Supplementary Figure 1 – The MICROMEK liquid handling device

The MICROMEK liquid handling device. The instrument was built using the LEGO Mindstorms kit (http://mindstorms.lego.com) and plastic parts manufactured using a 3D printer (uPrint, http://www.uprint3dprinting.com/). Parts design was done using BRL-CAD (http://brlcad.org/). All the CAD files and scheduling software running the MICROMEK and Multidrop are available upon request. A video of the instrument in action is available at: http://www.youtube.com/watch?v=CU-dOno6FzI. (a) CAD drawings of MICROMEK viewed from different angles with individual parts colored. (b) The MICROMEK connected to a Multidrop dispenser (Thermo) in a tissue culture hood with different components annotated. The whole setup has very small footprint and is operated through a PC running custom-built scheduling software. The instruments can also be run remotely using desktop virtualization software and a webcam. (c) The control panel for running the MICROMEK and Multidrop from a PC. The software was developed in Java. The communication with the Multidrop is via a serial RS232 port using the standard Multidrop command set per manufacturer's documentation. The PC talks to the LEGO brick through a USB connection using a custom-built driver.

Data reproducibility. (a) Reproducibility of the experimental protocol. Raw data corresponding to two independent replicate single esiRNA experiments are presented with data-points for the positive control (GFP), mock-transfected and scramble control indicated. Pearson correlation, percentage difference between scramble and GFP and screening Z-factor are listed (b) The addition of a second esiRNA causes a mild effect consistent with the assumptions used for deriving the GIs scores (*S-scores*). (c) Fitness defects associated with a particular gene knockdown are easily observable upon combination with second esiRNAs. Raw data for three query genes (Smarca4, Pa2g4 and Rbbp7) is shown. Each point represents the combination of a query with another gene knockdown, for a total of 384 per query. Data points corresponding to GFP positive controls are circled. For all three panels raw cell numbers are used.

Comparison of GI scoring systems. (a) Comparison between the *S-score* (used in this study) and the π -score methodology used in a similar study in *D. melanogaster*. Both scoring protocols make similar assumptions about the sparseness of strong GIs. Raw data was scored using the *S-score* (horizontal axis) or π -score (vertical axis) and Pearson correlation shown. (b) Data reproducibility based on biological replicates using the π -score. Each point on the scatter plot represents a pair-wise GI measurement from 2 independent biological replicates.

Supplementary Figure 4 – Knock-down efficiencies in the presence of a second esiRNA targeting a different gene

Knock-down efficiencies in the presence of a second esiRNA targeting a different gene. Cells were either mock-transfected, transfected only with Ctr9 esiRNA or a combination of esiRNA against Ctr9 and esiRNA against another gene. Ctr9 transcript levels were quantified by qRT-PCR and data presented is relative to the mock-transfected sample. Error bars represent standard deviation and are derived from four replicates (n = 4).

Immunoblot analysis using two independent Leo1 esiRNA designs. Cells were harvested 72 hours post transfection. As Leo1 depletion causes severe growth phenotype, equalizing protein concentration between samples proved to be difficult. Therefore different amounts of untreated cell extract were used (left part of the blots) and equivalent amounts of the total cell culture were loaded. Anti-Leo1 polyclonal antibody (Proteintech), detecting a 105 kDa band, was used. An unidentified cross-reacting band of approximately 30kD, marked by as '*', serves as a reference for protein levels in each lane. Nature Methods: doi:10.1038/nmeth.2398

Cutoff definitions for positive and negative GIs. Cutoffs were defined at approximately 75% confidence that the observed interaction is real based on a confidence curve as in Collins et al, 2006.

GI scores derived from alternative esiRNA designs for the same gene are highly correlated. For five genes, two alternative esiRNA designs targeting different parts of the transcript were used to generate GI profiles and these were plotted against each other. The values correspond to *S*-scores and the correlation coefficients were provided. Nature Methods: doi:10.1038/nmeth.2398

Comparison of genetic data to HumanNet interactions. (a) Correspondence of *S*-scores and (b) Pearson correlation of profiles on curated and unbiased functional interaction dataset called HumanNet at low (LLS > 1) to high (LLS > 3) stringency cutoffs. To compute the enrichment over random (*y*-axis), one first computes the fraction *f* of interactions at each score *x* that overlap with each dataset (bin size of 1.5). The enrichment is the ratio f/r, where *r* is the fraction of random protein pairs that overlap with each dataset.

Synergistic effect of the PARP inhibitor ABT-888 and knock-down of *Rtf1*, a member of the PAF1 complex. Cells were either mock-transfected (mock) or transfected with *Rtf1* esiRNA. 24 hours post-transfection the cells were treated with ABT-888 at two different concentrations (1 and 10 μ M). Cells were counted 72 hours post transfection. Data presented on the graph has been normalized to the respective mock cell counts. Error bars represent standard deviation and are derived from two replicates (n = 2).

Supplementary Table 1'" qPCR quantification of transcript levels after esiRNA knockdown.

gene#	% remaining transcript
Actl6a	0.9075192
Actl6b	0.1626677
Actr8	0.2268798
bard1	0.2044755
Bmi1	0.1008302
Brca1	1.7411011
Cbx3	0.1855654
Cbx4	0.5509526
Chx5	0.3789291
cdc37	0 2300469
cdc73	0.22300409
Cuci 3	0.0220002
	0.0973950
Chotz	0.5034778
cnot3	1.1250585
cnot4	0.3609823
cnot6	0.463294
cnot6l	0.2365144
cnot7	0.5823668
cnot8	0.4665165
Ddx17	0.1538931
Ddx5	0.1560413
Dmap1	0 2365144
Dnmt1	0 289172
Dnmt3a	0 1486509
Dnmt3h	0.208772
	0.200772
Dzips Ead	0.2200/0/
Eed	0.1755556
Elp3	0.0693481
Ep400	0.4204482
Epc1	1.0069556
Exosc1	0.1215819
Ezh2	0.1719427
H2afv	1.2397077
H2afz	0.0480273
Hcfc1	0.2284579
Hdac1	0.1241366
Ina1	1.9185282
Ino80	0 9930925
lorid?	0.1007924
Januz	0.1907024
Katza	0.1830107
Leo1	0.1719427
Mbd2	3.0314331
Morf4I1	0.5987394
Morf4I2	0.0824692
Mta2	0.5212329
Mtf2	0.6328783
Mybbp1a	0.2030631
Mvst1	0.2698071
Ncor2	0.4117955
Paf1	0 2660925
Parn1	0.07966
Parn2	0.253/899
Dhhn4	0.4117055
Ruup4 Dhhn7	0.2711200
	0.3711309
Ring1	0.3584888
Rhf168	0.1695755
Rnf2	1.7900501
Rtf1	0.2606164
Ruvbl1	0.1051121
ruvbl2	0.3560125
Sap30I	0.5823668
Satb2	0.5743492
Sin3a	0.2044755
Sin3b	0.5703819
Sirt1	0.4475125
Smarca2	1.6817928
Smarca4	0.329877
Spon1	0.1649385
Ssrn1	0 2381595
Sunt16h	0.3584888
Suprior	1 0424659
Suv420111	1.0424000
Suv420112	0 5221951
JUZIZ	0.0021001
	0.223/503
	0.2284579
Tet1	0.5248583
Tet2	1.2834259
Trrap	0.5823668

Supplementary Table 4

Manually curated functional modules and pathways list

module name	members	S							
INTEGRATOR	INTS2	INTS1	INTS8	INTS11	INTS4				
RBBP	RBBP7	RBBP4							
PAF	CDC73	SUPT16H	PAF1	LEO1	CTR9	RTF1			
PRC1	CBX4	BMI1	RING1	EZH2					
CNOT-core	CNOT3	CNOT2	CNOT1						
MORF	MORF4L2	MORF4L1							
DDX	DDX17	DDX5							
INO80	IES6	INO80	IES2						
COHESIN	SMC1A	SMC3	SMC1B						
RUVBL	RUVBL1	ACTL6A	RUVBL2						
ELONGATOR	ELP4	ELP3							
BRCA	BRCA1	BARD1							
PARP	PARP1	PARP2							
CONDENSIN	SMC2	SMC4							
CNOT-extension	CNOT8	CNOT7	CNOT6	CNOT4					
MCM	MCM7	MCM6	MCM4	MCM2					
MEDIATOR	MED21	MED11	MED12	MED1	MED6	MED7	MED4	MED9	MED13
UT	UTX	UTY							
P-TEFb	CCNT1	CDK9	ELL						
SIRT	SIRT1	TBL1X							
HDAC	HDAC1	HDAC2							
H2A	H2AFV	H2AFZ							

Nature Methods: doi:10.1038/nmeth.2398

Supplementary Table 5

Inter-module GI bundle P-values used in the module map in Figure 4.

Module1 <> Module2	P-value	Genetic interaction sign				
		(1 positive, -1 negative)				
PAF <> CNOT-core	0	1				
PAF <> INTEGRATOR	0.0083	1				
SIRT <> H2A	8.00E-04	-1				
UTX <> CNOT-core	0.0097	-1				
CNOT-core <> RUVBL	3.00E-04	1				
PAF <> UTX	3.00E-04	-1				
H2A <> RBBP	0.0049	1				
DDX <> RBBP	0.0096	1				
MCM <> RUVBL	0.0027	-1				
MORF <> PRC1	0.0048	-1				
PAF <> H2A	0	1				
PAF <> HDAC	0.0061	1				
PAF <> CONDENSIN	0	-1				
PAF <> RUVBL	0	1				
MCM <> PAF	0.0017	-1				
PAF <> PARP	2.00E-04	-1				
MORF <> PAF	3.00E-04	-1				
COHESIN <> INO80	0.0071	-1				