR were calculated for the comparison of any group versus placebo for the 24 months on-treatment, with <u>a 0,75</u> ARR within PLP10 (30 relapses) and 1,03 ARR within placebo (41 relapses) group, a 27% ARR reduction (Table 4B). <u>The ITT population on DMT and/or on patalizumab is shown</u> within the Supplementary Information Fig 1. Interestingly, despite the high non-adherence rate, there was a statistically significant difference for the comparison of the ARR in the 24 months before entry baseline to the 24 months on-treatment for the PLP10 group (RRR 0.45, 95% CI 0,26 to 0,78, p=0.005).

Disability progression

Regarding In the per-protocol analysis, at two years, the time to disability progression_-with confirmation after six months (secondary end point) was significantly longer only with PLP10. The cumulative probability of disability progression was 10% in the PLP10 group and 58% in the placebo group (p=0.019) (Supplementary Information Fig 2). After excluding excluding the patients on natalizumab, there was <u>again a n increased</u>_statistically significant difference between the PLP10 and the placebo groups for the same analysis (p=0,006) (Fig_______4A). At two years, the cumulative probability of <u>disability</u> progression was 10% in the PLP10 group and 70% in the placebo group, which represents a decrease of 60 percentage points or a relative 896% decrease in the risk of the sustained progression of disability within within the PLP10 group (adjusted hazard ratio, 0.11; 95% CI 0.01 to 0.97, p=0.047). One versus seven _______ out of ten patients progressed to confirmed disability in the PLP10 and the placebo groups_ respectively_ when patients on natalizumab were excluded. No statistically significant **Formatted:** Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, Not Bold, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, Not Bold, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)
Formatted: No underline, Font color: Auto, English (U.S.)

BMJ Open

difference was observed for any comparison of the other two groups compared towith the placebo group (Fig 4A and Supplementary Information Fig 2). Regarding-In_the ITT analysis, at two years, the cumulative probability of progression was 10% in the PLP10 group and 35% in the placebo group (p=0.052, a trend for an effect), which represents a decrease of 25 percentage points or a relative 71% decrease of for the PLP10 group with respect forto the risk of sustained progression of disability (adjusted hazard ratio 0,22, 95% CI 0.04 to 1.07, p=0.06) (Fig 4B). Two versus seven out of the total randomized patients progressed to confirmed disability in the PLP10 and the placebo groups, respectively. No significant differences were observed for groups A or C against-compared with the placebo group (Fig 4B). The mean change in Expanded Disability Status Scale (the

EDSS) score as a function of visit number is shown in Figure 5.

developmenting of new or enlarging T2 lesions (Table 5).

MRI

Over two years, the MRI results support<u>ed</u> the overall conclusion from the study that<u>a</u> PLP10<u>-related</u> has a positive effect<u>-on disease activity since as</u> only 29% from the PLP10 group, in contrast as opposed to 67% from the placebo group, developed new or enlarging T2 lesions (57% relative risk reduction). <u>After Ee</u>xcluding<u>- the</u> patients on natalizumab, there is anwas an increased relative risk reduction (64%) between for PLP10 as opposed compared with to the placebo, with 29% of patients on PLP10 and 80% on placebo with

515 Safety

Over the course of the 30 month study, no significant adverse events were reported from for any group. According to a returned questionnairequestioner procedure tThe only actiology Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.)

Formatted: English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)

reasonactiology for the drop-outs was the palatability and smell of the formula preparations in addition to pregnancy. Nausea was reported by two patients. No abnormal values were observed on any of the biochemical and haematological blood tests. No allergic reactions were reported.

Discussion

In this proof-of-concept randomised, double-blind clinical trial assessing the safety and clinical trial assessing the safety and efficacy of three variations of a novel cocktail nutritional intervention formulas in RRMS, we observed a significant benefit association for the novel thea formula containing a balanced mixture of specific omega-3 and omega-6 PUFAs, MUFAs, SFAs, vitamin A, vitamin E and γ-tocopherol(PLP10), intervention compared to with the placebo for both the ARR and the progression to disability in the perprotocol analysis. Our results included analyses pertaining to a total of 42 months of studycollected data, including the 12-month intervention-free treatment extension period. Our results include analyses pertaining to a total of 42 months study collected data, including the 12 month, free of intervention treatment, extension period. We focused on the per protocol data analysis since it is the appropriate method to best provide the answer to the proof of concept trial addressed question. We also observed, a The high drop-out rate that was mostly the result of formulas palatability, a common phenomenon in trials using oily interventions where a lot of patients tend to drop out soon after first dosage. We thus present our main perprotocol analysis, as well as a subgroup analysis excluding patients on natalizumab. Interestingly, a We have found a statistically significant reduction in the ARR and the disability progression was also observed when comparing not only patients on PLP10 versus placebo but also comparing the ARR of the PLP10 patients in the 24-month period prior to the study to-with the ARR of the 24 months on-study; the observed differences became

Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)

1	Formatted: No underline, Font color: Auto
1	Formatted: No underline, Font color: Auto, English (U.S.)
ĺ	Formatted: No underline, Font color: Auto, English (U.S.)
	Formatted: No underline, Font color: Auto, English (U.S.)
ſ	Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: No underline, Font color: Auto, English (U.S.)

BMJ Open

543	larger when patients that received natalizumab (the <u>currently most potent disease modifier</u>)		Formatted: No underline, Font color: Auto, English (U.S.)
544	were excluded. The ARR decreased within a year on PLP10 and significantly remained stable		
545	until the study completion. The Sstatistically significant in the difference of ARR between		Formatted: No underline, Font color: Auto, English (U.S.)
546	patients on PLP10 versus and those on placebo continued for the additional 12 month	``.	Formatted: No underline, Font color: Auto, English (U.S.)
547	extended period (persistent effect) without a significant difference on the DMTafter the		Formatted: No underline, Font color: Auto, English (U.S.)
548	studyextended period (persistent effect) without significant differences on DMT. These		Formatted: No underline, Font color: Auto, English (U.S.)
549	clinical findings are supported by the results regarding from the MRI analysis where in which	``.	Formatted: No underline, Font color: Auto, English (U.S.)
550	the proportion of patients free from new or enlarging brain T2 lesions was also higher in the		Formatted: No underline, Font color: Auto, English (U.S.)
551	PLP10 group versus than the placebo group. The persistent effect within the extended period	`. 	Formatted: No underline, Font color: Auto, English (U.S.)
552	it is considered believed to be of major importance and supportive of the results since it is in		Formatted: No underline, Font color: Auto, English (U.S.)
553	agreement with the very long washouts, reported necessary, for omega 3 fatty acids and		Formatted: No underline, Font color: Auto, English (U.S.)
554	especially DHA to return towards pretreatment values within the fatty acids of plasma,		Formatted: No underline, Font color: Auto, English (U.S.)
555	platelets, monocytes and red blood cells. ⁴² This study also provides important 30 month,		Formatted: No underline, Font color: Auto, English (U.S.)
556	placebo controlled information about the safety of PLP10, A and C interventions. No severe		
557	side effects have been reported.		Formatted: English (U.S.)
558			Formatted: English (U.S.)
559	As medications used to treat MS become increasingly highly specific and potent, attention to		
560	safety is paramount. Current available treatments are products of reductionism, partially		
561	effective, associated with severe side effects without (re)myelinating or neuroprotective		
562	abilities.	į	Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto,
563	To the best of our knowledge, this study is the first randomized clinical trial assessing the	/	English (U.S.), Not Highlight Formatted: Font: (Default) Times New
564	proposed combination of active ingredients in a standardized proportion and dosing scheme for		Roman, No underline, Font color: Auto Formatted: Font: (Default) Times New
565	MS treatment designed according to the systems medicine approach. Nutrition is commonly		Roman, 12 pt, No underline, Font color: Auto, English (U.S.), Not Highlight
566	accepted as one of the possible environmental factors involved in the pathogenesis of MS, but		Formatted: Font: (Default) Times New Roman, No underline, Font color: Auto
567	its role as a complementary MS treatment is unclear and largely disregarded. ⁵¹ It is well		Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto, English (U.S.), Not Highlight
			Formatted: No underline, Font color: Auto, Not Highlight
			23

1 2		
3		
4 5		
6 7	568	known t
8 9	569	variable
10 11	570	process
12 13	571	damage.
14 15	572	and are a
16 17	573	enzymes
18 19	574	products
20 21	575	Interfero
22	576	are assoc
23 24	577	to reduce
25 26	578	of disabi
27 28	579	disabilit
29 30	580	MRI sca
31 32	581	reduction
33 34	582	and fing
35 36	583	efficacy o
37 38	584	treatme
39 40	585	medicin
41 42	586	remyelir
43 44	587	Mehta ir
45 46	588	formulat
47 48	589	specific
49 50	590	was repo
51 52	591	ingredie
53 54	592	in vitro o
55		
56 57		
58 50		
59 60		

1

3	known that the majority of the patients suffering from MS do use dietary supplements for a	
)	variable length of time. ⁵² Dietary antioxidants and fatty acids may influence the disease	
)	process in MS by reducing immune-mediated inflammation, oxidative stress and excitotoxic	
L	damage. ¹² Published data have revealed that healthy dietary molecules have a pleiotropic role	
2	and are able to change cell metabolism and down-regulate inflammation by interacting with	
3	enzymes, nuclear receptors and transcriptional factors. ⁵¹ Current available treatments are the	
ł	products of reductionism, partially effective and associated with severe side effects.	
5	Interferons and glatiramer acetate, the most widely used first-line MS drugs available today,	
5	are associated with the least severe side effects among the MS therapies, but they are reported	
,	to reduce the ARR only by about one third and with no significant effect on the progression	
3	of disability. ⁵³ Natalizumab reduces the ARR by 68% and decreases the possibility of	
)	disability progression by 43%, with 57% of patients free of new or enlarging T2 lesions on	
)	MRI scans, compared with 15% on placebo. ⁵⁴ Fingolimod is associated with a 54% ARR	
L	reduction (without a significant benefit on the progression of disability). Both natalizumab	
2	and fingolimod are second-line drugs associated with severe side-effects.55	
3	efficacy of a After a thorough search in the literature we are convinced that no existing MS	 Formatted: No underline, Font color: Auto, Not Highlight
Ļ	treatment module has ever been designed according to as a result of the SM systems	Formatted: Font: 12 pt, No underline, Font color: Auto, English (U.S.), Not Highlight
5	medicine_concept approach_ or with a potential to effectively stimulate intrinsic	
5	remyelinating and neuroprotecting mechanisms or exert such an action. Now w	 Formatted: Font: 12 pt, No underline, Font
,	Mehta in a review paper, in 2009, reported different clinical studies on interventions	color: Auto, English (U.S.)
3	formulated based on the individual aforementioned molecular ingredients or based on a	
	specific ratio of the aforementioned molecular ingredients for MS treatment; although no one	 Formatted: No underline, Font color: Auto,
)	was reported using the antioxidant vitamin γ -tocopherol. ⁵⁶ In our study, the choice of	 English (U.S.)
	ingredient proportion and dosing scheme was based upon evidence derived form <i>in vivo</i> and	
,	<i>in vitro</i> data. In the Western diet, the ratio of omega-3 to omega-6 is about 1:20–30; in	
-		
		24

	593	populations that consume fish-based diets, the ratio is about 1:1–2.52,53 The intervention daily				
01234567890123	594	dose was designed aiming and believed to be high enough to restore/amplify body efficient				
	595	antioxidant activity and ensure cellular membranes lipid profile normalization (PUFA				
	596	content) and simultaneously potentiate involvement of the ingredients in the anti-				
	597	inflammatory and recovery mechanisms. Diet fatty acid molecules need about a six months				
	598	period to exert their beneficial effect and this essential parameter was for the first time under				
	599	consideration in our study design (normalization period). ⁴² This chronotherapy parameter				
	600	might be of major importance and is in line with the systems medicine treatment philosophy.				
	601	We believe that the persistent effect within the post-study period is in agreement with the				
4	602	reported very long washout phase for omega-3 fatty acids, especially DHA, to return to the				
4 5 6 7	603	pre-treatment values. ⁴⁶ Considering that omega-3 supplementation can release and replace				
3	604	excess AA within the cellular membranes, we can speculate that an increased inflammatory				
9	605	activity can possibly result during the first six months of supplementation.				
1 2	606					
123456789012345678	607	In addition to the EPA, DHA, LA, and GLA, PLP10 contained limited quantities of other				
	608	structural/active PUFAs, specific MUFAs (mostly oleic acid) and SFAs (palmitic and stearic				
	609	acid), specifically to provide a direct source for neuronal cell membranes rehabilitation and				
	610	for (re)myelination and neuroprotection because these compounds are all major components,				
	611	precursors and building blocks of any new physiological myelin and cellular membranes in				
	612	general. Assembly of the correct molecules into the myelin membrane may be especially				
	613	critical during active synthesis. If these critical constituents aren not directly or indirectly				
	614	available, amyelination, dysmyelination or demyelination may ensue. ⁵⁶ The maintenance of				
)	615	myelin requires continued turnover of its components throughout life. ^{54,55}				
1	646					

2 3 4		
5 6 7	617	Different factors and molecular entities appear to be part of the possible aetiology for MS,
8 9	618	with specific PUFA and antioxidants found to be key substances related to all known
10 11	619	pathogenic and recovery mechanisms. In our study, we further proposed that a holistic
12 13	620	systems medicine model approach can be applied by synchronized action. First, there is an
14 15	621	obvious convenience in administering one formula containing different specific active
16 16 17	622	ingredients. The currently available evidence supports that nutritional interventions would
18 19	623	confer a small to medium treatment effect with an accompanying appropriate safety profile. ¹²
20 21	624	$\frac{5256}{2000}$ Combining these specific active ingredients together with γ -tocopherol and other specific
22 23	625	active molecules into one stable formulation is expected to enhance adherence while still
23 24 25	626	offering an appropriate safety profile. A similar approach could not be adopted for
25 26 27	627	pharmaceutical interventions with common and severe adverse events, such as those
28	628	indicated today for patients with MS. Given the advantages of the simultaneous use and that
29 30	629	all the included ingredients have proven individually a valid biological plausibility and have
31 32	630	been tested in various settings and under various dose schemes, we also assessed the
33 34	631	hypothesis that a novel mixture of these ingredients would have a postulated efficacy attained
35 36	632	synergistically through different mechanisms of action. ^{52,56} Interestingly, the observed
37 38	633	magnitude of the treatment effect cannot be explained by adding up the postulated efficacy
39 40	634	estimates of the individual ingredients. Findings from in vitro and in vivo studies support this
41 42	635	notion of proposed synergy although this hypothesis can only be taken forward when the
43 44	636	observed treatment effect is validated in various settings and in a larger number of patients.
45 46	637	<u>ــــــــــــــــــــــــــــــــــــ</u>
47 48	638	We acknowledge that our study has two considerable limitations: the small sample size and
49 50	639	the high drop-out rate. Regarding the sample size, one should bear in mind that this study is a
51 52	640	small, phase-2 clinical trial assessing a novel intervention and thus has comparable size in the
53 54	641	appropriate literature. Questions taken forward from this trial can be assessed in a larger
55 56		
57 58		
59 60		

1 2

Formatted: Font: (Default) Times New Roman, No underline, Font color: Auto

Formatted: Font: (Default) Times New Roman, No underline, Font color: Auto

Formatted: English (U.K.)

BMJ Open

2	randomised trial in which appropriate power calculations would be possible, taking into
3	consideration the findings of the present study. The adherence of the subjects is another
ŀ	limitation of our study, but the total duration of the study that covers a total of 42 months
5	follow-up adds power to the results. ⁴⁸ We acknowledge that we had to deliver the
5	intervention in the way most frequently associated with low compliance, i.e., an oral, liquid
,	formula, thus triggering maximum intolerance due to taste. Nevertheless, the observed
3	suboptimal compliance is in accordance with the published literature in which clinical trials
)	assessing liquid fatty acid interventions show a weaker adherence compared with clinical
)	trials of pharmaceutical interventions. Indeed, in our study, we consistently recorded the
L	reasons for withdrawal: most of the participants did not discontinue due to safety issues, but
2	rather due to palatability issues. Controlling non-compliance due to palatability issues is by
3	far easier to address compared with non-compliance related to adverse events and can be
ł	resolved when optimisation of the formulation is achieved in future trials. At this stage of the
5	development of the intervention, we would by far exceed the cost-effectiveness threshold if
5	we were to invest in improving these features of the intervention. Moreover, we should also
,	note that MS patients are subject to far more frequent and more serious adverse events related
3	to the current standard treatments.
)	
)	As a direct consequence of the low compliance and the loss of power, the performed
L	intention-to-treat analysis was far less robust than intended, and we would then have to take

into serious consideration the performed per-protocol analysis. We focused on the perprotocol data analysis because it is the appropriate method to best provide the answer for the

proof-of-concept trial-addressed question.²⁴ To validly incorporate the results of the per-

protocol analysis into the interpretation of the overall results of the trial, we needed to ensure

that the randomisation was not seriously violated due to the exclusion of the non-compliers.

Page 74 of 120

BMJ Open

67	The comparison between the baseline characteristics of the patients included in the per-		
68	protocol analysis did show a relative balance in the compared groups for known confounders.		
69	Nevertheless, the presence of unknown confounders introducing bias to the trial results		
70	cannot be excluded despite non-significant differences in the baseline characteristics. As an		
71	additional safeguard towards that end, we also performed adjusted analyses for the primary		
72	and secondary analyses for important clinical and demographic parameters, i.e., relapses,		
73	EDSS, age and DMT.		
74			
75	We proposed that a holistic SM model approach has to be applied by synchronized action on	'	Formatted: Font: 12 pt, No underline, Font color: Auto, English (U.S.)
76	all the involved perturbed mechanisms. <u>Although, all the included ingredients have proven</u>		
77	individually a valid biological plausibility and have been tested in various settings and under		
78	various dose schemes (REFS HERE), we assessed the hypothesis that a novel mixture of this		
79	ingredients PLP10 has a innovative characteristics with a ppostulated efficacy attained		
80	through different mechanisms of action and probably by the synergistic effect of its	·	Formatted: Font: 12 pt, No underline, Font color: Auto, English (U.S.)
81	constituent ingredients. Reasons thereof other that the obvious convenience of administering		
82	one formula containing different active ingredients, are, Moreover, the currently available		Formatted: Font: 12 pt, No underline, Font color: Auto, Highlight
83	evidence supports that nutritional interventions would confer a small to medium treatment		Formatted: Font: 12 pt, No underline, Font color: Auto, English (U.S.)
84	effect (ref). The notion of combining these interventions into one stable formulation would be		
85	expected to provide a maximum adherence with a appropriate safety profile. An similar		
86	approach could not be adopted for pharmaceutical interventions with common and severe		
87	adverse events such as these indicated today for the MS patients., PLP10 has all the		Formatted: Font: 12 pt, No underline, Font color: Auto, English (U.S.)
88	characteristics of a medical food with the action to feed a normal metabolic process by		
89	supplying nutritional structural membrane precursors, building blocks, and vitamins from		
90	dietary sources that enhance remyelination and neuroprotection and simultaneously promote		

2 3			
4 5			
6 7	691	normalization of all cellular membranes lipid content. The intention is to normalize the	
8 9	692	specific nutritional requirements of the MS patients,	Formatted: English (U.S.)
10 11	693	<u>۸</u>	Formatted: English (U.S.)
12 13	694	Interestingly, in this small phase II trial, we observed a far larger treatment effect than	
14 15	695	expected. One explanation could be maximum synergistic effect observed when	
16 17	696	stimultaneously administering the assessed ingredinets. Findinds from in vitro and in vivo	
18 19	697	studies could support this notion Nevertheless, this hypothesis can only be taken forward	Formatted: No underline, Font color: Auto, Highlight
20 21	698	when Different factors and molecular entities appear to be part of the possible actiology for	Formatted: No underline, Font color: Auto, English (U.S.)
22	699	MS with specific PUFA and antioxidants found to be key substances related to all known	
23 24	700	pathogenic and recovery mechanisms. But, it is well established that MS patients are	
25 26	701	characterized with significant deficiencies in antioxidant efficiency as well as in PUFA levels	
27 28	702	in blood and cellular membranes. ^{11, 49-51}	
29 30	703		
31 32	704	According to one hypothesis, the change in the ratio of omega 3 to omega 6, due to the	Formatted: No underline, Font color: Auto, English (U.S.)
33 34	705	increasing consumption of omega 6 PUFA and resulting in, meaning high accumulation of	
35 36	706	AA, in the Western diet, may be one of the major factors responsible for the increasing	
37 38	707	incidence of inflammatory diseases relative to populations. In the Western diet, the ratio of	
39 40	708	omega 3 to omega 6 is about 1:20-30; in populations that consume fish based diets, the ratio	
41 42	709	is about 1:1–2. ^{52, 53} The intervention daily dose was <u>designed</u> aiming and believed to be high	
43 44	710	enough to restore/amplify body efficient antioxidant activity and ensure cellular membranes	
45 46	711	lipid profile normalization (PUFA content) and simultaneously potentiate involvement of the	
47 48	712	ingredients in the anti-inflammatory and recovery mechanisms. Diet fatty acid molecules	
49 50	713	need about a six months period to exert their beneficial effect and this essential parameter	
51	714	was for the first time under consideration in our study design (normalization period), ⁴² This	Formatted: No underline, Font color: Auto, English (U.S.)
52 53	715	chronotherapy parameter it is of major importance in line with the SM treatment philosophy	
54 55			
56 57			29
58 59			_
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelin	es.xhtml

1 2	
3	
4	
5	
6 7	7
8	7
9 10	1
11	7
12	7
13 14	
13 14 15	7
16	7
17 18	_
19	1.
20	7
21	7
23	
24	7
20 21 22 23 24 25 26 27 28	7
27	_
28 29	
30	7
30 31 32 33 34	7
32 33	
34	7
35 36 37	7
36 37	-
38	7
39	7
40 41	-
42 43	1
43 44	7
45	7
46	
47 48	7
49	7
50	_
51 52	7.
53	7
54	
55 56	
57	
58	
59 60	

16	We believe that the persistent effect within the post study period is in agreement with the		
17	reported very long washout phase for omega 3 fatty acids, especially DHA, to return to the		
18	pre-treatment values. ⁴⁶ and if it is not included in the trial design the possibility of misleading		
19	result evaluation greatly increases. In fact, considering that omega 3 supplementation can		
20	release and replace excess AA within the cellular membranes, we can speculate that an		
21	increased inflammatory activity can possibly result during the first six months of		
22	supplementation (during normalization period).		
23			
24	The maintenance of myelin requires continued turnover of its components throughout life.54,55		Formatted: No underline, Font color: Auto, English (U.S.)
25	In addition to the EPA, DHA, LA, and GLA, PLP10 was containing limited quantities of	[Formatted: No underline, Font color: Auto, English (U.S.)
26	other structural PUFA, specific MUFA (mostly oleic acid) and SFA (palmitic and stearic		
27	acid), specifically aiming to provide a direct source for neuronal cell membranes		
28	rehabilitation and for (re)myelination and neuroprotection since they are all major		
29	components, precursors and building blocks of any new physiological myelin and cellular		
30	membranes in general. Assembly of the correct molecules into myelin membrane may be		Formatted: No underline, Font color: Auto, English (U.S.)
31	especially critical during active synthesis. Possibly, if critical constituents aren't available or		
32	are metabolically blocked, amyelination, dysmyelination or demyelination may ensue. ⁵⁶	(Formatted: English (U.S.)
33			
34	We acknowledge that our study has two considerable limitations pertaining to the small		
35	sample size and the high drop out rate. Regarding the sample size, one has to bear in mind		
36	that this is a small, phase 2 clinical trial assessing a novel intervention and has thus		
37	comparable size in the relative literature. Questions taken forward from this trial can be		
38	assessed in a larger randomized trial where appropriate power calculations would be possible		
39	taking into consideration the findings of the present study. The adherence of the subjects is		
40	another limitation of our study since almost half of the participants withdrew. We		
ļ			

41	acknowledge that we had to deliver the intervention in the way most frequently associated
42	with low compliance, i.e. oral, liquid formula, thus triggering maximum intolerance due to
43	taste. Nevertheless, the observed suboptimal compliance is in accordance with the published
44	literature where clinical trials assessing liquid fatty acid interventions show a weaker
45	adherence compared to clinical trials of pharmaceutical interventions. Indeed, in our study,
46	we consistently recorded the reasons of withdrawal and most of the participants did not
47	discontinue due to safety issues, but mostly in relation to palatability issues. Controlling non-
48	compliance due to palatability issues is by far easier to deal with compared to non-
49	compliance related to adverse events and can be resolved when optimization of the
50	formulation is achieved in future trials. At this stage of the development of the intervention,
51	we would by far exceed the cost effectiveness threshold if we were to invest in improving
52	these features of the intervention. Moreover, we should also note that MS patients are subject
53	to far more frequent and more serious adverse events related to the current standard
54	treatment.
55	
	As a direct consequence of the low compliance and the loss of power, the performed
56	As a direct consequence of the low compliance and the loss of power, the performed intention to treat analysis was far less robust than intended and we would then have to take
56 57	
56 57 58	intention to treat analysis was far less robust than intended and we would then have to take
56 57 58 59	intention to treat analysis was far less robust than intended and we would then have to take into serious consideration the performed pre-protocol analysis. In order to validly incorporate
56 57 58 59 60	intention to treat analysis was far less robust than intended and we would then have to take into serious consideration the performed pre-protocol analysis. In order to validly incorporate the results of the pre-protocol analysis into the interpretation of the overall results of the trial,
56 57 58 59 60	intention to treat analysis was far less robust than intended and we would then have to take into serious consideration the performed pre-protocol analysis. In order to validly incorporate the results of the pre-protocol analysis into the interpretation of the overall results of the trial, we needed to ensure that the randomization was not seriously violated due to the exclusion of
56 57 58 59 60 61	intention to treat analysis was far less robust than intended and we would then have to take into serious consideration the performed pre-protocol analysis. In order to validly incorporate the results of the pre-protocol analysis into the interpretation of the overall results of the trial, we needed to ensure that the randomization was not seriously violated due to the exclusion of the non-compliers. The comparison between the baseline characteristics of the patients
56 57 58 59 60 61 62 63	intention to treat analysis was far less robust than intended and we would then have to take into serious consideration the performed pre-protocol analysis. In order to validly incorporate the results of the pre-protocol analysis into the interpretation of the overall results of the trial, we needed to ensure that the randomization was not seriously violated due to the exclusion of the non-compliers. The comparison between the baseline characteristics of the patients included in the per-protocol analysis did show a relative balance in the compared groups for
55 56 57 58 59 60 61 62 63 64 65	intention to treat analysis was far less robust than intended and we would then have to take into serious consideration the performed pre-protocol analysis. In order to validly incorporate the results of the pre-protocol analysis into the interpretation of the overall results of the trial, we needed to ensure that the randomization was not seriously violated due to the exclusion of the non-compliers. The comparison between the baseline characteristics of the patients included in the per-protocol analysis did show a relative balance in the compared groups for known confounders. Nevertheless, the presence of unknown confounders introducing bias in

1	
2 3	
3 4	
5	
6	766
7 8	/00
9	767
10 11	768
12 13	769
14 15	770
16 17 18	771
18	772
19 20 21	773
22	774
23 24	775
25 26	776
27 28	777
29 30	778
31 32	779
33 34	780
35 36	781
37 38	782
39 40	783
41 42	784
43	785
44 45	786
46 47	787
48 49	788
50 51	789
52	
53 54	
54 55	
56	
57	
58	
59 60	

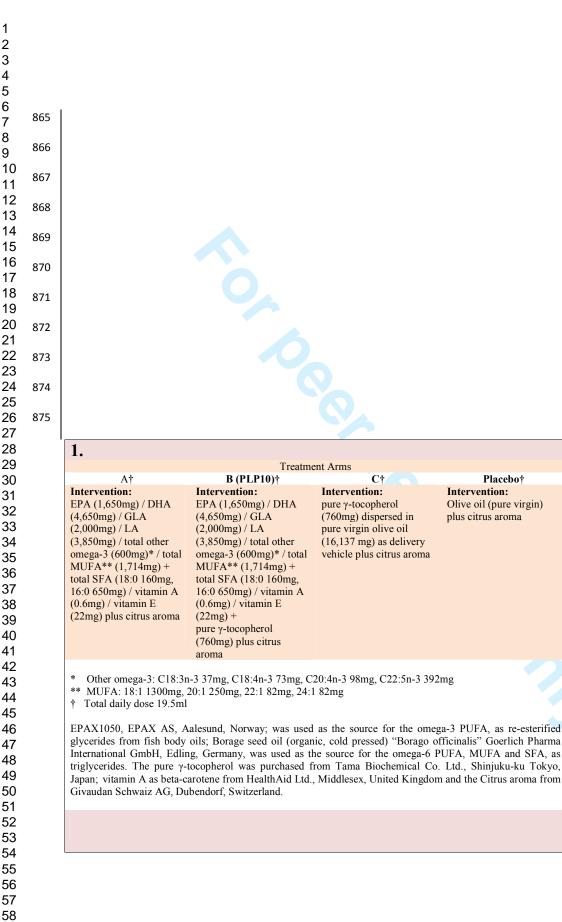
6	adjusted analyses for the primary and secondary analyses for important clinical and	
7	demographic parameters i.e. relapses, EDSS, age and DMT.	
8		
Э	The present preliminary, small size, randomized, controlled phase II clinical trial provides	
C	evidence for a novel nutritional nutraceutical formula based on dietary, metabolic,	
1	immunological, and neurobiological pathways possibly involved with disease progression in	
2	MS. This novel intervention showed signs of efficacy in the observed annualised relapse rates	
3	and disability progression-to disabilityWe took the appropreateall methodological	
4	precautionsmeasures in order toto control for potential sources of bias and beto enable able to	
5	reach a valid interpretation to be reached. We acknowledge that the presence of bias can only	
5	be minimized, yet-not excluded, in any clinical research setting and also that random error is	
7	always a possible scenario in small trials. Thus, we present the observed results as an	
8	additional piece of randomized evidence and anticipate the replication of our study findings	
Э	in a larger randomised controlled clinical trial.	
C		
1	The well known and established safety of the ingredients used and the protocol guidelines	Forn Engli
2	were supportive reasons for us to proceed with the clinical study even though with limitation	
3	on the pre-estimation of required trial sample size as it was discussed in method section. The	
4	adherence of the subjects is Interferons and glatiramer acetate, the most widely used first-line	
5	MS drugs available today, are associated with the least severe side effects among MS	
5	therapies but they are reported with only 29-33% ARR reduction and with no significant	
7	effects on the progression of disability. Natalizumab as previously discussed and Fingolimod	
3	with 54% ARR reduction (without significant benefit on the progression of disability) are	
Э	second line drugs associated with severe side effects. 47, 48	

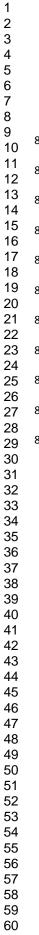
Formatted: No underline, Font color: Auto, English (U.S.)

BMJ Open

790
791
792
793
794
-
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

another issue but the duration of the study (42 months) is adding power to the results; ⁴⁴	F
having the research questions been consciously and carefully approached and answered.	Ē
Furthermore, the statistical methodologies used along with the appropriate adjustments,	
broadly accepted for MS clinical trials, power strengthen the findings, results, and	
significance. The baseline characteristics of the treatment arms could possibly be considered	
indicative of four very active groups of patients but that was the result of the limited number	
of RRMS population eligible for the study within Cyprus. On the other hand the balanced	
baseline characteristics without statistical differences, the statistical adjustments (for all	
important baseline parameters i.e. relapses, EDSS, age and DMT) and the randomization	
within four different groups are the safety valves against data misinterpretation. Yet, in small	
randomized control trials with a high drop out rate, the per protocol analysis could be	
affected by the characteristics of the patients dropping out. In order to safeguard our findings	
in the best possible way under the circumstances, we proceeded to adjusting for confounders.	
Moreover, we cannot discard our finding as a false positive, given that this is a randomized,	
double blind, placebo controlled clinical trial and, despite its small sample size, represents a	
piece of evidence that only a larger randomized controlled trial can replicate or refute. It is	F
possible to question why DMTs efficacy cannot be emerged out of the data analysis, of the	
four treatment arms, and in accordance to their published values. We believe that the limited	
efficacy of the DMTs, the sample size and the statistical adjustments were strong limiting	
determining factors for such an indication to be countable. An additional argument is that the	
efficacy reported for the analysis of pre-treatment (24 months before entry baseline) versus	
on trial ARR could be considered as potentially biased due to differences of how relapses	
were defined during the course of a study compared to pre-treatment period; or due to	
regression to the mean or placebo effect. This analysis was performed as an additional	
exploratory analysis that we were able to do due to the availability of data. The relapses of	


Formatted: No underline, Font color: Auto, English (U.S.)


Formatted: No underline, Font color: Auto, English (U.S.)

BMJ Open

	the two pre-treatment years were drawn out of the patients' archival records by the same	
	treating neurologist involved in the study (MP), and according to the patients' hospitalization	
,	date for receiving intravenous methyl-prednisolone. This analysis was not used as a primary	
	or a secondary end-point under investigation although it is usually reported by many clinical	
1	studies. <mark>As a matter of fact many early phase trials are based only on such an analysis (before</mark>	
)	versus after treatment results). In almost all MS trials the number of relapses within the two	
	years before baseline is a factor under adjustment for the statistical analyses.⁴⁸ The inclusion	
	of the post-hoc MRI analysis is another limiting factor that needs attention since it was used	
	as an additional aside exploratory approach (due to study budget limitations it was not	
	possible to be used as a formal endpoint); but the MRI evaluation was blinded and can be	
	considered as representative of the randomized subjects within the treatment arms. As far as	
	the regression to the mean and the placebo effect concerns we believe that the 6-month	
,	normalization period is an accountable and valuable eliminating factor of the possible effect;	
	as well as the presence of four groups, where only the PLP10 treatment arm is associated	
1	with statistically significant efficacy versus placebo.	Formatted: English (U.S.)
)		
	Our observations are consistent with the idea that simultaneous availability of specific PUFA	Formatted: No underline, Font color: Auto, English (U.S.)
	along with other major membrane and myelin building blocks in combination with specific	
	antioxidants, within optimum quantity, guality, ratio and structural form can possibly result to	Formatted: No underline, Font color: Auto, English (U.S.)
	a more appropriate holistic therapy reducing MS disease activity. It is our belief that this is	Formatted: No underline, Font color: Auto, English (U.S.)
	probably succeeded through synergistic and/or simultaneous effect on the interactions and	Formatted: No underline, Font color: Auto, English (U.S.)
	dynamics of the most probable environmental and biological disease causing factors that	Formatted: No underline, Font color: Auto, English (U.S.)
,	induce complex biological network of events for disease pathogenesis and evolution; as well	
	as on the protective and reparative mechanisms. We can additionally speculate that the nature	Formatted: No underline, Font color: Auto, English (U.S.)
	of the intervention formula cannot be prohibitive for its use as preventive regimen and does	
		24

 3 4 5 6 7 840 not preclude probable positive efficacy on the other types of MS, but has to be further 8 841 investigated. A larger size multicenter clinical trial will better establish PLP10 place in the))
6 7840not preclude probable positive efficacy on the other types of MS, but has to be further8 9841investigated. A larger size multicenter clinical trial will better establish PLP10 place in the)
 rot preclude probable positive efficacy on the other types of MS, but has to be further 8 841 investigated. A larger size multicenter clinical trial will better establish PLP10 place in the))
9 ⁸⁴¹ Investigated. A larger size multicenter clinical trial will better establish PLP10 place in the))
))
10 11 842 armamentarium of treatments for MS. 11 Formatted: English (U.S.)	
12 ₈₄₃ 13	
14 15 844 It is commonly accepted that nutrition is one of the possible environmental factors involved English (U.S.)	Font color: Auto,
16 17 and the pathogenesis of MS, but its role as complementary MS treatment is unclear and largely	
 18 846 19 disregarded.⁵⁷ It is well known that the majority of the patients suffering from MS they do 	
20 847 <u>use dictary supplements for a variable length of time and they prefer supplement type of</u> 21	
 22 848 <u>"help" over conventional drugs.⁵⁸ Dietary antioxidants and fatty acids may influence the</u> 23 	
24 849 disease process in MS by reducing immune-mediated inflammation, oxidative stress and	
25 26 850 excitotoxic damage. ¹¹ Present data reveal that healthy dietary molecules have a pleiotropic	
 27 28 851 role and are able to change cell metabolism from anabolism to catabolism and down-regulate 	
29 30 852 inflammation by interacting with enzymes, nuclear receptors and transcriptional factors. ⁵⁷	
31 32 853 The present preliminary small size randomized controlled phase II clinical trial, for the first	
 33 34 854 time provides link evidence between dietary, metabolic, immunological, and neurobiological 	
35 36855aspects of MS after three quarters of a century of unsuccessful scientific efforts. This link	
 856 evidence might probably be the beginning of opening new horizons and new avenues in the English (U.S.) 	Font color: Auto,
 39 40 857 approach of MS prevention and treatment, and possibly of other multifactorial chronic 	
41 858 diseases, including neurodegenerative and autoimmune as well.)
42 43 859	
44 45 860	
46 47 861	
48 49 862	
50 51 863	
52 53 864	
54 55 S	
56	
57 35	
58 59	
60	
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

	s per treatment a	41111.				
						Formatted: English (
2A.						
2A. Characteristics	Group A	Group B† (n=20)	Group C	Placebo	P- value	
	Group A (n=20)	Group B† (n=20)	Group C (n=20)	Placebo (n=20)	P- value	
Characteristics						
Characteristics Sex	(n=20)	(n=20)	(n=20)	(n=20)	value	
Characteristics Sex Female - no. (%)	(n=20)	(n=20)	(n=20)	(n=20)	value	
Characteristics Sex Female - no. (%) Age (yr) Mean ± Standard Deviation (SD) Median (Range)	(n=20) 15 (75)	(n=20) 15 (75)	(n=20) 15 (75)	(n=20) 15 (75)	value 1.000	
Characteristics Sex Female - no. (%) Age (yr) Mean ± Standard Deviation (SD) Median (Range) Treatment history	(n=20) 15 (75) 38.0±11.9 38.0 (22 −65)	(n=20) 15 (75) 36.9±8.4 37.0 (25 -61)	(n=20) 15 (75) 37.7±8.7 36.5 (24 – 54)	(n=20) 15 (75) 38.1±10.9 36.0 (21–58)	value 1.000 0.982	
Characteristics Sex Female - no. (%) Age (yr) Mean ± Standard Deviation (SD) Median (Range) Treatment history Patients on DMT- no. (%)	(n=20) 15 (75) 38.0±11.9	(n=20) 15 (75) 36.9±8.4	(n=20) 15 (75) 37.7±8.7	(n=20) 15 (75) 38.1±10.9	value 1.000	
Characteristics Sex Female - no. (%) Age (yr) Mean ± Standard Deviation (SD) Median (Range) Treatment history Patients on DMT- no. (%) Pre-treatment disease duration (yr)	(n=20) 15 (75) 38.0±11.9 38.0 (22 -65) 11 (55)	(n=20) 15 (75) 36.9±8.4 37.0 (25 -61) 9 (45)	(n=20) 15 (75) 37.7±8.7 36.5 (24 – 54) 12 (60)	(n=20) 15 (75) 38.1±10.9 36.0 (21–58) 10 (50)	value 1.000 0.982 0.875	
Characteristics Sex Female - no. (%) Age (yr) Mean ± Standard Deviation (SD) Median (Range) Treatment history Patients on DMT- no. (%) Pre-treatment disease duration (yr) Mean ± SD	(n=20) 15 (75) 38.0±11.9 38.0 (22 -65) 11 (55) 9.0±7.6	(n=20) 15 (75) 36.9±8.4 37.0 (25 -61) 9 (45) 8.6±4.8	(n=20) 15 (75) 37.7±8.7 36.5 (24 – 54) 12 (60) 8.6±5.3	(n=20) 15 (75) 38.1±10.9 36.0 (21–58) 10 (50) 7.7±5.7	value 1.000 0.982	
Characteristics Sex Female - no. (%) Age (yr) Mean ± Standard Deviation (SD) Median (Range) Treatment history Patients on DMT- no. (%) Pre-treatment disease duration (yr) Mean ± SD Median (Range)	(n=20) 15 (75) 38.0±11.9 38.0 (22 -65) 11 (55)	(n=20) 15 (75) 36.9±8.4 37.0 (25 -61) 9 (45)	(n=20) 15 (75) 37.7±8.7 36.5 (24 – 54) 12 (60)	(n=20) 15 (75) 38.1±10.9 36.0 (21–58) 10 (50)	value 1.000 0.982 0.875	
Characteristics Sex Female - no. (%) Age (yr) Mean ± Standard Deviation (SD) Median (Range) Treatment history Patients on DMT- no. (%) Pre-treatment disease duration (yr) Mean ± SD Median (Range) Pre-treatment relapses‡	(n=20) 15 (75) 38.0±11.9 38.0 (22 -65) 11 (55) 9.0±7.6 7.5 (2 - 37)	(n=20) 15 (75) 36.9±8.4 37.0 (25 -61) 9 (45) 8.6±4.8 8.0 (2 - 20)	(n=20) 15 (75) 37.7±8.7 36.5 (24 – 54) 12 (60) 8.6±5.3 8.0 (3 – 24)	(n=20) 15 (75) 38.1±10.9 36.0 (21–58) 10 (50) 7.7±5.7 6.5 (2 – 25)	value 1.000 0.982 0.875 0.909	
Characteristics Sex Female - no. (%) Age (yr) Mean ± Standard Deviation (SD) Median (Range) Treatment history Patients on DMT- no. (%) Pre-treatment disease duration (yr) Mean ± SD Median (Range) Pre-treatment relapses‡ Mean ± SD	(n=20) 15 (75) 38.0±11.9 38.0 (22 -65) 11 (55) 9.0±7.6 7.5 (2 - 37) 2.33±1.68	(n=20) 15 (75) 36.9±8.4 37.0 (25 -61) 9 (45) 8.6±4.8 8.0 (2 - 20) 2.41±1.73	(n=20) 15 (75) 37.7±8.7 36.5 (24 – 54) 12 (60) 8.6±5.3 8.0 (3 – 24) 2.31±1.66	(n=20) 15 (75) 38.1±10.9 36.0 (21–58) 10 (50) 7.7±5.7 6.5 (2 – 25) 2.10±1.32	value 1.000 0.982 0.875	
Characteristics Sex Female - no. (%) Age (yr) Mean ± Standard Deviation (SD) Median (Range) Treatment history Patients on DMT- no. (%) Pre-treatment disease duration (yr) Mean ± SD Median (Range) Pre-treatment relapses‡	(n=20) 15 (75) 38.0±11.9 38.0 (22 -65) 11 (55) 9.0±7.6 7.5 (2 - 37)	(n=20) 15 (75) 36.9±8.4 37.0 (25 -61) 9 (45) 8.6±4.8 8.0 (2 - 20)	(n=20) 15 (75) 37.7±8.7 36.5 (24 – 54) 12 (60) 8.6±5.3 8.0 (3 – 24)	(n=20) 15 (75) 38.1±10.9 36.0 (21–58) 10 (50) 7.7±5.7 6.5 (2 – 25)	value 1.000 0.982 0.875 0.909	

Baseline EDSS score‡	0.50.1.00	0.15.1.05	0.40.1.01	A A A A A	0 == =
Mean \pm SD	2.52±1.23	2.15±1.05	2.42±1.21	2.39± 0.93	0.775
Median (Range)	2.5 (1.0–5.5)	2.0 (1.0-4.0)	2.5 (0.0–5.0)	2.5 (1.0-4.0)	
2B.					
ZD. Characteristics	Group A	Group B†	Group C	Placebo	P-
	(n=10)	(n=10)	(n=9)	(n=12)	value
Sex	5 (50)	7 (70)		10 (02 2)	0.410
Female - no. (%)	5 (50)	7 (70)	6 (66.6)	10 (83.3)	0.419
Age (yr)					
Mean \pm SD	36.6±13.5	34.80±5.4	40.9±8.1	39.8±13.2	0.572
Median (Range)	34.5 (22–65)	34.5 (26–43)	40.0 (29–54)	37.5 (21–58)	
Treatment history					
Patients on DMT- no. (%)	6 (60)	4 (40)	6 (67)	6 (50)	0.949
Pre-treatment disease duration (yr)					
Mean ± SD	9.7±10.0	8.3±5.3	11.3±6.1	8.7±7.1	0.807
Median (Range)	7.5 (2 – 37)	8.0 (2 - 20)	8.0 (4 - 24)	5.5 (2 – 25)	
Pre-treatment relapses					
Mean \pm SD	2.20±1.47	2.70±1.25	1.78±0.66	1.67±1.37	0.241
Median (Range)	2.0 (1 – 6)	2.5 (1 – 4)	2.0 (1 – 3)	1.5 (1 – 4)	
ARR	1.10	1.35	0.89	0.83	
Patients -% with ≤ 1 relapse	30	20	33	50	
Baseline EDSS score					
Mean ± SD	2.65±1.37	2.40±1.12	2.11±1.02	2.16±0.96	0.698
Median (Range)	3.0 (1.0-5.5)	2.5 (1.0-4.0)	2.0 (1.0-4.0)	2.0 (1.0-3.5)	
† PLP10 group					
‡ Available data at Entry Baseline (n=1	8 for group A, n=1	7 for group B, n	=19 for group C,	n=19 for group D)
Table 2. The table section 2A rep	orts the demog	raphics and ba	seline disease	characteristics	for
-	-	1			
total randomized population by t	reatment arm.				
The table section 2B reports the	demographics a	nd basalina di	sansa aharaata	ristics of all tir	na on
The lable section 2B reports the	actiographics a	nu vasenne u	sease character		ne on-
study population by treatment are	n. There were r	no significant	between study-	group differen	nces at
baseline for any characteristic.					
ouserine for any endracteristic.					
·					

3A.								
Characteristics	Grou (N =	ир А =10)		p B† =10)	Grouj (N =			ebo =12)
End Point	Х	Y	Х	Y	х	Y	Х	Y
Total No. of relapses	22	17	27	8	16	13	20	25
Annual Relapse Rate (ARR)	1.10	0.85	1.35	0.40	0.88	0.72	0.83	1.04
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-18		-62		-30		N/A
P Value against placebo		0.468		0.024		0.578		
ARR change -% (Y to X)¶	-2	23	-7	70	- 18	8	+	25
P value against baseline	0.4	25	0.0	003	0.57	8	0.5	500
X: Total number of relapses of 24 Y: Total number of relapses of 24 ¶ Unadjusted estimate			seline)					
3B.								
Excluding patients on	Grou	ир А =9)		p B† =10)	Group (N =	ьC	Plac (N =	ebo

End Point	Х	Y	Х	Y	Х	Y	Х	Y
Total No. of relapses	16	15	27	8	16	13	13	19
Annual Relapse Rate (ARR)	0.88	0.83	1.35	0.40	0.88	0.72	0.65	0.95
% Reduction Compared to Placebo (primary endpoint) (Ys)¶		-13		-58		-24		N/A
P Value against placebo		0.493		0.016		0.412		
ARR change -% (Y to X)¶		-6	_	70	- 1	18	+4	46
P value against baseline	0.	857	0.	003	0.5	578	0.3	54
X: Total number of relapses of 2 Y: Total number of relapses of 2 † PLP10 group ¶ Unadjusted estimate	24 months on-	-treatment	·					
Table 3. The table section	on 3A repo	orts the two	year prir	nary end p	oints of Al	RR of all-t	ime on-stu	dy
population by treatment	arm and p	ercent diffe	erence wi	th placebo.	During th	e 24mo pe	riod on-tre	atment
the ARR of the group A was 0.85 with 18% decrease compared to placebo (p=0.468), of PLP10 group								
0.40 with 62% decrease	(p=0.024)	, and of gro	oup C 0.7	2 with 30%	decrease	(p=0.578)	and report	s the
comparison of the 24mo pre-treatment ARR (baseline ARR) to 24mo on-treatment ARR of all-time on-								

study population including patients on natalizumab.

The table section 3B reports comparison of the 24mo pre-treatment ARR to 24mo on-treatment ARR of all-time on-study population excluding patients on natalizumab; and the comparison of the ARR during the 24mo period on-treatment (primary end point) between each one of the groups against placebo.

Formatted: English (U.S.)

910									
911									
912									
913									
914									
915									
916									
917									
918									
918									
	4A.								
	Characteristics		ир А =8)	Grou (N	up B† =7)	Grou (N =	up C =10)	Plac (N	cebo =7)
		Х	Y	Х	Y	x	Y	Х	Y
	No. of Relapses	20	14	14	14	27	26	20	13
	Annual Relapse Rate (ARR)	1.25	0.88	1.00	1.00	1.35	1.30	1.42	0.92
	X: Total number of relapses of 24 me Y: Total number of relapses of 24 me								
	4B.								
	Characteristics		up A =20)		up B† =20)		up C =20)		cebo =20)
	End Point	Х	Y	х	Y	Х	Y	х	Y
	No. of Relapses	45	34	49	30	46	41	43	41
	Annual Relapse Rate (ARR)	1.13	0.85	1.23	0.75	1.15	1.03	1.08	1.03
	ARR Reduction -% (Y to X)¶	-2	25	-	39	-]	0	-	5
	P value against baseline	0.1	20	0.	005	0.4	75	0.6	52
	% Reduction of the ARR Compared to Placebo (Ys)¶		-18		-27		0.0		N/A
	P Value against placebo		0.447		0.121		0.996		

X: Total number of relapses of 24 months pre-treatment (baseline) Y: Total number of relapses of 24 months on-treatment ¶ Unadjusted estimate † PLP10 group

Table 4. The table section 4A reports the two year primary end point of relapses based on study design as reported by drop-out patients by Treatment Arm. The most drop-out patients that went on disease modified therapy (DMT) were from the group A and placebo with three and two patients respectively on natalizumab. These parameters justify the decreased number of relapses recorded within group A and placebo drop-outs; and this could affect the ITT analysis in favor of placebo when the total two-year recorded data are used. For PLP10 group, 14 relapses were reported at baseline and remained the same during the two-year study. For placebo, 20 relapses were reported at baseline and decreased to 13 during the two-year study. This is expected since, for PLP10 group 43% of the drop-outs were under DMT at entry baseline and remained the same until the end of the study with no patient on natalizumab; but 57% of the placebo group drop-outs that were under DMT at entry baseline increased to 86% at the end of the study including two patients on natalizumab.

The table section 4B reports comparison of 24 months pre-treatment ARR (baseline) to 24 months on-treatment ARR of total randomized population, by treatment arm. The ARR of PLP10 group was 1.23 at baseline and 0.75 at the end of the study (39% reduction p=0.005), and for placebo 1.08 at baseline and 1.03 at the end of the study (5% reduction p=0.652). No statistical difference was calculated for the other two treatment arms. During the 24 months on-treatment, PLP10 group presented a 27% reduction of ARR versus placebo (p=0.121),

with all groups without statistically significant results.

Formatted: English (U.S.)

921						
922						
923						
924						
925						
926						
927						
	5.					
	Characteristics*	Group A (n=10)	Group B PLP10 (n=10)	Group C (n=9)	Placebo (n=12)	P-value Group B <i>vs</i> . Placebo
	Annual relapse rate over 1 year**	0.80	0.40	0.78	0.83	
	Total number of relapses**	8	4	7	10	
	Primary end points					
	Annual relapse rate over 2 years (95% CI)**	0.85	0.40 (0.15-0.87)	0.72	1.04	0.024
	Total number of relapses**	17	8	13	25	
	Excluding patients on natalizumab	(n=9)	(n=10)	(n=9)	(n=10)	
	Annual relapse rate over 2 years (95% CI)	0.83	0.40 (0.10-0.79)	0.72	0.95	0.016
	Total number of relapses	15	8	13	19	
	Secondary end points					
	Cumulative probability of sustained progression increase by1 point on EDSS	43	10 (1/10)	24	58 (7/12)	0.019
	confirmed after 6 mo, over 2 years -% **					
	confirmed after 6 mo, over 2 years -% ** Excluding patients on natalizumab cumulative probability of sustained progression increase by1 point on EDSS confirmed after 6 mo, over 2 years -%	33	10 (1/10)	24	70 (7/10)	0.006

56 (5/9)

67 (6/9)

42 (5/12)

67 (4/6)

80 (4/5)

75 (9/12) ‡

0.030

0.747

Formatted: English (U.S.)

50 (5/10)

80 (8/10)†

Table 5. Clinical end points, according to study group for all-time on-study population.

Acknowledgments: We thank all participant patients. We thank Thyrsos Posporis MD and the

central reading centre (Ayios Therissos Medical Diagnostic Centre, Nicosia, Cyprus), and

Eleni Eracleous, MD (neuroradiologist) for the contribution on the MRI scans and their team

for the MRI reading. Special thanks to Elena Kkolou the pharmacist involved in the study and

90 (9/10)

29 (2/7)

29 (2/7)

60 (6/10)

1	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13 14	
15	
16	
17	
18	
19 20	
20 21 22	
22	
23	
24	
25	
26 27	928
28	
29	929
30	
31	930
32	931
33 34	551
35	932
36	022
37	933
38 39	934
39 40	
41	935
42	936
43	930
44	937
45 46	
40 47	938
48	939
49	
50	940
51 52	0.4.1
52 53	941
54	942
55	
56	
57	
58 59	
59 60	

1

Exploratory Results

years -% **

lesions-% **

T2 lesions-%

natalizumab

*

**

\$

.

at the end of 2 years-% **

MRI

Patients proportion with ≤ 1 relapse over 2

Patients proportion with new or enlarging T2

Patients proportion with no new or enlarging

DMT (interferons, glatiramer acetate) and

Patients proportion on DMT and natalizumab

CI denotes confidence interval.

2 out of 12 on natalizumab

Including patients on natalizumab lout of 10 on natalizumab

Excluding patients on natalizumab

Eftychia Gaglia for her nursing contribution and collection of blood from the patients. We	
also thank Demetris Hadjisofoklis and Ioanna Leontiou (University of Nicosia, Helix	Formatted: No underline, Font color: Auto, English (U.S.)
Business incubator) for their contribution on randomization process, data collection, filing	
and blind codes keeping. Additionally we would like to thank the CING for hosting the	
project. Moreover, we thank the Cyprus Ministry of Commerce, Industry and Tourism for	
funding the project; and Yasoo Health Ltd., for providing some of the raw materials in	Formatted: No underline, Font color: Auto, English (U.S.)
exchange of investigating, on their behalf, the efficacy and safety of γ -tocopherol.	
Contributors: All authors interpreted the data. I.S.P drafted the report and figures and all	Formatted: No underline, Font color: Auto, English (U.S.)
authors critically revised and approved the final version. M.C.P and I.S.P were responsible	
	44
For peer review only - http://bmjopen.bmj.com/site/about/guidelin	es.xhtml

943	for the protocol and study design. M.C.P was the evaluator of patients' clinical progress signs		
944	and the treatment physician. I.S.P and G.N.L were involved in the non-pharmacologic		
945	treatment-related care. I.S.P performed the literature search and both I.S.P and G.N.L		
946	contributed on the intervention formulation and composition rational. I.S.P supervised the		
947	composition procedure of the interventions and the fatty acid profile analysis of the red blood		
948	cell membranes. E.E.N and I.S.P performed the statistical analyses. E.E.N was an		
949	independent scientist. All authors vouch for the accuracy and completeness of the data and		
950	the statistical analyses.		Formatted: English (U.S.)
951			Formatted: No underline, Font color: Auto,
952	Funding: Supported by a grand from the Cyprus Ministry of Commerce, Industry and		English (U.S.) Formatted: English (U.S.)
953	Tourism, program for the creation of new high technology and innovation enterprises through		Formatted: No underline, Font color: Auto, English (U.S.)
954	the business incubator.		Formatted: English (U.S.)
955			
956	Competing interest: M.C.P, G.N.L, I.S.P received grand support from the Cyprus Ministry of		Formatted: No underline, Font color: Auto, English (U.S.)
957	Commerce, Industry and Tourism, Program for the Creation of New High Technology and		
958	Innovation Enterprises through the Business Incubator. PALUPA Medical Ltd. is a research		
959	company formed and registered for completion of the study, as required by the Governments'		
960	funding grand program. M.C.P, G.N.L, I.S.P, and CING are all stockholders of the PALUPA		Formatted: No underline, Font color: Auto, English (U.S.)
961	Medical Ltd. M.C.P is an employee at the CING. I.S.P is a senior research collaborator		
962	hosted by the CING. G.N.L is a CING collaborator. E.E.N declares no-competing interest.		
963	No pharmaceutical companies were involved in this phase II clinical trial. The intervention is		
964	under a USA provisional patent; Application Number 61469081,		Formatted: English (U.S.)
965			Formatted: No underline, Font color: Auto,
966	Ethical approval: Cyprus National bioethics committee (reference EEBK/EII/2005/10)	/	English (U.S.) Formatted: No underline, Font color: Auto,
967			English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
		À,	Formatted: English (U.S.)
			45

All authors have completed the Unified Competing Interest form at	Formatted: No underline, Font color: Auto, English (U.S.)
www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and	
declare that (1) M.C.P, G.N.L, I.S.P have support from Cyprus Ministry of Commerce,	Formatted: No underline, Font color: Auto, English (U.S.)
Industry and Tourism, Program for the Creation of New High Technology and Innovation	
Enterprises through the Business Incubator for the submitted work; (2) E.E.N has no	
relationships with Cyprus Ministry of Commerce, Industry and Tourism, or PLUPA Medical	
Ltd. that might have an interest in the submitted work in the previous 3 years; (3) their	
spouses, partners, or children have no financial relationships that may be relevant to the	
submitted work; and (4) E.E.N has a non-financial interests that may be relevant to the	
submitted work.	Formatted: English (U.S.)
The Corresponding Author has the right to grant on behalf of all authors and does grant on	Formatted: No underline, Font color: Auto, English (U.S.)
behalf of all authors, an exclusive license on a worldwide basis to the BMJ Publishing Group	
Ltd and its Licensees to permit this article (if accepted) to be published in BMJ editions and	
any other BMJPGL products and sublicenses to exploit all subsidiary rights, as set out in our	
license (http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication)."	Formatted: English (U.S.)
Article Summary	
Article focus:	
• The increasing prevalence of Multiple Sclerosis (MS) combined with, the limited efficacy	
and the side effects of the existing treatments urge the clinical need for the development	

of new, innovative, more effective, safe, and preventive treatment strategies.

BMJ Open

For the first time wWe propose three novel nutraceutical treatment interventions original nutraceutical treatment intervention cocktails, formulated based on systems medicine rational through nutritional systems biology-rational; with PLP10 representing the complete composition of the formulation and the other two treatments represent partial formulations.

• We have studied the proposed interventions on 80 relapsing remitting MS patients (four groups of 20 each) for a total of 42 months (including the 12-month extended period), in a randomized, double-blind, placebo-controlled, phase II proof-of-concept clinical trial.

Key messages:

- In this small proof-of-concept randomized double-blind clinical trial, the PLP10 treatment statistically significantly reduced the ARR, and the risk of sustained disability progression without any reported serious adverse events,
- Overall, a total of 41 (51%) patients completed the 30-month trial. For the per-protocol analysis of the two-year-primary end point, 8 relapses were recorded in the PLP10 group (n=10) (0.40 ARR) versus 25 relapses in the placebo group (n=12) (1.04 ARR),we observed -a 64% adjusted relative rate reduction for the PLP10 group (RRR 0.36, 95% CI 0.15 to 0.87, p=0.024). In a subgroup analysis that excluded patients on monoclonal antibody (natalizumab) treatment, the observed adjusted RRR became stronger (72%) over the two years (RRR 0.28, 95% CI 0.10 to 0.79, p=0.016). Per-protocol analysis for the secondary outcome at two years, time to disability progression, was significantly longer only with PLP10. The cumulative probability of disability progression at two years was 10% in the PLP10 group and 58% in the placebo group (unadjusted log-rank p=0.019). In a subgroup analysis that excluded patients on natalizumab the cumulative probability of progression was 10% for the 10 patients in the PLP10 group and 70% for

Formatted: No underline, Font color: Auto, Not Highlight

Formatted: Not Highlight

4 5				
6 7		the 12 patients in the placebo group, a relative 86% decrease in the risk of sustained		
, 8 9		progression of disability in the PLP10 group (unadjusted log rank p=0.006; adjusted		
10 11		hazard ratio, 0.11; 95% CI 0.01 to 0.97, p=0.047).		
12 13		• PLP10's ingredients formulation (specific PUFA, MUFA, SFA, gamma tocopherol,		Formatted: No underline, English (U.K.), Not Highlight
14		vitamin E and vitamin A), has probably the ability to interfere with the repertoire of	N.	Formatted: No underline, Not Highlight
15 16				Formatted: Indent: Left: 0.06", Hanging: 0.19", Space After: 0 pt
17		mechanisms involved in MS pathogenesis as well as with the recovery mechanisms,		
18 19		neuroprotection and remyelination.	`	Formatted: English (U.S.), Not Highlight
20		• This proof of concept clinical study might be indicative of new treatment approach*		Formatted: No underline, Not Highlight
21		•		Formatted: Space After: 0 pt, Pattern: Clear
22 23		(holistic) of chronic complex multifactorial diseases and especially of MS_prevention_and_		(Text 2) Formatted: Font: No underline, English (U.K.), Not Highlight
24 25		treatment and of a new epoch of novel drug development.		Formatted: Font: English (U.K.), Not Highlight
26		•		Formatted: Font: English (U.K.)
27 28 29		Strengths and limitations of this study:		Formatted: List Paragraph, Indent: Left: 0.06", Hanging: 0.19", Space After: 0 pt, Bulleted + Level: 1 + Aligned at: 0.25" + Indent at: 0.5", Pattern: Clear (Text 2)
30		• The randomisation, blinding, the use of placebo, the definite inclusion/exclusion criteria		Formatted: Font: No underline, English (U.K.)
31 32		and primary/secondary end points, along with the 30 month duration of the study, as well		Formatted: Indent: Left: 0.25", Space After: 0 pt, No bullets or numbering
33 34		as the inclusion of a 6-month normalisation (chronotherapy) period allow for an		Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto
35 36		appropriate overview of the safety and efficacy of the assessed interventions.		Formatted: Indent: Left: 0.06", Hanging: 0.19", Space After: 0 pt, Bulleted + Level: 1 + Aligned at: 0.5" + Indent at: 0.75"
37 38		• The small sample size and the high rate of drop-outs (due to the palatability of the		Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto
39 40		formula) are the limitations associated with the present study.		Formatted: Font: (Default) Times New Roman, 12 pt, No underline
41 42		•		Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto
43	985		11	Formatted: Font: (Default) Times New Roman, 12 pt
44 45				Formatted: Font: (Default) Times New Roman, 12 pt, No underline, Font color: Auto
46	986			Formatted: Font: English (U.K.)
47 48			, , ,	Formatted: Font: (Default) +Body (Calibri), 11 pt, English (U.K.)
49 50	987			Formatted: List Paragraph, Left, Space After: 0 pt, Line spacing: single
51 52 53 54 55 56 57 58 59 60	988			48

989		
990		
991		
992		
002		
993		
994	References	
995	1. Baranzini SE, Oksenberg JR, Hauser SL. New insights into the genetics of multiple	Formatted: No underline, Font color: Auto, English (U.S.)
996	sclerosis. Journal of Rehabilitation Research and Development 2002;39:201-210,	Formatted: English (U.S.)
997	2. Goni J, Esteban FJ, de Mendizabal NV, et al. A computational analysis of protein-	Formatted: No underline, Font color: Auto, English (U.S.)
998	protein interaction networks in neurodegenerative diseases. BMC Syst Biol	
000	2008-2-52	Formatted: English (U.S.)
555	2000,2.32	
000	3. Lobo I. Multifactorial inheritance and genetic disease. Nature Education 2008; 1.	Formatted: No underline, Font color: Auto, English (U.S.)
001	4. Compston A, Coles A. Multiple sclerosis. Lancet 2002;359:1221,	Formatted: English (U.S.)
		Formatted: No underline, Font color: Auto, English (U.S.)
002	5. Evans PH. Free radicals in brain metabolism and pathology. British Medical Bulletin	Formatted: English (U.S.)
003	1993;49:577-587.	Formattade No underline Font colory Auto
		Formatted: No underline, Font color: Auto, English (U.S.)
004		Formatted: No Underline, Font color: Auto, English (U.S.)
004	6. Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto,
004 005		English (U.S.) Formatted: English (U.S.)
	6. Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto,
005	6. Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci 1997;27:11-25.	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.)
005 006	 Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci 1997;27:11-25, Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV. The link between excitotoxic oligodendroglial death and demyelinating diseases. 	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto,
005 006 007	 Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci 1997;27:11-25, Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez 	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
005 006 007	 Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci 1997;27:11-25, Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV. The link between excitotoxic oligodendroglial death and demyelinating diseases. 	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
005 006 007	 Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci 1997;27:11-25, Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV. The link between excitotoxic oligodendroglial death and demyelinating diseases. 	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
005 006 007	 Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci 1997;27:11-25, Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV. The link between excitotoxic oligodendroglial death and demyelinating diseases. 	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
005 006 007	 Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci 1997;27:11-25, Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV. The link between excitotoxic oligodendroglial death and demyelinating diseases. 	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
005 006 007	 Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci 1997;27:11-25, Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV. The link between excitotoxic oligodendroglial death and demyelinating diseases. 	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.)
005 006 007	 Knight J. Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci 1997;27:11-25, Matute C, Alberdi E, Domercq M, Pérez-Cerdá F, Pérez-Samartín A, Sánchez-Gómez MV. The link between excitotoxic oligodendroglial death and demyelinating diseases. 	English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.) Formatted: No underline, Font color: Auto, English (U.S.) Formatted: English (U.S.)
	990 991 992 993 994 995 996 997 998 999 999 900 000	 References I. Baranzini SE, Oksenberg JR, Hauser SL. New insights into the genetics of multiple sclerosis. Journal of Rehabilitation Research and Development 2002;39:201-210, Goni J, Esteban FJ, de Mendizabal NV, et al. A computational analysis of protein- protein interaction networks in neurodegenerative diseases. BMC Syst Biol 2008;2:52, Lobo I. Multifactorial inheritance and genetic disease. Nature Education 2008; 1, Compston A, Coles A. Multiple sclerosis. Lancet 2002;359:1221, Evans PH, Free radicals in brain metabolism and pathology. British Medical Bulletin

3 4				
5 6 7	1009	8.	Owens T. The enigma of multiple sclerosis: inflammation and neurodegeneration	Formatted: No underline, Font color: Auto, English (U.S.)
8 9	1010		cause heterogeneous dysfunction and damage. Current Opinion in Neurology	
10 11	1011		2003;16:259-265	Formatted: English (U.S.)
12 13	1012	9	Smith KJ, Kapoor R, Felts PA. Demyelination: The role of reactive oxygen and	Formatted: No underline, Font color: Auto, English (U.S.)
14 15	1013		nitrogen species. Brain Pathology 1999;9:69-92,	Formatted: English (U.S.)
16 17	1014	10.	Ahn AC, Tewari M, Poon C-S, Phillips RS. The Clinical Applications of a Systems	Formatted: No underline, Font color: Auto, English (U.S.)
18 19	1015		Approach. PLoS Med 2006;3:e209,	Formatted: English (U.S.)
20 21	1016	11.	van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF. Antioxidants and	Formatted: No underline, Font color: Auto, English (U.S.)
	1017		polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 2005;59:1347-1361	Formatted: English (U.S.)
24	1018	12.	Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases.	Formatted: No underline, Font color: Auto, English (U.S.)
25 26	1019		The American Journal of Clinical Nutrition 2006;83:S1505-1519S.	Formatted: English (U.S.)
27 28	1020	13.	Piani D, Fontana A. Involvement of the cystine transport system xc- in the	Formatted: No underline, Font color: Auto, English (U.S.)
29 30	1021		macrophage- induced glutamate-dependent cytotoxicity to neurons. The Journal of	
31 32	1022		Immunology 1994;152:3578-3585	Formatted: English (U.S.)
33 34	1023	14.	Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health	Formatted: No underline, Font color: Auto, English (U.S.)
35 36	1024		implications. International Journal of Developmental Neuroscience 2000;18:383-399,	Formatted: English (U.S.)
37 38	1025	15.	Calder PC. Dietary modification of inflammation with lipids. Proceedings of the	Formatted: No underline, Font color: Auto, English (U.S.)
39 40	1026		Nutrition Society 2002;61:345-358.	Formatted: English (U.S.)
41 42	1027	16.	Gil Á. Polyunsaturated fatty acids and inflammatory diseases. Biomedecine &	Formatted: No underline, Font color: Auto, English (U.S.)
43 44	1028		Pharmacotherapy 2002;56:388-396.	Formatted: English (U.S.)
45 46	1029	17.	Ariel A, Serhan CN. Resolvins and protectins in the termination program of acute	Formatted: No underline, Font color: Auto, English (U.S.)
47 48	1030		inflammation. Trends in Immunology 2007;28:176-183	Formatted: English (U.S.)
49 50	1031	18.	Arita M, Ohira T, Sun Y-P, Elangovan S, Chiang N, Serhan CN. Resolvin El	Formatted: No underline, Font color: Auto, English (U.S.)
51 52	1032		selectively interacts with leukotriene B4 receptor BLT1 and chemR23 to regulate	
53 54	1033		inflammation. The Journal of Immunology 2007;178:3912-3917	Formatted: English (U.S.)
55 56		I		
57				50

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3				
4 5				
6 7	1034	19.	Janakiram NB, Rao CV. Role of Lipoxins and Resolvins as Anti-Inflammatory and	Formatted: No underline, Font color: Auto, English (U.S.)
8 9	1035		Proresolving Mediators in Colon Cancer. Current Molecular Medicine 2009;9:565-	
10 11	1036		579.	- Formatted: English (U.S.)
12 13	1037	20.	Serhan C, Arita M, Hong S, Gotlinger K. Resolvins, docosatrienes, and	Formatted: No underline, Font color: Auto, English (U.S.)
14 15	1038		neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-	
16 17	1039		triggered epimers. Lipids 2004;39:1125-1132	Formatted: English (U.S.)
18 19	1040	21.	Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-	Formatted: No underline, Font color: Auto, English (U.S.)
20 21	1041		inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008;8:349-361	Formatted: English (U.S.)
22 23	1042	22.	Rossetti RG, Seiler C, DeLuca P, Laposata M, Zurier R. Oral administration of	Formatted: No underline, Font color: Auto, English (U.S.)
24	1043		unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation.	
25 26	1044		Journal of Leukocyte Biology 1997;62:438-443,	Formatted: English (U.S.)
27 28	1045	23.	Vatassery G. Vitamin E and other endogenous antioxidants in the central nervous	Formatted: No underline, Font color: Auto, English (U.S.)
29 30	1046		system. Geriatrics 1998a;53:S25–S27	Formatted: English (U.S.)
31 32	1047	24.	Fukuzawa K, Gebicki JM. Oxidation of [alpha]-tocopherol in micelles and liposomes	Formatted: No underline, Font color: Auto, English (U.S.)
33 34	1048		by the hydroxyl, perhydroxyl, and superoxide free radicals. Archives of Biochemistry	
35 36	1049		and Biophysics 1983;226:242-251	Formatted: English (U.S.)
37 38	1050	25.	Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames	Formatted: No underline, Font color: Auto, English (U.S.)
39 40	1051		BN. γ -Tocopherol traps mutagenic electrophiles such as NOx and complements α -	Formatted: No underline, Font color: Auto, English (U.S.)
41 42	1052		tocopherol: Physiological implications. Proceedings of the National Academy of	Formatted: No underline, Font color: Auto, English (U.S.)
43 44	1053		Sciences of the United States of America 1997;94:3217-3222	Formatted: English (U.S.)
45 46	1054	26.	Brigelius-Flohé R, Kelly FJ, Salonen JT, Neuzil J, Zingg J-M, Azzi A. The European	Formatted: No underline, Font color: Auto, English (U.S.)
47 48	1055		perspective on vitamin E: current knowledge and future research. The American	
49 50	1056		Journal of Clinical Nutrition 2002;76:703-716.	Formatted: English (U.S.)
51 52	1057	27	Calder P. Polyunsaturated fatty acids, inflammatory processes and inflammatory	Formatted: No underline, Font color: Auto, English (U.S.)
53 54	1058		bowel diseases Mol Nutr Food Res 2008;52:885–897	Formatted: English (U.S.)
55		I		
56 57				51
58				

5				
6 7	1059	28.	Edwards IJ, O'Flaherty JT. Omega-3 Fatty Acids and PPARy in Cancer. PPAR	Formatted: No underline, Font color: Auto, English (U.S.)
8 9	1060		Research 2008;2008:1-15.	Formatted: No underline, Font color: Auto, English (U.S.)
10	1061	29.	Groeger AL, Cipollina C, Cole MP, et al. Cyclooxygenase-2 generates anti-	Formatted: English (U.S.)
11 12		<u> </u>		Formatted: No underline, Font color: Auto, English (U.S.)
13	1062		inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 2010;6:433-441	- Formatted: English (U.S.)
14 15	1063	30	Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related	Formatted: No underline, Font color: Auto, English (U.S.)
16 17	1064		decreases in nuclear receptors and increase neurogenesis in old rats. Journal of	
18 19	1065		Neuroscience Research 2010;88:2091-2102,	- Formatted: English (U.S.)
20 21	1066	31.	McNamara RK. DHA Deficiency and Prefrontal Cortex Neuropathology in Recurrent	Formatted: No underline, Font color: Auto, English (U.S.)
22 23	1067		Affective Disorders. The Journal of Nutrition 2010;140:864-868	Formatted: English (U.S.)
24 25	1068	32.	Salvati S, Natali F, Attorri L, et al. Eicosapentaenoic acid stimulates the expression of	Formatted: No underline, Font color: Auto, English (U.S.)
26 27	1069		myelin proteins in rat brain. Journal of Neuroscience Research 2008;86:776-784,	Formatted: English (U.S.)
28	1070	33	Abraham M, Shapiro S, Karni A, Weiner HL, Miller A. Gelatinases (MMP-2 and	Formatted: No underline, Font color: Auto, English (U.S.)
29 30	1071		MMP-9) are preferentially expressed by Th1 vs. Th2 cells. Journal of	
31 32	1072		Neuroimmunology 2005;163:157-164,	- Formatted: English (U.S.)
33 34	1073	34.	C ffrench-Constant. Pathogenesis of multiple sclerosis. The Lancet 1994;343:271-	- Formatted: No underline, Font color: Auto, English (U.S.)
35 36	1074		275	- Formatted: English (U.S.)
37 38	1075	35	Leppert D, Lindberg RLP, Kappos L, Leib SL. Matrix metalloproteinases:	- Formatted: No underline, Font color: Auto, English (U.S.)
39 40	1076		multifunctional effectors of inflammation in multiple sclerosis and bacterial	
41 42	1077		meningitis. Brain Research Reviews 2001;36:249-257,	- Formatted: English (U.S.)
43 44	1078	36.	Curtis CL, Rees SG, Cramp J, et al. Effects of n-3 fatty acids on cartilage metabolism.	- Formatted: No underline, Font color: Auto, English (U.S.)
45 46	1079		Proceedings of the Nutrition Society 2002;61:381-389,	- Formatted: English (U.S.)
47 48	1080	37.	Harris MA, Hansen RA, Vidsudhiphan P, et al. Effects of conjugated linoleic acids	Formatted: No underline, Font color: Auto, English (U.S.)
49 50	1081		and docosahexaenoic acid on rat liver and reproductive tissue fatty acids,	
51 52	1082		prostaglandins and matrix metalloproteinase production. Prostaglandins, Leukotrienes	
53	1083		and Essential Fatty Acids 2001;65:23-29	Formatted: English (U.S.)
54 55	I			
56				
57				

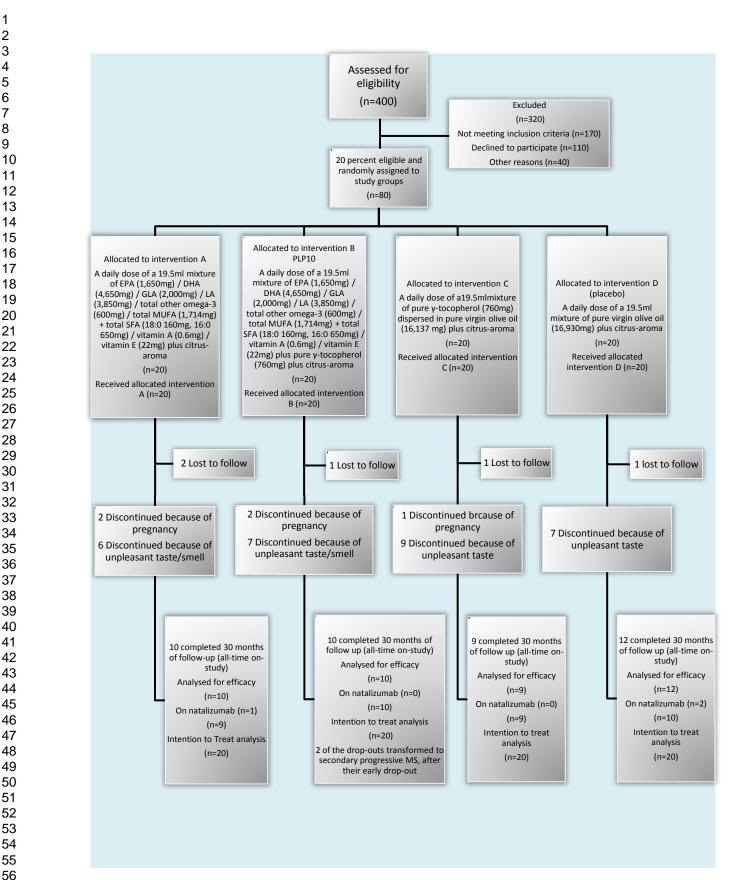
2 3			
4 5			
6 7	1084	38. McCabe A, Wallace J, Gilmore W, Strain J, McGlynn H. The effect of	 Formatted: No underline, Font color: Auto, English (U.S.)
8 9	1085	eicosapentanoic acid on matrix metalloproteinase gene expression. Lipids	
10 11	1086	1999;34:S217-S218.	 Formatted: English (U.S.)
12 13	1087	39. Shinto L, Marracci G, Bumgarner L, Yadav V. The Effects of Omega-3 Fatty Acids	 Formatted: No underline, Font color: Auto, English (U.S.)
14 15	1088	on Matrix Metalloproteinase-9 Production and Cell Migration in Human Immune	
16 17	1089	Cells: Implications for Multiple Sclerosis. Autoimmune Diseases 2011;2011	 Formatted: English (U.S.)
18 19	1090	40. Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and	 Formatted: No underline, Font color: Auto, English (U.S.)
	1091	healthcare. Genome Med 2009;1:2,	 Formatted: English (U.S.)
	1092	41. Huang WL, King VR, Curran OE, et al. A combination of intravenous and dietary	 Formatted: No underline, Font color: Auto, English (U.S.)
24	1093	docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain	
-	1094	2007;130:3004-3019	 Formatted: English (U.S.)
27 28	1095	42. Marangoni F, Angeli MT, Colli S, et al. Changes of n – 3 and n – 6 fatty acids in	 Formatted: No underline, Font color: Auto, English (U.S.)
29 30	1096	plasma and circulating cells of normal subjects, after prolonged administration of 20:5	
31 32	1097	(EPA) and 22:6 (DHA) ethyl esters and prolonged washout. Biochimica et Biophysica	
33 34	1098	Acta (BBA) - Lipids and Lipid Metabolism 1993;1210:55-62,	 Formatted: English (U.S.)
35 36	1099	43. Martínez M, Vázquez E, García-Silva MT, et al. Therapeutic effects of	 Formatted: No underline, Font color: Auto, English (U.S.)
37 38	1100	docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders1.	
39 40	1101	The American Journal of Clinical Nutrition 2000;71:376S-385S,	 Formatted: English (U.S.)
41 42	1102	44. Committee for medicinal products for human use. Guideline on clinical trials in small	 Formatted: No underline, Font color: Auto, English (U.S.)
43 44	1103	populations In: European Medicines Agency, 2006: 1-10,	 Formatted: English (U.S.)
4 -	1104	45. Gerard E Dallal. The Little Handbook of Statistical Practice. [online]. Available at	 Formatted: No underline, Font color: Auto, English (U.S.)
	1105	URL . Accessed Date Accessed, Year ,	 Formatted: English (U.S.)
49	1106	46. Wang YC, Meyerson L, Tang YQ, Qian N. Statistical methods for the analysis of	 Formatted: No underline, Font color: Auto, English (U.S.)
	1107	relapse data in MS clinical trials. Journal of the Neurological Sciences 2009;285:206-	
	1108	211,	 Formatted: English (U.S.)
54 55 56 57 58 59 60	I		53

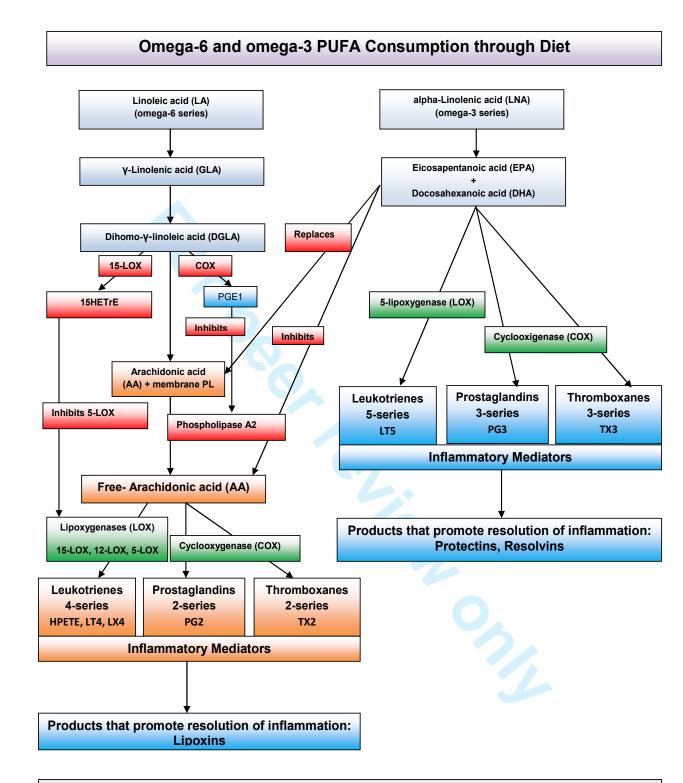
4 5				
6 7	1109	47.	Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial	Formatted: No underline, Font color: Auto, English (U.S.)
8 9	1110		of natalizumab for relapsing multiple sclerosis. The New England Journal of	
10 11	1111		Medicine 2006;354:899-910.	Formatted: English (U.S.)
12 13	1112	48.	Kappos L, Radue E-W, O'Connor P, et al. A Placebo-Controlled Trial of Oral	Formatted: No underline, Font color: Auto,
14 15	1113		Fingolimod in Relapsing Multiple Sclerosis. New England Journal of Medicine	English (U.S.)
16	1114		2010;362:387-401	Formatted: English (U.S.)
17 18	1115	49.	Cunnane S, Ho S, Dore-Duffy P, Ells K, Horrobin D. Essential fatty acid and lipid	Formatted: No underline, Font color: Auto,
19 20	1116		profiles in plasma and erythrocytes in patients with multiple sclerosis. The American	English (U.S.)
21 22	1117		Journal of Clinical Nutrition 1989;50:801-806,	Formatted: English (U.S.)
23 24	1118	50.	Harbige LS, Sharief MK. Polyunsaturated fatty acids in the pathogenesis and	Formatted: No underline, Font color: Auto,
25	1119	•	treatment of multiple sclerosis. British Journal of Nutrition 2007;98:S46-S53,	English (U.S.)
27 28	1120	51.	Wilson R, Tocher D. Lipid and fatty acid composition is altered in plaque tissue from	Formatted: No underline, Font color: Auto,
29	1120	× <u>-</u>	multiple sclerosis brain compared with normal brain white matter. Lipids 1991;26:9-	English (U.S.)
30 31				
32 33	1122		15	Formatted: English (U.S.)
34	1123	52	Rafat AS, Saame RS, Laura AS, Heidi RY, William S, Gary PZ. Omega 3-Fatty	Formatted: No underline, Font color: Auto, English (U.S.)
35 36	1124		Acids: Health Benefits and Cellular Mechanisms of Action. Mini Reviews in	
37 38	1125		Medicinal Chemistry 2004;4:859-871.	Formatted: English (U.S.)
39 40	1126	53	Shaikh SR, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells,	Formatted: No underline, Font color: Auto, English (U.S.)
41 42	1127		and antigen presentation. The American Journal of Clinical Nutrition 2006;84:1277-	
43 44	1128		1289.	
45	1129	54.	Lajtha A, Toth J, Fujimoto K, Agrawal CH. Turnover of Myelin Proteins in Mouse	Formatted: No underline, Font color: Auto,
46 47	1130		Brain in vivo. Biochem J 1977;164:323-329	English (U.S.) Formatted: English (U.S.)
	1131	55	LeBaron FN, Sanyal S, Jungalwala FB. Turnover rate of molecular species of	Formatted: No underline, Font color: Auto,
50 51	1132		sphingomyelin in rat brain. Neurochemical Research 1981;6:1081-1089.	English (U.S.)
52 53				·
54				
55				

BMJ Open

2 3			
4			
5 6			
6 7	1133	56. Yao JK. Increased polyunsaturated fatty acids in developing and regenerating	Formatted: No underline, Font color: Auto, English (U.S.)
8 9	1134	peripheral nerve. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid	
10 11	1135	Metabolism 1982;712:542-546.	Formatted: English (U.S.)
12 13	1136	57. Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a	Formatted: No underline, Font color: Auto, English (U.S.)
14 15	1137	narrative review. Complement Ther Med 2011;19:228-237.	- Formatted: English (U.S.)
16 17	1138	58. Farinotti M, Simi S, Di Pietrantonj C, McDowell N, et al. Dietary interventions for	Formatted: No underline, Font color: Auto, English (U.S.)
18 19	1139	multiple sclerosis (Review), the Cohrane Library 2007, issue I.	
20 21	1140	Figure legends	- Formatted: English (U.S.)
22			
23 24	1141	Figure 1. Study Flowchart	Formatted: No underline, Font color: Auto, English (U.S.)
25 26	1142	Figure 2. Omega-6 and omega-3 PUFA, their respective metabolic derivatives and their	Formatted: English (U.S.)
27		/	Formatted: No underline, Font color: Auto, English (U.S.)
28	1143	possible effects on inflammation.	Formatted: English (U.S.)
29 30	1144	After consumption the DUFAs are metabolized via several nethypus (not shown) to active	Formatted: No underline, Font color: Auto, English (U.S.)
31	1144	After consumption, the PUFAs are metabolized via several pathways (not shown) to active	Formatted: No underline, Font color: Auto, English (U.S.)
32 33	1145	compounds that mediate inflammation and products that promote resolution of inflammation. \mathbf{L}'	Formatted: No underline, Font color: Auto, English (U.S.)
34 35 36	1146	Abbreviations: PL, phospholipid; IFN-y, interferon y; IL-2, interleukin 2; NFKB, nuclear	Formatted: No underline, Font color: Auto, English (U.S.)
37	1147	factor kappa B; PGE2, prostaglandin E2; PPARy, peroxisome proliferator-activated receptor	Formatted: No underline, Font color: Auto, English (U.S.)
38 39	1148	γ ; PUFAs, polyunsaturated fatty acids; TGF β , transforming growth factor β ; TNF, tumor	Formatted: No underline, Font color: Auto, English (U.S.)
40 41			English (U.S.)
42	1149	necrosis factor; COX, cyclooxygenase; hydroxyeicosatetraenoic acid; HPETE,	Formatted: No underline, Font color: Auto, English (U.S.)
43 44	1150	hydroperoxyeicosatetraenoic acid; LOX, lipoxygenase; LT, leukotriene; PG, prostaglandin;	Formatted: Font: 11 pt, No underline, Font color: Auto, English (U.S.)
45 46	1151	TX, thromboxane; RXR-γ, retinoid X receptor-gamma; Nrf2, nuclear respiratory factor;	Formatted: No underline, Font color: Auto, English (U.S.)
47 48	1152	MMP, metalloproteinase,	Formatted: No underline, Font color: Auto, English (U.S.)
40 49			Formatted: English (U.S.)
50	1153	Figure 3. Panel A demonstrates the ARR of all-time on-study patients during the 24mo pre-	Formatted: No underline, Font color: Auto, English (U.S.)
51 52	1154	treatment (baseline ARR) and at different on-study intervals (6, 12, 18, 24 mo) per treatment	Formatted: No underline, Font color: Auto, English (U.S.)
53 54	1155	arm. **	Formatted: No underline, Font color: Auto, English (U.S.)
55			Formatted: English (U.S.)
56			
57			55
58 59			

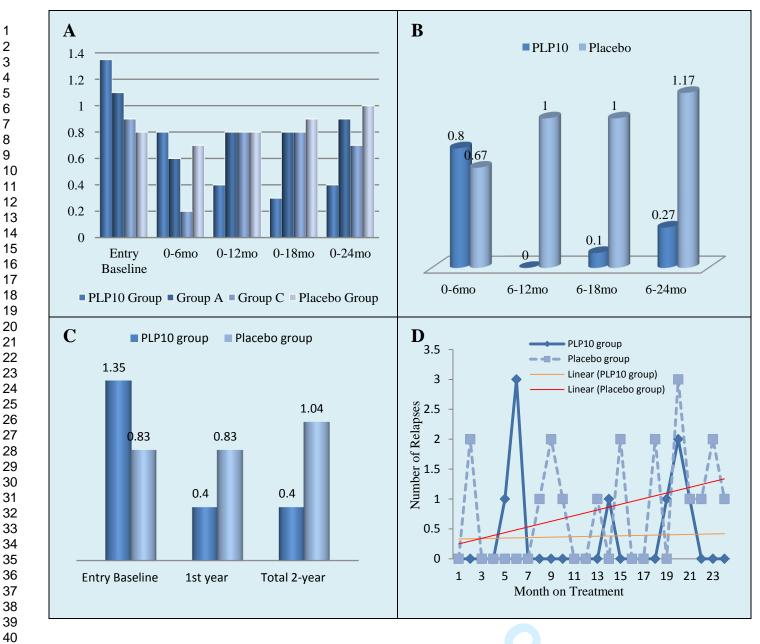
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

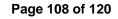

1	
2 3	
4	
5	
6	11
7 8	11.
9	11
10	
11	11
12 13	
14	11
15	
16	11(
17 18	11(
19	
20	11(
21	116
22 23	11,
23 24	11(
25	116
26	110
27 28	116
20 29	110
30	
31	11(
32 33	11(
34	
35	11(
36	11
37 38	
39	11
40	11
41	
42 43	11
44	
45	11
46	11
47 48	11.
49	11
50	4.4-
51	11
52 53	
54	
55	
56	
57 58	
58 59	
60	

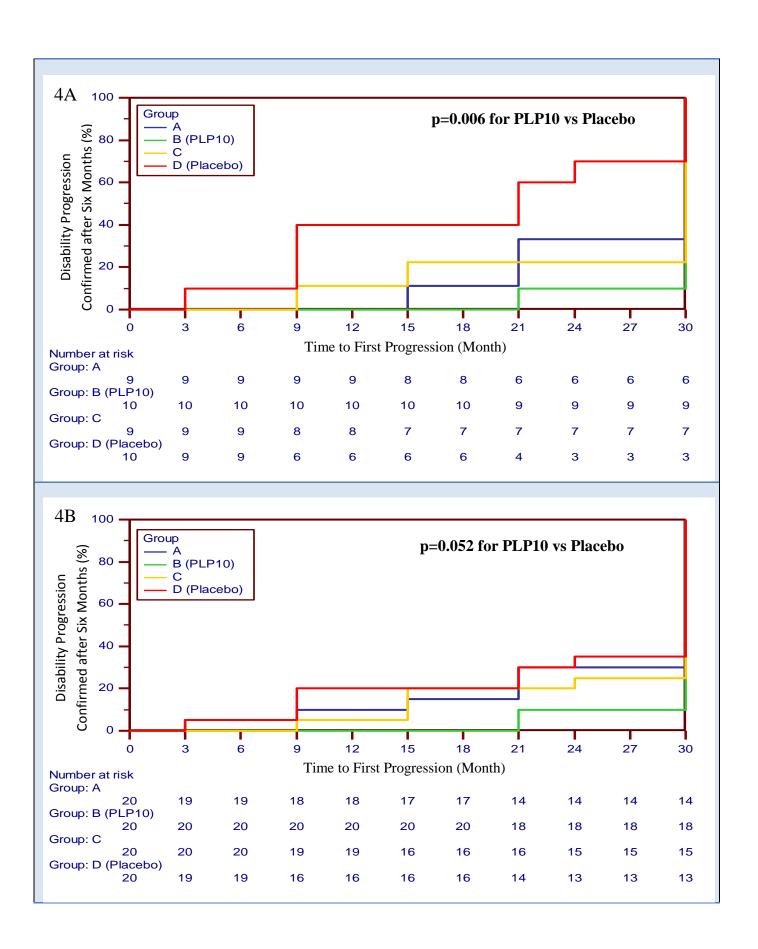

56	Panel B demonstrates the ARR of all-time on-study population between 0-6, 6-12, 6-18, and		Formatted: No underline, Font color: Auto, English (U.S.)
57	6-24 mo period intervals, of PLP10 vs. placebo group, **		Formatted: No underline, Font color: Auto, English (U.S.)
58	Panel C demonstrates the ARR of all-time on-study population of PLP10 vs. placebo group at		Formatted: No underline, Font color: Auto, English (U.S.)
		S. 1	Formatted: English (U.S.)
59	baseline, during 1 st year, and during the 2-year on-treatment. **		Formatted: No underline, Font color: Auto, English (U.S.)
60	Panel D demonstrates the dispersion of relapses throughout the 2-year period of all-time on-		Formatted: No underline, Font color: Auto, English (U.S.)
61	study (excluding patients on natalizumab) of PLP10 (n=10) vs. placebo (n=10). Placebo		Formatted: No underline, Font color: Auto, English (U.S.)
62	shows an irregular dispersion of relapses in relation to PLP10 group with linear increasing		
63	trend wile PLP10 shows a stabilized linear trend. By using the per-protocol model where		
64	patients on natalizumab were excluded, we could compare the number of relapses on a same		
65	number of patients.		Formatted: English (U.S.)
66	** Including the patients on natalizumab.		Formatted: No underline, Font color: Auto, English (U.S.)
			Formatted: English (U.S.)
67	Figure 4. Panel 4A demonstrates the Kaplan–Meier plot of the time to sustained progression	. – – -	Formatted: No underline, Font color: Auto, English (U.S.)
68	of disability among all-time on-study patients, excluding patients on natalizumab, receiving		
69	intervention A, PLP10 and C as compared with placebo. PLP10 reduced the risk of sustained		
70	progression of disability by 86% over two years (p=0.006). Intervention formula A reduced		
71	the risk of sustained progression of disability by 53% (p=0.266) and intervention formula C		
72	by 67% (p=0.061),		Formatted: English (U.S.)
73	Panel 4B demonstrates the Kaplan–Meier plot of the time to sustained progression of		Formatted: No underline, Font color: Auto, English (U.S.)
74	disability among ITT population receiving intervention A, PLP10 and C as compared with		
75	placebo. PLP10 reduced the risk of sustained progression of disability by 71% over two years		
76	(p=0.052, trend). Intervention formula A reduced the risk of sustained progression of		
77	disability by 22% (p=0.727) and intervention formula C by 40% (p=0.447),		Formatted: English (U.S.)

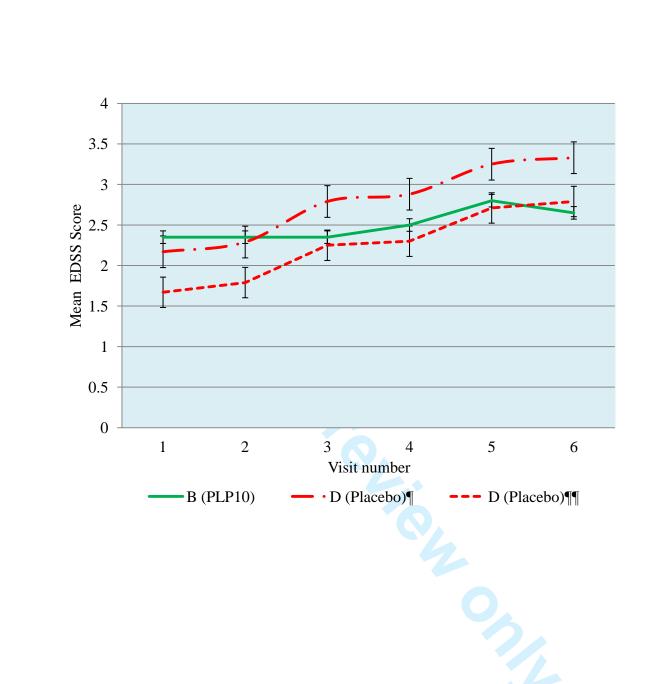
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4			
4 5 6 7	1178	Figure 5. Mean change in expanded disability status scale score as a function of visit	Formatted: No underline, Font color: Auto,
8	1179	number. Values are expressed as mean \pm standard error of the mean (s.e.m.)	English (U.S.)
9 10	1179	number. Wattes are expressed as mean <u>- standard error of the mean s</u> .e.m.	English (U.S.)
11	1180	Including patients on natalizumab	Formatted: No underline, Font color: Auto, English (U.S.)
12 13			Formatted: No underline, Font color: Auto, English (U.S.)
14	1181	M Excluding patients on natalizumab	Formatted: English (U.S.)
15 16			Formatted: No underline, Font color: Auto, English (U.S.)
17	1182		Formatted: English (U.S.)
18			Formatted: No underline, Font color: Auto, English (U.S.)
19 20			Formatted: English (U.S.)
$\begin{array}{c} 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 1\\ 42\\ 43\\ 44\\ 56\\ 67\\ 58\\ 59\\ 60\\ \end{array}$		or beer terriew on	


	2/13/2013 4.21.00 PM	
1		
2	2/19/2013 4:21:00 PM	
3		
4 5 6		
5		
6	2/19/2013 4:21:00 PM	
7	1, 19, 2010 4.21.00 114	
3) O		
)		
5		
, }		
9		
C		
1		
2		
3		
ł		
5		
))		
1		
,		
2		
33		
34		
85		
6		
37		
88		
88 89		
40		
1		
2		
43		
4		
5		
, ; ,		
0		




Possible effects on inflammation:


Reduce IFN- γ production; Reduce IL-2 production; Increase TGF β activity; Increase PGE2 activity; Inhibit arachidonic acid; Reduce TNF levels; RXR- γ and PPAR γ agonist; NF κ B expression; stimulate Nrf2; reduce MMP-2, -3, -9, and -13

Supplementary Information

2 Table of Content

Supplementary Section	Page
Supplementary Information Methods 1	2-4
Supplementary Information Methods 2	5-6
Supplementary Information Figure 1	7
Supplementary Information Figure 2	8

Page 111 of 120

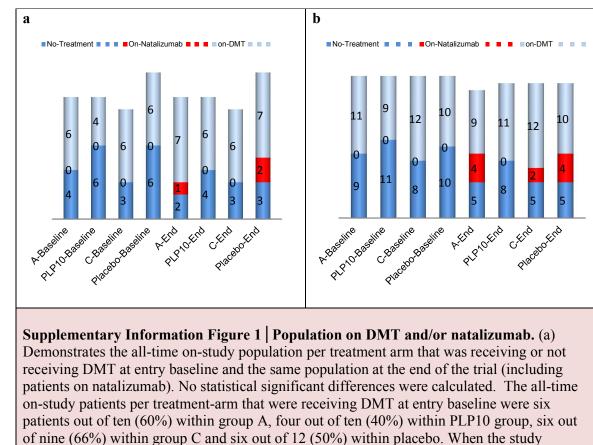
BMJ Open

Supplementary Information Methods 1 Intervention and study rational. We are using high dosage of 1:1 omega-3:omega-6 polyunsaturated (PUFA) aiming to overpass and normalize global diet regional traditions and habits in relation to abnormal PUFA/saturated fatty acids (SFA)/monounsaturated fatty acids (MUFA) daily ratio consumption irrespective of the quantities consumed; and enough to equilibrate patients' diet in line with the recommended more physiologic omega-3:omega-6 ratio of about 1:1-4 wt/wt as reported by Simopoulos, 2002. In addition to correct existing deficiencies, cell membrane abnormalities, specifically of the immunopathological system and blood mononuclear peripheral cells, and high enough for availability and immediate ongoing modulation of the involved pathogenic mechanisms and network of events in MS. The high dosage is also required to overpass the quantity limitations, previously discussed, of diet-consumed PUFAs for cellular incorporation, especially in the central nervous system (CNS) of adults. Additionally, fatty acids (FAs) must first cross the intestinal epithelium before reaching the different tissues, where digestion and absorption constitute further problems in their availability (Carlier, H, 1991). Omega-3 PUFA are used in re-esterified form to eliminate unwanted disturbances, at the sides of action, by other fatty acids and molecules present in crude fish oils but also to increase the bioavailability of the FA since triglycerides have been shown to be associated with much higher bioavailability (Dyerberg et al, 2010). Linoleic (LA) and gamma linolenic acid (GLA) are essential structure molecules and important for any physiological (re)generation of cell membrane. GLA quantity is doubled to LA to ensure high direct production of dihomo-gamma-linolenic acid (DGLA), from GLA when LA cannot be metabolized, due to desaturase deficiency or malfunction. Such a reduced capacity to convert LA to GLA has been associated with aging, diabetes, alcoholism, atopic dermatitis, premenstrual syndrome, rheumatoid arthritis, cancer and cardiovascular diseases (Bolton-Smith et al, 1997; Horrobin, 1990; Leventhal et al, 1993). This is going to result in the increase of DGLA relative to arachidonic acid (AA) with DGLA promoting production of prostaglandin (PG)E1 but also inhibition of phospholipase (PL)A2: two major reasons and rational for their use. If other metabolic problems are involved within the omega-6 series and the normal metabolites are not produced then the eicosapentaenoic acid EPA available in PLP10 will substitute the function of DGLA, as a competitive inhibitor of AA for PLA2. In both cases the pro-inflamatory leucotrienes, prostaglandines of the 2-series (PG2) and thromboxanes of the 2 series including the platelet-activator factor (PAF) will be attenuated. The synthesis of AA from DGLA by $\Delta 5$ desaturase promoted by LA/GLA supplementation is very limited in humans as a result of limited activity of the enzyme (Yang-Yi & Robert, 1998). AA in the body is mostly available through diet. EPA and docosahexaenoic acid (DHA) are both physiologically important and crucial structured molecules able to substitute excess AA and SFA within the cell membranes. EPA will contribute to the inhibition (competitive to AA) of PLA2, joining the co-supplied omega-6 PUFA but will also participate in the production of anti-inflammatory leukotrienes, prostaglandins of the 3-series (PG3) and thromboxane (TX3) along with DHA, both found in the PLP10 intervention. Moreover EPA will replace AA of the membrane phospholipids and both omega-3 PUFA will contribute replacing abnormal quantities of SFA and excess AA. DHA is used in 3:1 ratio to EPA to cover any possible inabilities of EPA to be metabolized, high enough to strongly promote high production of the aforementioned anti-inflammatory

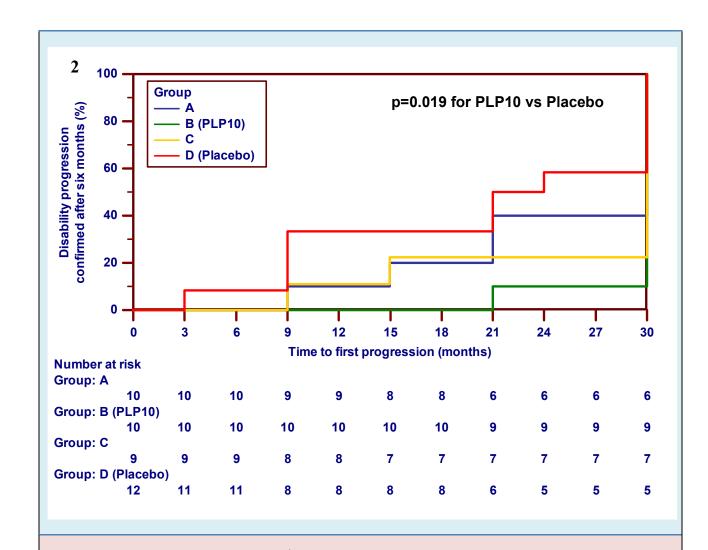
eicosanoids and cytokines and to be incorporated into CNS cell membranes where DHA should be the major PUFA present, replacing other FA, probably saturated and excess of AA. EPA, DHA, LA and GLA along with the rest of the other ingredients used ("other" omega-3 PUFA, SFA and MUFA that are usually found in the cell membranes of healthy people in limited quantities) in the intervention regimen are for their availability as minor structural constituents of physiological cellular membranes integrity, fluidity and overall function as building blocks for myelin repair and/or myelination. Furthermore the PUFA used within the cocktail intervention aimed to manipulate all other pathophysiological pathways that are reported to be able to: as previously discussed including gene transcription for neuroprotection and remyelination. Furthermore, PUFA are used to ensure the integrity of blood brain barrier (BBB) and to modulate the gelatinases responsible for the T cell migration within the CNS. Three different antioxidant vitamins (vitamin E, mostly as alpha-tocopherol, gamma (γ)-tocopherol (vitamin E isoform) and vitamin A) are used in the regimen preparation to support the cellular antioxidant defenses but also to protect peroxidation of the supplied increased amounts of PUFA. Alpha-tocopherol low-molecular-weight antioxidants will contribute to radical scavenging, interfering with gene transcription, protein expression, enzyme activity and metal chelation (van Meeteren et al, 2005). Vitamin E (alpha tocopherol) and vitamin A are used as antioxidants for the protection of the excess supplemented PUFA, with alpha-tocopherol been demonstrated to protect against peroxynitrite-induced oxidative damage, as well as able to efficiently detoxify hydroxyl, perhydroxyl and superoxide free radicals (the elevated reactive oxygen species (ROS)); each one with different mechanism of action, increasing the effect capability (Vatassery et al, 1998b; van Meeteren, 2005). Gamma-tocopherol is used in high dosage since its half life is very short compared to alpha-tocopherol and has been demonstrated to specifically protect against nitro-radicals. Tocopherols can also exert non-antioxidant properties, including modulation of cell signaling and immune function, regulation of transcription, and induction of apoptosis as previously discussed (van Meeteren et al, 2005). PLP10 is the first preparation ever developed for MS therapy that is composed by the use of all different previously discussed PUFA, MUFA, SFA in a cocktail preparation mixed with the specific aforementioned antioxidant vitamins that have never been all together used before within a specific formulation. The ingredients ratio, quality, structural form and mostly the high dosage has never been before tested. Furthermore, the knowledge and chronotherapy as well as other unique limitations associated with the individual molecules used, have never been accounted, discussed, proposed or reported for any previous therapeutic regimen. Through systems medicine therapeutic philosophy, by the use of PLP10, potentially MS patients have the opportunity to be treated holistically, by natural source isolated molecules, demonstrated as able of affecting and modulating all known pathophysiological, immunopathological, habitual, gene related factors; thus the dynamic interconnected complex

- 116 Infinutiopathological, habitual, gene related factors, thus the dynamic interconnected complex 117 network of events simultaneously. Possibly synergistic effects between PLP10 ingredients are
- also feasible. Moreover we can speculate that treatment efficacy of PLP10, when used as

BMJ Open


2		
3 4	119	adjunct to existing pharmaceuticals produced by reductionism, can be proven therapeutically
5	120	superior to any available treatment for MS.
6	121	
7		
8 9	122	Bolton-Smith C, Woodward M, Tavendale R (1997) Evidence for age-related differences in
9 10	123	the fatty acid composition of human adipose tissue, independent of diet. <i>European Journal of</i>
11	124	Clinical Nutrition 51: 619-624
12	125	
13	126	Carlier H, Bernard A, Caselli C (1991) Digestion and absorption of polyunsaturated fatty
14 15	127	acids. Reproduction, nutrition, development 31: 475-500
16		
17	128	Developer I. Madave D. Mallan IM. Acadastran I. Sahari & ED. (2010) Discoveilability of
18	129	Dyerberg J, Madsen P, Møller JM, Aardestrup I, Schmidt EB (2010) Bioavailability of marine n 3 fatty gold formulations. <i>Prostaglanding, laukatriange, and assential fatty gold</i> 83:
19	130 131	marine n-3 fatty acid formulations. <i>Prostaglandins, leukotrienes, and essential fatty acids</i> 83: 137-141
20 21	121	137-141
21	132	
23	133	Horrobin DF (1990) Gamma-linolenic acid. Rev Contemp Physiol 1: 1-41
24		
25	134	Lowenthal LL Dovice EC. Zurian BD (1992) Treatment of the sum staid on thritis with
26	135	Leventhal LJ, Boyce EG, Zurier RB (1993) Treatment of rheumatoid arthritis with
27 28	136	gammalinolenic acid. Annals of Internal Medicine 119: 867-873
29	137	
30	138	Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids.
31	139	Biomedecine & Pharmacotherapy 56: 365-379
32	1.10	
33 34	140	van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF (2005) Antioxidants and
35	141 142	polyunsaturated fatty acids in multiple sclerosis. <i>Eur J Clin Nutr</i> 59 : 1347-1361
36	142	poryunsaturated faity acids in multiple seletosis. Eur 5 Cun Mur 57, 1547-1501
37	143	
38	144	Yang-Yi F, Robert SC (1998) Importance of Dietary g-Linolenic acid in human health and
39 40	145	nutrition. <i>The Journal of Nutrition</i> 128: 1411-1414
40	146	
42	140	Vatassery GT, Smith WE, Quach HT (1998b) Alpha-tocopherol in rat brain subcellular
43	148	fractions is oxidized rapidly during incubations with low concentrations of peroxynitrite.
44	149	Journal of Nutrition128:152–157.
45 46	150	
40	151	
48	152	
49	153	
50	155	
51 52		
53	155	
54	156	
55	157	
56 57	158	
57 58	159	
59		
60		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open


Supplementary Information Methods 2 Interventions specifications. The specific omega-3 (re-esterified glycerides) and omega-6 (glycerides) raw materials were purchased according to the required interventions' PUFAfraction specification (molecular structure, quantity/ratio and quality) with vitamin E (alpha-tocopherol) used as antioxidant stabilizer by the supplier. The vitamins and masking aroma were purchased separately. The mixing of fractions to the final required intervention-composition specification was always performed by the same team of scientists under the supervision of the involved medical biochemist and lipidology specialist, under appropriate conditions every six months. Interventions were stored refrigerated in dark until use. The ratios of the different ingredients used were as follows: omega-3, EPA to DHA (about 1 to 3 wt/wt), omega-6, LA to GLA (about 2 to 1 wt/wt), omega-3 (EPA + DHA) to omega-6 (LA + GLA) (about 1 to 1 wt/wt). The total omega-3 (EPA + DHA + "other" omega-3 PUFA) used as re-esterified triglycerol (minimum value 60%), diglyceride (about 33%), monoglyceride (about 2%) structural form mixture and about 2% ethyl ester structural form, with no less than 80% re-esterified triglycerol content to be DHA and EPA as a result of PUFA triglycerides re-esterification of fish body oils. The "other" group of omega-3 on the re-esterified glycerols included the 18:3 (alpha-linolenic acid), 18:4 (stearidonic acid), 20:4 (eicosatetraenoic acid) and 22:5 (docosapentaenoic acid) PUFA. The fraction of omega-6 (LA + GLA) used as triglycerides with no less than 50-65% triglycerol content to be LA and GLA in a ratio of 2 to 1 with 18:1 (oleic acid) 14-20% and 20:1 (eicosenoic acid), 22:1 (docosenoic acid), 24:1 (tetracosenic acid) as additional monounsaturated fatty acids and minor quantities of 16:0 (palmitic acid) 4-16%, 18:0 (stearic acid) 2-5% saturated fatty acids from Borage oil source. The vitamins used were vitamin A as beta-carotene, vitamin E (alpha-tocopherol) and pure gamma-tocopherol (vitamine E isoform). Citrus extract was used as masking aroma and pure virgin olive oil as delivery vehicle. The daily intervention formula agent dosages were: Intervention formula A daily dosage: EPA (1650mg) / DHA (4650mg) / GLA (2000mg) / LA (3850mg) / total other omega-3 (600mg) / total monounsaturated fatty acids (MUFA) (18:1 1300mg, 20:1 250mg, 22:1 82mg, 24:1 82mg) + total saturated fatty acids (SFA) (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg). Intervention formula B (PLP10) daily dosage: EPA (1650mg) / DHA (4650mg) / GLA (2000mg) / LA (3850mg) / total other omega-3 (600mg) / total MUFA (18:1 1300mg, 20:1 250mg, 22:1 82mg, 24:1 82mg) + total SFA (18:0 160mg, 16:0 650mg) / vitamin A (0.6mg) / vitamin E (22mg) / gamma- tocopherol (γ -tocopherol) (760 mg). **Intervention formula C** daily dosage: γ -tocopherol (760 mg) (in 16137 mg pure virgin olive oil as a vehicle). **Intervention formula D** daily dosage: pure virgin olive oil (16930mg). Citrus aroma was added in each intervention formula to make up a total dosage of 19.5ml of solution per day.

BMJ Open

2		
3	201	The specific omega-3 related fraction, according to specifications required for the
4	202	interventions was prepared and purchased from EPAX AS, Aalesund, Norway; as re-
5	203	esterified glycerides from fish body oils as a source. The specific omega-6 PUFA, MUFA
6		and SFA related fraction, according to required specifications, was prepared and purchased
7	204	
8 9	205	from Goerlich Pharma International GmbH, Edling, Germany, as triglycerides from Borage
10	206	seed oil (organic, cold pressed) "Borago officinalis" as a source. Both omega-3 and omega-6
11	207	fractions were delivered stabilized by the producer (vitamine E (alpha-tocopherol) $\sim 4.5 \text{ mg/g}$
12	208	was used as antioxidant).
13		
14	209	Vitamins: vitamin A as beta-carotene (HealthAid Ltd., Middlesex, United Kingdom) and pure
15 16	210	gamma-tocopherol (Tama Biochemical Co. Ltd., Shinjuku-ku Tokyo, Japan).
17		
18	211	Citrus aroma (Givaudan Schwaiz AG, Dubendorf, Switzerland).
19		
20	212	
21	212	
22 23		
23	213	
25	215	
26		
27	214	Citrus aroma (Givaudan Schwaiz AG, Dubendorf, Switzerland).
28		
29 30		
30 31	215	
32		
33		
34	216	
35		
36 37		
38	217	
39		
40		
41	218	
42		
43 44		
45	219	
46		
47		
48	220	
49 50		
50 51	224	
52	221	
53		
54	222	
55	222	
56 57		
57 58	223	
59	225	
60		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

patients on natalizumab). No statistical significant differences were calculated. The all-time on-study patients per treatment-arm that were receiving DMT at entry baseline were six patients out of ten (60%) within group A, four out of ten (40%) within PLP10 group, six out of nine (66%) within group C and six out of 12 (50%) within placebo. When the study completed, 80% of the patients in group A, 60% in PLP10 group, 66% in group C and 75% of the patients in placebo ended up on treatment. Within group A one out of eight and within placebo two out of nine patients on DMT transferred on natalizumab. (b) Demonstrates the total randomized population per treatment arm that was receiving or not receiving DMT at entry baseline and the same population at the end of the trial without lost to follow (including patients on natalizumab). A total of 61% of group A patients were on DMT at entry baseline and became 72% at the end; for PLP10 group 41% and became 53%; for group C 73% and became 74% and for placebo 53% and became 74% at study completion. At the end: for group A, four out of 13 patients on DMT transferred on natalizumab; for PLP10 group no patient was on natalizumab; for Group C two out of 14 patients on DMT transferred on natalizumab. No significant differences measured at entry baseline between the groups.

Supplementary Information Figure 2 | Kaplan–Meier estimates for the time to disability

progression. Kaplan–Meier plot of the time to sustained progression of disability among all-time onstudy patients, including patients on natalizumab, receiving intervention A, PLP10 and C vs. placebo. Intervention PLP10 reduced the risk of sustained progression of disability by 83% over two years (p=0.019). The cumulative probability of progression was 10% in the intervention B group and 58% in the placebo group. Intervention formula A reduced the risk of sustained progression of disability by 32% (p=0.301) and intervention formula C by 62% (p=0.109).

BMJ Open

Checklist of Items for Reporting Trials of Nonpharmacologic Treatments*

Section	Item	Standard CONSORT Description	Extension for Nonpharmacologic Trials	Reported on Page No.
Title and abstract†	1	How participants were allocated to interventions (e.g., "random allocation," "randomized," or "randomly assigned")	In the abstract, description of the experimental treatment, comparator, care providers, centers, and blinding status	1,3,4
Introduction				
Background Methods	2	Scientific background and explanation of rationale		5 to 8
Participants†	3	Eligibility criteria for participants and the settings and locations where the data were collected	When applicable, eligibility criteria for centers and those performing the interventions	8, 13,15
Interventions ⁺	4	Precise details of the interventions intended for each group and how and when they were actually administered	Precise details of both the experimental treatment and comparator	9,10,11, Table 1 p.28, Appendix p. 5,6
	4A		Description of the different components of the interventions and, when applicable, descriptions of the procedure for tailoring the interventions to individual participants	10, Table 1 p.28, Appendix p.5
	4B		Details of how the interventions were standardized	9,10, Table 1 p.28 Appendix p.5
	4C		Details of how adherence of care providers with the protocol was assessed or enhanced	9
Objectives	5	Specific objectives and hypotheses	1	7,8
Outcomes	6	Clearly defined primary and secondary outcome measures and, when applicable, any methods used to enhance the quality of measurements (e.g., multiple observations, training of assessors)		12
Sample size†	7	How sample size was determined and, when applicable, explanation of any interim analyses and stopping rules	When applicable, details of whether and how the clustering by care providers or centers was addressed	14
	F	or peer review only - http://bmjopen.bmj.co	om/site/about/guidelines.xhtml	

Randomization– sequence generation†	8	Method used to generate the random allocation sequence, including details of any restriction (e.g., blocking, stratification)	When applicable, how care providers were allocated to each trial group	9
Allocation concealment	9	Method used to implement the random allocation sequence (e.g., numbered containers or central telephone), clarifying whether the sequence was concealed until interventions were assigned		9
Implementation	10	Who generated the allocation sequence, who enrolled participants, and who assigned participants to their groups		9
Blinding (masking)†	11A	Whether or not participants, those administering the interventions, and those assessing the outcomes were blinded to group assignment	Whether or not those administering co- interventions were blinded to group assignment	9,10
	11B		If blinded, method of blinding and description of the similarity of interventions [†]	9,10,Appendix
Statistical methods†	12	Statistical methods used to compare groups for primary outcome(s); methods for additional analyses, such as subgroup analyses and adjusted analyses	When applicable, details of whether and how the clustering by care providers or centers was addressed	13, 14, 15
Results				
Participant flow†	13	Flow of participants through each stage (a diagram is strongly recommended) specifically, for each group, report the numbers of participants randomly assigned, receiving intended treatment, completing the study protocol, and analyzed for the primary outcome; describe deviations from study as planned, together with reasons	The number of care providers or centers performing the intervention in each group and the number of patients treated by each care provider or in each center	15 Fig 2
Implementation of intervention [†]	New item		Details of the experimental treatment and comparator as they were implemented	10,15,16 Appe p5,
Recruitment	14	Dates defining the periods of recruitment and follow-up		11,15
Baseline data†	15	Baseline demographic and clinical characteristics of each group	When applicable, a description of care providers (case volume, qualification, expertise, etc.) and centers (volume) in each group	16,Table 2

Numbers analyzed	16	Number of participants (denominator) in each group included in each analysis and whether analysis was by "intention-to-treat"; state the results in absolute numbers when feasible (e.g., 10/20, not 50%)		15,16
Outcomes and estimation	17	For each primary and secondary outcome, a summary of results for each group and the estimated effect size and its precision (e.g., 95% confidence interval)		15 to 20
Ancillary analyses	18	Address multiplicity by reporting any other analyses performed, including subgroup analyses and adjusted analyses, indicating those prespecified and those exploratory		20
Adverse events Discussion	19	All important adverse events or side effects in each intervention group		20
Interpretation†	20	Interpretation of the results, taking into account study hypotheses, sources of potential bias or imprecision, and the dangers associated with multiplicity of analyses and outcomes	In addition, take into account the choice of the comparator, lack of or partial blinding, and unequal expertise of care providers or centers in each group	21
Generalizability†	21	Generalizability (external validity) of the trial findings	Generalizability (external validity) of the trial findings according to the intervention, comparators, patients, and care providers and centers involved in the trial	22
Overall evidence	22	General interpretation of the results in the context of current evidence		22 to 26
*Additions or modifications to the CONSORT checklist. CONSORT = Consolidated Standards of Reporting Trials. †This item was modified in the 2007 revised version of the CONSORT checklist.				