Direct Synthesis of Fluorinated Heteroarylether Bioisosteres

Qianghui Zhou,¹ Alessandro Ruffoni,¹ Ryan Gianatassio,¹ Yuta Fujiwara,¹ Eran Sella,² Doron Shabat² and Phil S. Baran^{*,1}

¹Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La

Jolla, CA, USA, 92037

²School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel,

69978

SUPPORTING INFORMATION – PROCEDURES

Table of Contents

General Experimental page	SI-3
Optimization of Difluoroethylation on Caffeine page	SI-3
Difluoroethylation of Heterocycles: Standard Procedure page	SI-5
Experimental Procedures for Compounds 7 to 44	
Compound 7 page	SI-5
Compound 8 page	SI-6
Compound 9 page	SI-7
Compound 11 page	SI-8
Compound 12 page	SI-9
Compound 13 page	SI-9
Compound 14 page	SI-10
Compound 15 page	SI-11
Compound 16 page	SI-12
Compound 17 page	SI-13
Compound 18 page	SI-13
Compound 19 page	SI-14
Compound 20 page	SI-14
Compound 21 page	SI-15
Compound 22 page	SI-15
Compound 23 page	SI-16
Compound 24 page	SI-16
Compound 25 page	SI-17
Compound 26 page	SI-17
Compound 27 page	SI-18
Compound 28 page	SI-18
Compound 29 page	SI-19
Compound 30 page	SI-19
Compound 31	SI-20
Compound 32	SI-20

Compound 33 page	SI-21
Compound 34 page	SI-21
Compound 35 page	SI-22
Compound 37 page	SI-22
Compound 38 page	SI-23
Compound 39 page	SI-24
Compound 40 page	SI-25
Compound 41 page	SI-25
Compound 42 page	SI-25
Compound 43 page	SI-26
QM analysis for anisole page	SI-28
QM analysis for difluoroethylbenzene page	SI-28
QM electrostatic potential surfaces of anisole and difluoroethylbenzene page	SI-29
¹ H, ¹³ C, and ¹⁹ F NMR Spectra of all compoundspages SI-3	80-149

General Experimental Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically (¹H-NMR) homogeneous material, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm E. Merck silica plates (60F-254), using UV light as the visualizing agent and KMnO₄ or acidic solution of *p*-anisaldehyde and heat as a developing agent. Flash silica gel chromatography was performed using E. Merck silica gel (60, particle size 0.043–0.063 mm). Preparative HPLC was performed using a Waters Atlantis dC_{18} OBD 10 mm column with dimension 30 x 250 mm, unless otherwise noted. NMR spectra were recorded on Bruker DRX-600, DRX-500, AMX-400, and Varian INOVA-399 instruments and were calibrated using residual undeuterated solvent as an internal reference (CHCl₃ @ 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR; CH₃OH @ 3.31 ppm ¹H NMR, 49.0 ppm 13 C NMR; CH₃CN 1.94 ppm 1 H NMR, 1.32 ppm 13 C NMR). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = doublettriplet, q = quartet, sept= septet, m = multiplet, br = broad. Gas chromatograpy was performed on an Agilent Technologies 7890A instrument using a 30 meter DB-5 column with an internal diameter of 0.250 mm; reaction species were calibrated against tetradecane as an internal standard. In situ reaction calorimetry was performed using an Omnical Insight-CPR-220 calorimeter. High resolution mass spectra (HRMS) were recorded on an Agilent LC/MSD TOF mass spectrometer by electrospray ionization timeoff-flight reflectron experiments. IR experiments were recorded on a Perkin-Elmer Spectrum BX FTIR spectrometer. Melting points were recorded on a Fisher-Johns 12-144 melting point apparatus and are uncorrected.

Optimization of Difluoroethylation on Caffeine

To a solution of caffeine (10) (10 mg, 0.05 mmol, 1.0 equiv), sodium difluoroethanesulfinate (DFES-Na) (9) (23.0 mg, 0.15 mmol, 3.0 equiv) and Zn salt (0.075 mmol, 1.5 equiv) in DCM (0.2 mL) and H₂O (0.08 mL) was added Brønsted acid (0.05 mmol, 1.0 equiv). The reaction mixture was cooled in ice and TBHP (70% solution in water, 0.035 mL, 0.25 mmol, 5.0 equiv) was added dropwise with vigorous stirring and the stirring was continued at this temperature for 5 min. The reaction was warmed to room temperature and monitored by TLC until completion (24 h). Upon consumption of starting material, the reaction was partitioned between DCM (1.0 mL) and saturated aqueous NaHCO₃ (1.0 mL). The organic layer was separated, and the aqueous layer was extracted with DCM (3×1.0 mL). The combined organic layers were dried over Na₂SO₄, concentrated in vacuum and NMR analysis of the crude reaction mixture was performed. Then the mixture was purified by column chromatography. The results are listed in Table 1.

Table 1 Optimization of the reaction

C /	Addit	C (07.)			
Entry	Brønsted acid	Zinc salt (1.5 eq)	Conversion (%)		
1	none	none	5		
2	TFA (1.0 equiv)	none	30		
3	TFA (1.0 equiv)	ZnCl ₂	43		
4	TFA (1.0 equiv)	ZnSO ₃ •2H ₂ O	24		
5	TFA (1.0 equiv)	$Zn(NO_3)_2$ •6H ₂ O	45		
6	TFA (1.0 equiv)	Zn(OTf) ₂	26		
7	TFA (1.0 equiv)	ZnSO ₄ •7H ₂ O	11		
8	TFA (1.0 equiv)	Zn(OAc) ₂	13		
9	TFA (1.0 equiv)	ZnF_2	0		
10	TFA (1.0 equiv)	ZnBr ₂	35		
11	TFA (1.0 equiv)	ZnI_2	9		
12	1M HCl (1.0 equiv)	ZnCl ₂	29		
13	TsOH•H ₂ O (1.0 equiv)	ZnCl ₂	65 (75) ^b		
14	TsOH•H ₂ O (1.0 equiv)	none	25		
15	none	ZnCl ₂	49 (56) ^c		

a: reaction ran on 0.05 mmol scale if not indicated b: conversion on 0.2 mmol scale, isolated yield 71%. c: conversion on 0.2 mmol scale, isolated yield 56%

Difluoroethylation of Heterocycles: Standard Procedure

To a solution of heterocycle (0.20 mmol, 1.0 equiv), sodium difluoroethanesulfinate (DFES-Na) (**9**), (91.3 mg, 0.60 mmol, 3.0 equiv) and ZnCl_2 (40.9 mg, 0.3 mmol, 1.5 equiv) in DCM (0.8 mL) and H₂O (0.32 mL) was added TsOH•H₂O (38.0 mg, 0.20 mmol, 1.0 equiv). The reaction mixture was cooled using an ice bath and TBHP (70% solution in water, 0.138 mL, 1.0 mmol, 5.0 equiv) was added dropwise with vigorous stirring and the stirring was continued at this temperature for 5 min. The reaction was warmed to room temperature and monitored by TLC until completion. For substrates that do not go to completion in 24 h, a second addition of ZnCl₂ (40.9 mg, 0.3 mmol, 1.5 equiv), DFES-Na (**9**) (91.3 mg, 0.60 mmol, 3.0 equiv) and TBHP (0.138 mL, 1.0 mmol, 5.0 equiv) was performed to drive the reaction further. Upon consumption of starting material, the reaction was partitioned between DCM (2.0 mL) and saturated aqueous NaHCO₃ (2.0 mL). The organic layer was separated, and the aqueous layer was extracted with DCM (3 x 2.0 mL). The combined organic layers was dried over Na₂SO₄, concentrated in vacuum and purified with column chromatography.

NOTE: If the addition of TBHP is performed too rapidly, the resulting exotherm can result in reduced yield and selectivity. This is especially important on larger scales, where a syringe pump may be used to add in TBHP. (See gram-scale procedure for substrate **22**)

Synthesis of sodium difluoroethanesulfinate (DFES-Na) (9), NaSO₂CF₂Me

2-(Difluoromethylsulfonyl)pyridine (7, Hu's reagent)

2-(Difluoromethylsulfonyl)pyridine (7) was prepared in a new way by adapting a known procedure from a related substrate (Zafrani, Y.; Sod-Moriah, G.; Segall, Y. *Tetrahedron* **2009**, *65*, 5278-5283). KOH (101 g, 1.8 mol, 20 equiv) was added to a round bottom flask containing H_2O (110 mL) at 5 °C in an ice bath under stirring. 2-Mercaptopyridine

(10.0 g, 90.1 mol, 1.0 equiv) in MeCN (110 mL) was added and the resulting mixture was cooled to -30 °C in a dry ice/acetone bath (reaction temperature monitored internally). Bromodifluoromethyl diethylphosphonate (19.2 mL, 108.1 mmol, 1.2 equiv) was added in one portion *via* syringe (solution appeared yellow). The cooling bath was removed and the reaction mixture was stirred for 30 min. The reaction was monitored by TLC and diluted with CCl_4 (100 mL) upon completion (at which point the mixture appeared dark purple). The layers were separated and the aqueous phase was extracted with CCl_4 (100 mL). The combined organic phase was eluted through silica gel using Et₂O:pentane (1:4). The resulting organic solution was concentrated carefully under vacuum to a volume of ca. 100 mL. MeCN (50 mL), CCl_4 (50 mL), and H₂O (125 mL) were added and the mixture was stirred vigorously. Then NaIO₄ (86.7 g, 0.405 mol, 4.5 equiv) and ruthenium trichloride hydrate (18 mg, 0.09 mmol, 0.001 equiv) were added. The reaction was stirred at rt for 14 h, then water (100 mL) and Et₂O (100 mL) were added, the layers were separated, and the resulting reaction mixture was extracted with Et₂O (100 mL \times 3). The combined organic phase was washed with saturated NaHCO₃ (100 mL), brine (100 mL), dried over Na₂SO₄, filtered through a thin pad of silica, and concentrated. The crude organic material was recrystallized from DCM resulting in 2 as a colorless solid (12.16 g, 70% yield over two steps). The spectroscopic data for this compound were identical to those reported in the literature: Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. Org. Lett. 2010, 12, 1444-1447.

2-[(1,1-Difluoroethyl)sulfonyl]pyridine (8)

2-[(1,1-Difluoroethyl)sulfonyl]pyridine (8) was prepared using the alkylation procedure of Prakash et al. (see Prakash, G. K. S.; Ni, C.; Wang, F.; Hu, J.; Olah, G. A. *Angew*. *Chem. Int. Ed.* **2011**, *50*, 2559-2563). HMPA (22.5 mL) was added under Ar atmosphere to a solution of 2-(difluoromethylsulfonyl)pyridine (7) (10.5 g, 54.4 mmol, 1.0 equiv) in

THF (225 mL) in a 1 L 3-neck flask equipped with a stir bar and an internal thermometer. The reaction mixture was cooled to -98 °C (CH₃OH/liquid N₂ bath) and then MeI (16.8 mL) was added. Then, a THF solution of LiHMDS (1 M, 136 mL, 2.5 equiv) was added dropwise over 30 min and the reaction mixture was quenched after 10 min with saturated aqueous NH₄Cl solution (20 mL) at the same temperature. After removal of the cold bath, H₂O (200 mL) was added. The mixture was extracted with EtOAc (3 x 200 mL). The combined organic phase was treated with aqueous LiCl (5%) (3 x 200 mL) to remove HMPA and dried over Na₂SO₄. After the removal of solvents under reduced pressure, 11.26 g of the crude product was obtained and was pure enough to be used directly in the next reaction. An aliquot of crude product was purified by flash column chromatography for analysis (EtOAc/hexanes, from 1:10 to 1:4) to give 8 as a light yellow solid. m.p. = 45°C; $R_f = 0.30$ (1:2 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.88 (qd, J = 4.7 Hz, 0.8 Hz, 1 H, 8.17 - 8.20 (m, 1 H), 8.02 - 8.06 (m, 1 H), 7.67 (ddd, J = 7.9 Hz, 4.7 Hz,1.1 Hz, 1 H), 2.13 (t, J = 18.6 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 151.0, 138.4, 128.8, 126.5, 124.7 (t, J_{CF} = 285.8 Hz), 17.69 (t, J_{CF} = 21.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –96.0; IR (neat) ν = 1333, 1190, 1169, 1133, 1097, 1077, 954, 896, 790, 745, 679, 581, 561, 504, 475 cm⁻¹; HRMS (ESI-TOF) calc'd for C₇H₈NO₂SF₂ [M+H⁺] 208.0238; found 208.0230.

Sodium difluoroethanesulfinate (DFES-Na; 9)

Sodium difluoroethanesulfinate (DFES-Na) (9) was prepared using the cleavage procedure of Prakash et al. (see Prakash, G. K. S.; Ni, C.; Wang, F.; Hu, J.; Olah, G. A. *Angew. Chem. Int. Ed.* **2011**, *50*, 2559-2563). EtSH (17.3 mL) was added slowly into a suspension of NaH (95%) (2.49 g, 103 mmol, 3.0 equiv) in THF (120 ml) at 0 °C under Ar atmosphere (*Caution: EtSH has a strongly disagreeable odor, so it should be handled in a well ventilated hood!*) After stirring at 0 °C for 5 min, a THF (60 mL) solution of 2-[(1,1-difluoroethyl)sulfonyl]pyridine (8) (7.155 g, 34.6 mmol, 1.0 equiv) was added. The

flask was sealed with a cap and further wrapped with parafilm. The mixture was stirred at 0 °C for 2 h, then at rt for 10 h. After the removal of solvent under vacuum, the residue was treated with H₂O (20 mL) and neutralized to pH 7 by HCl (1 M), then extracted with Et₂O (20 × 3 mL) to remove 2-(ethylthio)pyridine and EtSH. The aqueous phase was concentrated, and the residue was purified by column chromatography using (MeOH/DCM 1:6 as eluent) resulting in DFES-Na as a white solid (4.102 g, 78% yield). $R_f = 0.4$ (1:2 MeOH:DCM); m.p. >300 °C; ¹H NMR (400 MHz, D₂O) δ 1.67 (t, *J* = 19.5 Hz, 3 H); ¹³C NMR (151 MHz, D₂O) δ 128.7 (t, *J*_{CF} = 277.5 Hz), 14.5 (t, *J*_{CF} = 22.7 Hz); ¹⁹F NMR (376 MHz, D₂O) δ -106.8; IR (neat) ν = 1711, 1383, 1109, 1046, 946, 891, 828, 756, 598, 508, 475, 440 cm⁻¹.

8-(1,1-Difluoroethyl)-1,3,7-trimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione (11).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 38 h (second addition of reagents was performed after 24 h) to provide **11** in 87% yield as a white solid. m.p. = 154–156 °C; $R_f = 0.40$ (1:40 MeOH:DCM); ¹H NMR (400 MHz, CDCl₃) δ 4.14 (t, J = 1.6 Hz, 3 H), 3.55 (s, 3 H), 3.40 (s, 3 H), 2.15 (t, J = 19.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 155.8, 151.7, 146.5, 145.4 (t, $J_{CF} = 31.7$ Hz), 118.4 (t, $J_{CF} = 234.5$), 109.4, 33.5 (t, $J_{CF} = 3.8$ Hz), 29.8, 28.2, 23.1 (t, $J_{CF} = 24.8$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –87.5; IR (neat) v = 1703, 1655, 1547, 1428, 1389, 1341, 1241, 1219, 1174, 1120, 914, 903, 748, 663, 498, cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₀H₁₃N₄O₂F₂ [M+H⁺] 259.1001; found 259.1003.

2-(1,1-Difluoroethyl)isonicotinonitrile(12-C2)and3-(1,1-difluoroethyl)isonicotinonitrile (12-C3).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **12-C2** and **12-C3** as colorless oils in a combined yield of 74% yield (volatile!). **12-C2**: $R_f = 0.8$ (1:3 EtOAc/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.84–8.83 (m, 1 H), 7.89 (m, 1 H), 7.62–7.60 (m, 1 H), 2.03 (t, J = 18.8 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 157.0 (t, $J_{CF} = 30.6$ Hz), 150.5, 126.4 (t, $J_{CF} = 1.3$ Hz), 121.8, 121.6 (t, $J_{CF} = 4.4$ Hz), 120.3 (t, $J_{CF} = 238.2$ Hz), 116.0, 23.4 (t, $J_{CF} = 26.7$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ – 91.4; IR (neat) v = 1383, 1306, 1189, 1137, 1114, 1093, 931, 853, 838, 722, 615, 536 cm⁻¹; HRMS (ESI-TOF) calc'd for C₈H₇N₂ F₂[M+H⁺] 169.0572; found 169.0571. **12-C3**: $R_f = 0.33$ (1/3 EtOAc/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.99 (br s, 1 H), 8.89 (d, J = 5.2 Hz, 1 H), 7.66–7.64 (m, 1 H), 2.10 (t, J = 18.4, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 152.1, 146.6 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 27.2$ Hz), 126.8, 119.9 (t, $J_{CF} = 8.0$ Hz), 134.3 (t, $J_{CF} = 8.0$ Hz), 134.9 (t, $J_{CF} = 8.0$

= 240.9 Hz), 117.9 (t, J_{CF} = 3.8 Hz), 114.7, 25.6 (t, J_{CF} = 28.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –87.9; IR (neat) ν = 2361, 2339, 1388, 1316, 1269, 1167, 1129, 1100, 934, 916, 844, 799, 558 cm⁻¹; HRMS (ESI-TOF) calc'd for C₈H₇NF₂ [M+H⁺] 169.0572; found 169.0570.

Methyl 2-(1,1-difluoroethyl)isonicotinate (13).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **13** in 92% yield as a colorless oil: $R_f = 0.58$ (1:4 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 4.8 Hz, 1 H), 8.20 (s, 1 H), 7.92 (d, J = 4.8 Hz, 1 H), 3.98 (s, 3 H), 2.04 (t, J = 18.6 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 165.1, 156.6 (t, $J_{CF} = 30.1$ Hz), 150.3, 138.8, 124.1, 120.7 (t, $J_{CF} = 239.3$ Hz), 119.0 (t, $J_{CF} = 4.3$ Hz), 53.1, 23.4 (t, $J_{CF} = 27.3$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) –91.2; IR (neat) v = 2955, 2921, 2852, 1735, 1438, 1414, 1318, 1255, 1186 1132, 927, 764 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₁₀NO₂F₂ [M+H⁺] 202.0674; found 202.0683.

3-Acetyl-2-(1,1-Difluoroethyl)pyridine (14-C2) and 3-acetyl-6-(1,1-difluoroethyl)pyridine (14-C6).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **14-C2** in 8% yield and **14-C6** in 27% yield as colorless oils (35% combined yield).

14-C2: $R_f = 0.31$ (1:1 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) 8.68 (d, J = 4.0 Hz, 1 H), 7.65 (dd, J = 7.8, 1.5 Hz, 1 H), 7.42 (dd, J = 7.8, 4.8 Hz, 1 H), 2.58 (s, 3 H), 2.07 (t, J = 19.1 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) 202.4, 150.8 (t, J = 30.0 Hz), 149.6, 136.3, 134.7, 124.5, 121.9 (t, J = 239.7 Hz), 31.6, 24.2 (t, J = 27.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) –86.3; IR (neat) v = 2954, 2923, 2854, 1693, 1593, 1388, 1306, 1266, 1148, 1127, 919, 663 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₉NOF₂ [M + H⁺] 186.0725; found 186.0723.

14-C6: $R_f = 0.50$ (1:2 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 9.16 – 9.17 (m, 1 H), 8.34 (dd, J = 8.1 Hz, 2.2 Hz, 1 H), 7.77 (d, J = 8.1 Hz, 1 H), 2.66 (s, 3 H), 2.04 (t, J = 18.7, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 196.2, 158.9 (t, $J_{CF} = 29.9$ Hz), 149.5, 137.0, 133.0, 120.7 (t, $J_{CF} = 239.3$ Hz), 119.6 (t, $J_{CF} = 4.13$ Hz), 27.1, 23.4 (t, $J_{CF} = 27.2$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –91.6; IR (neat) $\nu = 2923$, 2852, 1692, 1594, 1388, 1306, 1266, 1138, 1127, 1108, 918, 849, 633 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₁₀NOF₂ [M+H⁺] 186.0725; found 186.0729.

3-Acetyl-5-bromo-2-(1,1-difluoroethyl)pyridine (15-C2), 3-acetyl-5-bromo-6-(1,1-difluoroethyl)pyridine (15-C6) and 3-acetyl-5-bromo-4-(1,1-difluoroethyl)-1,4-dihydropyridine (15-C4)

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **15-C2** in 31% yield and **15-C6** in 9% yield as colorless oils, as well as **15-C4** in 24% yield as a white solid (64% combined yield).

15-C2: $R_f = 0.30$ (1:4 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1 H), 8.43 (s, 1 H), 2.59 (t, J = 1.0 Hz, 3 H), 2.09 (t, J = 18.7 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 200.9, 154.8, 145.0, 141.5 (t, $J_{CF} = 26.9$ Hz), 137.5, 121.3 (t, $J_{CF} = 242.3$ Hz), 118.3, 31.7, 24.7 (t, $J_{CF} = 26.3$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -82.8; IR (neat) $\nu = 2921$, 2852, 1697, 1357, 1267, 1129, 1066, 932, 919, 898, 762, 629, 611, 597, 492 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₉NOF₂Br [M+H⁺] 263.9830; found 263.9833.

15-C6: $R_f = 0.35$ (1:4 EtOAc:hexanes); ¹H NMR (600 MHz, CDCl₃) δ 9.02 (d, J = 1.9 Hz, 1 H), 8.49 (d, J = 1.9 Hz, 1 H), 2.66 (s, 3 H), 2.11 (t, J = 18.9 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 194.9 155.3 (t, $J_{CF} = 29.3$ Hz), 146.4, 142.6, 133.9, 121.3 (t, $J_{CF} = 241.2$ Hz), 118.5, 27.2, 23.1 (t, $J_{CF} = 26.2$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -89.9; IR (neat) v = 3008, 2927, 1693, 1582, 1493, 1391, 1295, 1213, 1166, 1124, 1038, 914, 663, 567, 504 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₉NOF₂Br [M+H⁺] 263.9830; found 263.9836. **15-C4**: m.p. = 122 °C; $R_f = 0.23$ (1:2 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 5.4 Hz, 1 H), 6.69 (d, J = 5.4 Hz, 1 H), 6.39 (br s, 1 H), 4.39 (t, J = 12.0 Hz, 1 H), 2.29 (s, 3 H), 1.57 (t, J = 19.0 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 194.9, 138.0, 127.8, 125.1 (t, $J_{CF} = 245.8$ Hz), 107.2 (t, $J_{CF} = 3.2$ Hz), 94.7 (t, $J_{CF} = 4.0$ Hz), 46.2 (t, $J_{CF} = 26.2$ Hz), 25.2, 21.7 (t, $J_{CF} = 26.9$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.4 (AB system, $J_1 = 404.0$ Hz, $J_2 = 239.0$ Hz); IR (neat) v = 3251, 2360, 1630, 1485, 1343, 1293, 1227, 1018, 986, 916, 861, 652, 633, 547, 520 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₁₁NOF₃Br [M+H⁺] 265.9987; found 265.9993.

Ethyl 4-(1,1-difluoroethyl)picolinate (16-C4) and ethyl 6-(1,1-difluoroethyl)picolinate (16-C6).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 32 h (second addition of reagents was performed after 16 h) to provide **16-C4** in 56% yield and **16-C6** in 21% yield as colorless oils (78% combined yield).

16-C4: $R_f = 0.29$ (1:2 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 4.5 Hz, 1 H), 8.22 (s, 1 H), 7.58 (d, J = 4.5 Hz, 1 H), 4.50 (q, J = 7.1 Hz, 2 H), 1.94 (t, J = 18.3 Hz, 3H), 1.45 (t, J = 7.1 Hz, 3 H). ¹³C NMR (151 MHz, CDCl₃) δ 164.7, 150.6, 149.1, 147.6 (t, $J_{CF} = 28.6$ Hz), 122.4 (t, $J_{CF} = 5.6$ Hz), 120.9 (t, $J_{CF} = 5.7$ Hz), 120.3 (t, $J_{CF} = 239.8$ Hz), 62.5, 25.6 (t, $J_{CF} = 28.6$ Hz), 14.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –91.3; IR (neat) v = 3732, 3625, 2985, 1718, 1472, 1388, 1366, 1256, 1240, 1018, 995, 859, 754, 695, 461 cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₀H₁₂NO₂F₂ [M+H⁺] 216.0831; found 216.0837.

16-C6: $R_f = 0.69$ (1:2 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) 8.17 (d, J = 7.8 Hz, 1 H), 7.96 (t, J = 7.8 Hz, 1 H), 7.86–7.80 (m, 1 H), 4.47 (q, J = 7.1 Hz, 2 H), 2.09 (t, J = 18.8 Hz, 3 H), 1.43 (t, J = 7.1 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 165.0, 155.9 (t, $J_{CF} = 30.5$ Hz), 148.3, 138.5, 126.3, 122.9 (t, $J_{CF} = 3.9$ Hz), 121.1 (t, $J_{CF} = 238.7$ Hz), 62.4, 23.4 (t, $J_{CF} = 26.9$ Hz), 14.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –90.1; IR (neat) $\nu = 3602$, 2920, 2154, 1933, 1700, 1722, 1672, 1299, 1244, 1139, 129.9 879, 821, 799, 770, 576, 450 cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₀H₁₂NO₂F₂ [M+H⁺] 216.0831; found 216.0831.

2-acetyl-4-(1,1-difluoroethyl)pyridine (17-C4) and 2-acetyl-6-(1,1-difluoroethyl)pyridine (17-C6).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 48 h (second addition of reagents was performed after 24 h) to provide **17-C4** in 48% yield and **17-C6** in 22% yield as colorless oils (70% combined yield).

17-C4: $R_f = 0.63$ (1:2 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.78 (dd, J = 5.0, 0.9 Hz, 1 H), 8.14 (dd, J = 1.9, 0.9 Hz, 1 H), 7.65–7.54 (m, 1 H), 2.75 (s, 3 H), 1.93 (t, J = 18.3 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 199.5, 154.4, 149.8, 147.4 (t, $J_{CF} = 28.5$ Hz), 122.5 (t, $J_{CF} = 5.5$ Hz), 120.4 (t, $J_{CF} = 239.5$ Hz), 117.5 (t, $J_{CF} = 5.7$ Hz), 26.0, 25.5 (t, $J_{CF} = 28.6$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –91.1; IR (neat) v = 2926, 1700, 1607, 1387, 1310, 1177, 1144, 929, 852, 589 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₁₀NOF₂ [M+H⁺] 186.0725; found 186.0729.

17-C6: $R_f = 0.479$ (1:2 EtOAc:hexanes); ¹H NMR (600 MHz, CDCl₃) δ 8.10 (d, J = 8.2 Hz, 1 H), 7.96 (t, J = 7.8 Hz, 1 H), 7.86 (d, J = 8.5 Hz, 1 H), 2.74 (s, 3 H), 2.09 (t, J = 18.7 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 199.7 , 154.8 (t, $J_{CF} = 30.6$ Hz), 152.9 , 138.3, 123.0, 122.5, 120.5 (t, $J_{CF} = 235.1$ Hz), 25.7, 22.9 (t, $J_{CF} = 27.0$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –90.1; IR (neat) $\nu = 3005$, 1700, 1605, 1562, 1354, 1310, 1234, 1176, 1145, 927, 853, 563 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₁₀NOF₂ [M+H⁺] 186.0725; found 186.0725.

6-Chloro-5-(1,1-difluoroethyl)pyridin-2(1H)-one (18).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 40 h (second addition of reagents was performed after 24 h) to provide **18** in 58% yield as a white solid. m.p. = 114 °C; $R_f = 0.37$ (1:5 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 1 H), 6.65 (d, J = 7.8 Hz, 1 H), 2.06 (t, J = 18.9 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 162.0, 143.3, 139.1 (t, $J_{CF} = 7.5$ Hz), 122.4 (t, $J_{CF} = 27.2$ Hz), 120.1 (t, $J_{CF} = 239.9$ Hz), 110.8, 23.6 (t, $J_{CF} = 27.9$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -89.3; IR (neat) $\nu = 2919$, 1651, 1592, 1459, 1286, 1233, 1180, 910, 847, 774, 664, 603, 563,

423 cm⁻¹; HRMS (ESI-TOF) calc'd for C₇H₇NOF₂Cl [M+H⁺] 194.0179; found 194.0176.

2-Acetyl-5-(1,1-difluoroethyl)pyrazine (19).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **19** in 67% yield as colorless crystals. $R_f = 0.80$ (1:3 EtOAc:pentane); m.p. = 49–50 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.21 (d, J = 0.8 Hz, 1 H), 8.98 (d, J = 0.8 Hz, 1 H), 2.74 (s, 3 H), 2.06 (t, J = 18.8 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 198.8, 153.1 (t, $J_{CF} = 30.4$ Hz), 148.4, 142.4, 140.3, 120.5 (t, $J_{CF} = 237.6$ Hz), 26.1, 23.1 (t, $J_{CF} = 23.1$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –91.7; IR (neat) v = 1699, 1366, 1391, 1271, 118, 1025, 911, 662, 415 cm⁻¹; HRMS (ESI-TOF) calc'd for C₈H₉N₂OF₂ [M+H⁺] 187.0677; found 187.0675.

Methyl 5-(1,1-difluoroethyl)pyrazine-2-carboxylate (20).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 42 h (second addition of reagents was performed after 16 h, and third addition of 1.5 equiv of DFES-Na was performed after 32 h) to provide **20** in 55% yield as a white solid. m.p. = 56 °C; $R_f = 0.35$ (1:4 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1 H), 9.03 (s, 1 H), 4.06 (s, 3 H), 2.06 (t, J = 18.8 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 163.9, 153.1 (t, $J_{CF} = 30.8$ Hz), 145.1, 144.2, 141.1 (t, $J_{CF} = 4.6$ Hz), 120.4 (t, $J_{CF} = 239.4$ Hz), 53.5 , 23.1 (t, $J_{CF} = 26.6$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –91.8; IR (neat) ν = 3093, 3012, 2957, 1389, 1341, 1287, 1190, 1103, 962, 813, 770, 735, 643, 428 cm⁻¹; HRMS (ESI-TOF) calc'd for C₈H₉N₂O₂F₂ [M+H⁺] 203.0627; found 203.0631.

5-(1,1-Difluoroethyl)pyrazine-2-carboxylic acid (21).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **21** in 55% yield as a light yellow solid: m.p. = $110-113^{\circ}$ C; $R_f = 0.60$ (1:3 MeOH:DCM); ¹H NMR (400 MHz, CD₃OD) δ 9.33 (br s, 1 H), 9.00 (br s, 1 H), 2.06 (t, *J* = 18.8 Hz, 3 H); ¹³C NMR (151 MHz, CD₃OD) δ 178.0, 166.1, 154.2 (t, *J* = 29.8 Hz), 146.3, 141.5, 121.8 (t, *J* = 238.4 Hz), 23.1 (t, *J* = 26.6 Hz); ¹⁹F NMR (376 MHz, CD₃OD) δ -92.7; IR (neat) ν = 1726, 1388, 1298, 1136, 1101, 1035, 918, 831, 814, 722, 408 cm⁻¹; HRMS (ESI-TOF) calc'd for C₇H₇N₂O₂F₂ [M+H⁺] 189.047; found 189.0468.

3-(1,1-Difluoroethyl)quinoxalin-2-ol (22).

For 0.20 mmol scale, the standard procedure was followed (2 equiv of DFES-Na was used) with a reaction time of 10 h to provide **22** in 95% yield.

Gram-scale procedure: TsOH•H₂O (1.3 g, 6.84 mmol, 1.0 equiv) was added to an open air, stirred solution of 2-quinoxalinol (1.00 g, 6.84 mmol, 1.0 equiv), DFES-Na (2.6 g, 17.1 mmol, 2.5 equiv) and ZnCl₂ (1.16 g, 8.55 mmol, 1.25 equiv) in DCM (27 mL) and H₂O (11 mL) at 0 °C. TBHP (70% solution in H₂O, 4.7 mL, 34.2 mmol, 5.0 equiv) was added slowly with vigorous stirring in three portions over 30 min and stirring was continued at this temperature for 1 h. The ice bath was then removed, and the reaction was warmed to rt and stirred for 24 h with oxygen bubbling into the reaction mixture. The reaction was quenched with aqueous solution of NaHCO₃ (125 mL), then extracted with DCM (3 × 30 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. The crude material was mixed with a minimal amount of silica gel and was purified by column chromatography (gradient from 1:5 to 1:2 EtOAc:hexanes). Removal of the solvent under vacuum provided (**22**) as a white solid (1.28 g, 89% yield). $R_f = 0.50$ (50% EtOAc in hexanes); m.p. = 172–174 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, J =7.8 Hz, 1 H), 7.65–7.62 (m, 1 H), 7.46-7.40 (m, 2 H), 2.18 (t, J = 19.2 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 154.6, 150.8 (t, $J_{CF} = 27.8$ Hz), 132.6, 132.3, 131.5, 130.3, 125.0, 119.8 (t, $J_{CF} = 239.8$ Hz), 116.1, 22.6 (t, $J_{CF} = 25.9$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –94.8; IR (neat) ν = 2382, 1666, 1503, 1485, 1432, 1297, 1224, 1184, 1065, 928, 824, 761, 672, 552, 505, 479 cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₀H₉N₂OF₂ [M+H⁺] 211.0677; found 211.0676.

2-(1,1-Difluoroethyl)-1*H*-imidazo[4,5-*c*]pyridine (23).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **23** in 44% yield as white solid. $R_f = 0.33$ (1:9 MeOH:DCM); m.p. = 193-197°C (decomposed); ¹H NMR (400 MHz, acetone- d_6) δ 8.44 (s, 1 H), 8.39 (dt, J = 5.5, 0.8 Hz, 1 H), 7.78 (dt, J = 5.5, 0.9 Hz, 1 H), 2.17 (t, J = 19.0 Hz, 3 H); ¹³C NMR (151 MHz, acetone- d_6) δ 148.1, 146.0, 142.6 (t, $J_{CF} = 31.7$ Hz), 141.0, 130.9, 123.2 (t, $J_{CF} = 235.6$ Hz), 114.9, 23.2 (t, $J_{CF} = 26.8$ Hz); ¹⁹F NMR (376 MHz, acetone- d_6) δ -87.2; IR (neat) $\nu = 2801, 1481, 1418, 1379, 1253, 1216, 1187, 952, 935, 906, 888, 627, 589, 529, 466 cm⁻¹; HRMS (ESI-TOF) calc'd for C₈H₈N₃F₂[M+H⁺] 184.0681; found 184.0683.$

3-(1,1-Difluoroethyl)-1H-indazole (24).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **24** in 40% yield as a colorless oil. $R_f = 0.60$ (1:2 EtOAc/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 10.12 (br s, 1 H), 7.99–7.96 (m, 1 H), 7.51 (ddd, J = 8.5 Hz, 1.0 Hz, 1.0 Hz, 1 H), 7.44 (ddd, J = 8.5 Hz, 6.8 Hz, 1.0 Hz, 1 H), 7.28–7.24 (m, 1 H), 2.20 (t, J = 18.4 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 143.1 (t, $J_{CF} = 34.7$ Hz), 141.2, 127.6, 122.2, 121.4, 120.6 (t, $J_{CF} = 230.3$ Hz), 119.8, 109.9, 23.7 (t, $J_{CF} = 26.7$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –84.6; IR (neat) $\nu = 3188$, 1498, 1384, 1218, 1118, 1040, 912, 743 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₉N₂F₂ [M+H⁺] 183.0728; found 183.0734.

2-(1,1-Difluoroethyl)-1*H*-benzo[*d*]imidazole (25).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **25** in 80% yield as a white solid. m.p. = 190°C (decomposed); $R_f = 0.33$ (1:4 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 9.67 (br s, 1 H), 7.84 (d, J = 8.0 Hz, 1 H), 7.51 (d, J = 7.2 Hz, 1 H), 7.39–7.32 (m, 2 H), 2.22 (t, J = 18.8 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 147.9 (t, $J_{CF} = 32.3$ Hz), 142.5, 133.0, 124.9, 123.3, 120.8, 118.0 (t, $J_{CF} = 234.3$ Hz), 116.6, 23.0 (t, $J_{CF} = 25.8$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –87.4; IR (neat) $\nu = 2852$, 1454, 1314, 1277, 1262, 1126, 1015, 995, 741, 660, 578, 555, 461, 417 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₉N₂F₂ [M+H⁺] 183.0728; found 183.0735.

1-[2-(1,1-Difluoroethyl)-1*H*-indol-3-yl]ethanone (26).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 48 h (second addition of reagents was performed after 24 h) to provide **26** in 59% yield as a brown solid. m.p. = 138–139 °C; $R_f = 0.50$ (1:3 EtOAchexanes); ¹H NMR (400 MHz, CDCl₃) δ 9.06 (br s, 1 H), 8.01–7.99 (m, 1 H), 7.51–7.46 (m, 1 H), 7.37–7.31 (m, 2 H), 2.75 (s, 3 H), 2.24 (t, J = 19.2 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 194.2, 137.4 (t, $J_{CF} = 30.2$ Hz), 133.7, 126.5, 124.3, 123.0, 121.6, 119.8 (t, $J_{CF} = 238.7$ Hz), 115.4, 112.4, 31.9, 24.6 (t, $J_{CF} = 27.3$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –86.6; IR (neat) $\nu = 3223$, 1636, 1530, 1491, 1422, 1325, 1279, 1210, 1133, 930, 741 cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₂H₁₂F₂NO [M+H⁺] 224.0881; found 224.0883.

Methyl 4-(1,1-difluoroethyl)pyrimidine-2-carboxylate (27-C4) and methyl 5-(1,1-difluoroethyl)pyrimidine-2-carboxylate (27-C5).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 38 h (Second addition of reagents was performed after 24 h) to provide 27 (27-C4:27-C5 = 10:1) in 74% combined yield as colorless oils.

27-C4: $R_f = 0.75$ (2:1 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 9.08 (br s, 1 H), 7.79 (d, J = 3.2 Hz, 1 H), 4.05 (s, 3 H), 2.05 (t, J = 18.8 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 164.2 (t, $J_{CF} = 31.7$ Hz), 163.4, 159.6, 156.7, 119.7 (t, $J_{CF} = 238.9$ Hz), 118.4, 53.8, 22.7 (t, $J_{CF} = 26.1$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –93.2; IR (neat) $\nu = 1742$, 1580, 1385, 1293, 1214, 1163, 929, 770, 608 cm⁻¹; HRMS (ESI-TOF) calc'd for C₈H₉N₂O₂F₂ [M+H⁺] 203.0627; found 203.0633.

27-C5: $R_f = 0.33$ (2:1 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 9.06 (s, 1 H), 4.10 (s, 3 H), 2.10 (t, J = 18.4 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 163.2, 157.4, 154.9, 133.4 (t, $J_{CF} = 26.0$ Hz), 119.7 (t, $J_{CF} = 240.6$ Hz), 54.0, 25.9 (t, $J_{CF} = 28.4$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –89.5; IR (neat) $\nu = 1739$, 1555, 1428, 1328, 1195, 1136, 914, 712, 643 cm⁻¹; HRMS (ESI-TOF) calc'd for C₈H₉N₂O₂F₂ [M+H⁺] 203.0627; found 203.0632.

9-(1,1-Difluoroethyl)acridine (28).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **28** in 72% yield as a brown solid. $R_f = 0.50$ (1:4 EtOAc:hexanes); m.p. = 88–90 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.48–8.45 (m, 2 H), 8.27 (ddd, J = 9.0 Hz, 1.3 Hz, 0.2 Hz, 2 H), 7.78 (ddd, J = 8.8 Hz, 6.4 Hz, 1.3 Hz, 2 H), 7.59 (ddd, J = 9.0 Hz, 6.4 Hz, 1.2 Hz, 2 H), 2.39 (t, J = 18.2 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 149.8, 139.6 (t, $J_{CF} = 23.4$ Hz), 131.4, 130.4, 127.7, 126.0 (t, $J_{CF} = 9.8$ Hz), 125.2 (t, $J_{CF} = 242.7$ Hz), 123.6, 28.3 (t, $J_{CF} = 27.2$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –75.1; IR (neat) $\nu = 1383$, 1199,

1163, 1114, 915, 898, 871, 749, 652, 603, 514, 415 cm⁻¹; HRMS (ESI-TOF) calc'd for $C_{15}H_{12}NF_2$ [M+H⁺] 244.0932; found 244.0933.

3-Chloro-4-(1,1-difluoroethyl)-6-(1-methyl-1*H*-pyrazol-4-yl)pyridazine (29).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 40 h (Second addition of reagents was performed after 24 h) to provide **29** in 51% yield as a white solid. $R_f = 0.25$ (1:1 EtOAc:hexanes); m.p. = 157 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1 H), 8.03 (s, 1 H), 7.73 (s, 1 H), 4.01 (s, 3 H), 2.10 (t, J = 18.6 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 154.5, 150.1, 138.1, 135.9 (t, $J_{CF} = 28.7$ Hz), 130.0, 121.1 (t, $J_{CF} = 8.2$ Hz), 119.0 (t, $J_{CF} = 243.3$ Hz), 118.7, 39.6, 23.9 (t, $J_{CF} = 27.2$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –92.1; IR (neat) $\nu = 3012$, 3067, 1559, 1512, 1451, 1413, 1387, 1188, 1150, 926, 879, 735, 700, 581, 528, 439, 416 cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₀H₁₀N₄F₂Cl [M+H⁺] 259.0557; found 259.0558.

8-(1,1-Difluoroethyl)-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione (30).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 24 h to provide **30** in 90% yield as a white solid: m.p. = 242 °C (decomposed); $R_f = 0.50$ (1:40 MeOH:DCM, run two times); ¹H NMR (400 MHz, CDCl₃) δ 3.63 (s, 3 H), 3.48 (s, 3 H), 2.13 (t, J = 18.6 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 156.1, 151.6, 148.5, 147.4 (t, $J_{CF} = 33.5$ Hz), 117.0 (t, $J_{CF} = 236.2$ Hz), 107.9, 30.5, 28.6, 23.4 (t, $J_{CF} = 23.4$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -89.1; IR (neat) $\nu = 2360$, 1708, 1648, 1551, 1515, 1453, 1407, 1214, 1056, 994, 790, 762, 747, 509, 495 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₁₁N₄O₂F₂ [M+H⁺] 245.0845; found 245.0843.

8-(1,1-Difluoroethyl)-3,7-dimethyl-1-(5-oxohexyl)-1*H*-purine-2,6(3*H*,7*H*)-dione (31). For 0.20 mmol scale, the standard procedure was followed with a reaction time of 17 h (second addition of reagents was performed after 14 h) to provide **31** in 45% yield as a white solid: m.p. = 58 °C; $R_f = 0.35$ (1:1 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 4.14 (s, 3 H), 4.00 (t, J = 6.9 Hz, 2 H), 3.54 (s, 3 H), 2.49 (t, J = 6.9 Hz, 2 H), 2.25–2.06 (m, 6 H), 1.67–1.63 (m, 4 H); ¹³C NMR (151 MHz, CDCl₃) δ 208.8, 155.6, 151.4, 146.5, 145.4 (t, $J_{CF} = 31.7$ Hz), 118.4 (t, $J_{CF} = 234.7$ Hz), 109.4, 43.3, 41.1, 33.5 (t, $J_{CF} = 3.7$ Hz), 30.1, 29.8, 27.5, 23.1 (t, $J_{CF} = 25.0$ Hz), 21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –87.5; IR (neat) v = 2953, 1707, 1664, 1607, 1543, 1215, 1170, 917, 897, 465, 431 cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₅H₂₁N₄O₃F₂ [M+H⁺] 343.1576; found 343.1590.

2-(1,1-Difluoroethyl)chroman-4-one (32).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 34 h (second addition of reagents was performed after 17 h) to provide **32** in 26% yield as a pale yellow solid: m.p. = 56 °C; $R_f = 0.23$ (1:4 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.97–7.84 (m, 1 H), 7.52 (dd, J = 8.1, 7.2, 1 H), 7.12–7.00 (m, 2 H), 4.55 (tdd, J = 13.1, 5.3, 3.8 Hz, 1 H), 3.04–2.78 (m, 2 H), 1.83 (t, J = 19.0 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 190.4, 160.2, 136.5, 127.2, 122.4, 121.2 (dd, $J_{CF} = 243.0$ Hz, 238.5 Hz), 120.9, 118.0, 78.0 (dd, $J_{CF} = 35.3$ Hz, 29.3 Hz), 36.5, 20.2 (t, $J_{CF} = 26.3$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –101.1 (d, J = 255.2 Hz), –105.5 (d, J = 255.2 Hz); IR (neat) v = 1697, 1604, 1577, 1460. 1392, 1300, 1273, 1139, 1110, 1087, 804, 765, 721, 653, 638, 594, 414 cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₁H₁₁O₂F₂ [M+H⁺] 213.0722; found

213.0725.

(Z)-4-(1,1-Difluoroethyl)-3-(1-hydroxyethylidene)chroman-2-one (33-enol) and 3acetyl-4-(1,1-difluoroethyl)chroman-2-one (33-keto).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 38 h (second addition of reagents was performed after 24 h) to provide **33** (enol + keto) in 83% yield as a pink solid: m.p. = 93 °C (Note: Both major (enol) and minor (keto) peaks are listed for ¹H and ¹³C NMR.) ¹H NMR (400 MHz, CDCl₃) δ 13.49 (s, 1 H), 7.40–7.28 (m, 3 H), 7.18 (td, *J* = 7.6, 1.1 Hz, 2 H), 7.12 (d, *J* = 8.2 Hz, 1 H), 7.08 (d, *J* = 8.2 Hz, 1 H), 4.19 (s, 1 H), 4.12 (dd, *J* = 11.4, 9.3 Hz, 2 H), 3.86 (dd, *J* = 20.6, 7.7 Hz, 1 H), 2.31 (s, 1 H), 2.24 (s, 5 H), 1.61 (t, *J* = 18.9 Hz, 2 H), 1.42 (t, *J* = 18.7 Hz, 5 H); ¹³C NMR (151 MHz, CDCl₃) δ ; 197.7, 181.0, 169.6, 164.2, 151.0, 130.7, 130.4, 130.1, 130.1, 129.9, 126.6, 125.2, 123.3, 119.2, 117.5, 117.2, 116.6, 90.6, 90.6, 54.4, 45.2 (t, *J* = 7.3 Hz), 30.4, 28.2, 26.1, 21.5 (t, *J* = 27.0 Hz), 19.8, 19.8, 19.6 (t, *J* = 27.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –94.2 (AB system, *J* = 1345.6 Hz, 237.1 Hz, 2 F), –95.3 (AB system, *J* = 1342.8 Hz, 244.8 Hz, 2 F); IR (neat) v = 2925, 1657, 1321, 1243, 1216, 1180, 1144, 1108, 953, 923, 754, 724, 618, 524, 466, 418 cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₃H₁₃O₃F₂ [M+H⁺] 255.0827; found 255.0830.

2-[(1,1-Difluoroethyl)thio]benzothiazole (34).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 5 h to provide **34** in 66% yield as a colorless oil: $R_f = 0.53$ (1:2 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (ddd, J = 8.3 Hz, 1.1 Hz, 0.5 Hz, 1 H), 7.87 (ddd, J = 8.1 Hz, 1.2 Hz, 0.4 Hz, 1 H), 7.51 (ddd, J = 8.3 Hz, 7.1 Hz, 1.2 Hz, 1 H), 7.44 (ddd, J = 8.1 Hz, 7.1 Hz, 1.1 Hz, 1 H), 2.13 (t, J = 17.0 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 156.8 (t, $J_{CF} =$

2.6 Hz), 153.9, 138.4, 128.8 (t, $J_{CF} = 278.5$ Hz), 127.4, 126.8, 124.4, 122.0, 27.4 (t, $J_{CF} = 24.8$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –64.2; IR (neat) $\nu = 1454$, 1417, 1382, 1311, 1238, 1186, 1122, 1078, 989, 932, 877, 756, 726, 707, 679, 660, 607, 547, 519, 461, 421 cm⁻¹; HRMS (ESI-TOF) calc'd for C₉H₈NS₂F₂ [M+H⁺] 232.0061; found 232.0065.

2-[(1,1-Difluoroethyl)thio]-1-methylimidazole (35).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 5 h to provide **35** in 37% yield as a colorless oil: $R_f = 0.15$ (1:2 DCM:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 0.8 Hz, 1 H), 7.12 (d, J = 0.8 Hz, 1 H), 3.78 (s, 3 H), 1.95 (t, J = 17.2 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 133.4, 131.0, 128.6 (t, $J_{CF} = 277.5$ Hz), 125.1, 34.5, 26.3 (t, $J_{CF} = 25.5$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -65.2; IR (neat) v = 1457, 1412, 1384, 1281, 1184, 1117, 930, 878, 757, 686, 659, 553, 497, 452, 432, 405 cm⁻¹; HRMS (ESI-TOF) calc'd for C₆H₉N₂SF₂ [M+H⁺] 179.0449; found 179.0446.

(5*S*,6*S*,9**R**)-5-Amino-2-(1,1-difluoroethyl)-6-(3,4-difluorophenyl)-6,7,8,9-tetrahydro-5*H*-cycloheptapyridin-9-ol (37).

For 0.20 mmol scale, the standard procedure was followed with a reaction time of 22 h to provide **37** in 33% yield as a light yellow solid: $R_f = 0.23$ (1:1 EtOAc:hexanes); m.p. = 115 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.0 Hz, 1 H), 7.65 (d, J = 8.0 Hz, 1 H), 7.12–7.07 (m, 2 H), 7.01–6.99 (m, 1 H), 4.99 (dd, J = 11.0 Hz, 2.2 Hz, 1 H), 4.45 (d, J = 9.0 Hz, 1 H), 2.91 (m, 1 H), 2.37–2.28 (m, 2 H), 2.05 (t, J = 18.6 Hz, 3 H), 1.61–1.52 (m, 1 H); ¹³C NMR (151 MHz, CDCl₃) δ 159.2, 151.4 (t, $J_{CF} = 30.8$ Hz), 151.1 (dd, $J_{CF} = 249.3$, 13.6 Hz), 148.8 (dd, $J_{CF} = 246.3$, 12.8 Hz), 138.9, 134.8 , 133.3 (d, $J_{CF} = 11.2$ Hz),

124.8 (dd, $J_{CF} = 6.7$, 4.4 Hz), 123.9 , 120.8 (t, $J_{CF} = 238.3$ Hz), 118.6 (t, $J_{CF} = 4.1$ Hz), 115.9 (d, $J_{CF} = 17.1$ Hz), 71.2 , 54.2 , 45.4 , 35.7 , 33.5 , 23.4 (t, $J_{CF} = 27.5$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –90.6, –137.2 (d, J = 21.4 Hz), –142.5 (d, J = 21.9 Hz); IR (neat) ν = 3424, 2928, 2853, 1714, 1592, 1484, 1378, 1323, 1289, 1228, 1175, 997, 953, 821, 802, 780 649, 616, 592, 565, 422 cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₈H₁₉N₂OF₄ [M+H⁺] 355.1428; found 355.1436.

2-((7-Chloro-1,1-difluoroheptyl)sulfonyl)pyridine (38).

2-((7-Chloro-1,1-difluoroheptyl)sulfonyl)pyridine (38) was prepared using the alkylation procedure of Prakash et al. (see Prakash, G. K. S.; Ni, C.; Wang, F.; Hu, J.; Olah, G. A. Angew. Chem. Int. Ed. 2011, 50, 2559-2563). HMPA (2.5 mL) was added under Ar atmosphere to a solution of 2-(difluoromethylsulfonyl)pyridine (7) (1.12 g, 5.8 mmol, 1.0 equiv) in THF (25 mL) in a 200 mL flask. The reaction mixture was cooled to -98 °C (MeOH/liquid N₂ bath) and 1-chloro-6-iodohexane (2.3 mL, 15.5 mmol, 2.5 equiv) was added. Then a THF solution of LiHMDS (1 M, 17.4 mL, 3.0 equiv) was added dropwise over 10 min and the reaction mixture was kept at -98 °C for 20 min. The reaction was quenched with saturated aqueous NH₄Cl solution (4.5 mL) at the same temperature. After removal of the ice bath, H₂O (30 mL) was added. The mixture was extracted with EtOAc $(3 \times 35 \text{ mL})$, and the combined organic phase was dried over MgSO₄. After the removal of solvents under reduced pressure, the crude product was purified by flash column chromatography (EtOAc:hexane, from 1:10 to 1:4) to give **38** as a colorless oil (1.23 g, 3.94 mmol, 68% yield). $R_f = 0.4$ (1:2 EtOAc:hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.86 (ddd, J = 4.7, 1.7, 0.9 Hz, 1 H), 8.22–8.11 (m, 1 H), 8.03 (td, J = 7.8, 1.7 Hz, 1 H), 7.66 (ddd, J = 7.7, 4.7, 1.2 Hz, 1 H), 3.52 (t, J = 6.6 Hz, 2 H), 2.47–2.34 (m, 2 H), 1.81– 1.74 (m, 2 H), 1.72–1.64 (m, 2 H), 1.52–1.39 (m, 4 H); ¹³C NMR (151 MHz, CDCl₃) δ 152.5, 151.0, 138.4, 128.7, 126.5 125.4 (t, J_{CF} = 287.4 Hz), 45.0, 32.4, 30.1 (t, J_{CF} = 19.8 Hz), 28.5, 26.5, 20.8 (t, J_{CF} = 3.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –102.4; IR (neat) v

= 2924, 2359, 2340, 1345, 1169, 982, 744, 598 cm⁻¹; HRMS (ESI-TOF) calc'd for $C_{12}H_{17}NO_2F_2SCl [M+H^+]$ 312.0631; found 312.0634.

2-((2-(p-Bromophenyl)-1,1-difluoroethyl)sulfonyl)pyridine (39)

2-((2-(p-Bromophenyl)-1,1-difluoroethyl)sulfonyl)pyridine (39) was prepared using the alkylation procedure of Prakash et al. (see Prakash, G. K. S.; Ni, C.; Wang, F.; Hu, J.; Olah, G. A. Angew. Chem. Int. Ed. 2011, 50, 2559-2563). HMPA (3 mL) was added under Ar atmosphere to a mixture of 2-(difluoromethylsulfonyl)pyridine (7) (760 mg, 3.93 mmol, 1.3 equiv) and 1-bromo-4-(bromomethyl)benzene (746 mg, 3.02 mmol, 1.0 equiv) in THF (33 mL) in a 100 mL flask. The reaction mixture was cooled to -98°C using MeOH/liquid N₂ bath and a THF solution of LiHMDS (1M, 4.5 mL, 1.5 equiv) was added dropwise over 20 min. The reaction mixture was kept at -98 °C for 2 h, then was quenched with saturated aqueous NH_4Cl solution (4.5 mL) at the same temperature. After removal of the cold bath, H₂O (30 mL) was added. The mixture was extracted with EtOAc (3×35 mL), and the combined organic phase was dried over MgSO₄. After the removal of solvents under reduced pressure, the crude product was purified by flash column chromatography (EtOA:hexanes, from 1:10 to 1:4) to give (39) as a white solid (848 mg, 2.36 mmol, 78% yield). The spectroscopic data for this compound were identical to those reported in the literature: Prakash, G. K. S.; Ni, C.; Wang, F.; Hu, J.; Olah, G. A. Angew. Chem. Int. Ed. 2011, 50, 2559–2563.

Sodium 7-chloro-1,1-difluoroheptanesulfinate (40)

For 3.75 mmol scale, the same procedure for the preparation of **9** was followed to provide **40** in 85% yield as a white solid: $R_f = 0.70$ (1:2 MeOH:DCM); m.p. = 150–155 °C; ¹H NMR (400 MHz, D₂O) δ 3.63 (t, J = 6.7 Hz, 2 H), 2.07–1.94 (m, 2 H), 1.83–1.76 (m, 2 H), 1.61–1.54 (m, 2 H), 1.51–1.39 (m, 4 H); ¹³C NMR (151 MHz, D₂O) δ 128.4 (t, $J_{CF} =$ 284.4 Hz), 46.5, 32.5, 28.9 (t, $J_{CF} = 20.7$ Hz), 28.7, 26.6, 21.0 (t, $J_{CF} = 4.1$ Hz); ¹⁹F NMR (376 MHz, D₂O) δ –115.4; IR (neat) ν = 2936, 2857, 1193, 1157, 1072, 1030, 1009, 938, 725, 585 cm⁻¹; elemental analysis calc'd for: C₇H₁₂O₂F₂NaSCI (256.67), calcd: C, 32.76%; H, 4.71%; S, 12.49%; found: C, 32.87%; H, 4.79%; S, 12.74%.

Sodium 2-(4-bromophenyl)-1,1-difluoroethanesulfinate (41)

For 2.5 mmol scale, the same procedure for the preparation of **9** was followed to provide sodium 2-(4-bromophenyl)-1,1-difluoroethanesulfinate (**41**) in 60% yield as a white solid: m.p. > 300 °C; $R_f = 0.39$ (1:4 MeOH:DCM); ¹H NMR (600 MHz, D₂O) δ 7.56 (d, J = 8.4 Hz, 2 H), 7.29 (d, J = 8.1 Hz, 2 H), 3.29 (t, J = 18.9 Hz, 2 H); ¹³C NMR (151 MHz, D₂O) δ 133.4, 132.3, 131.6, 126.5 (t, $J_{CF} = 287.1$ Hz), 121.8, 34.1 (t, $J_{CF} = 20.8$ Hz); ¹⁹F NMR (376 MHz, D₂O) δ -114.3. IR (neat) $\nu = 3409$, 2936, 1487, 1428, 1405, 1322, 1222, 1168, 1052, 991, 871, 837, 805, 716, 599, 547, 475 cm⁻¹; elemental analysis calc'd for: C₈H₆BrF₂NaO₂S (305.91), calcd: C, 31.39%; H, 1.97%; S, 10.44%; found: C, 31.63%; H, 2.0%; S, 10.56%.

3-(1,1-Difluoro-6-chloroheptyl)quinoxalin-2-ol (42).

To a solution of 2-quinoxalinol (29.2 mg, 0.20 mmol, 1.0 equiv), sodium 7-chloro-1,1difluoroheptanesulfinate (40, 102.7 mg, 0.40 mmol, 2.0 equiv) and ZnCl₂ (27.3 mg, 0.2 mmol, 1.0 equiv) in DCM (0.8 mL) and H₂O (0.32 mL) was added TsOH•H₂O (38.0 mg, 0.20 mmol, 1.0 equiv). The reaction mixture was cooled (ice bath) and TBHP (70%) solution in water, 0.138 mL, 1.0 mmol, 5.0 equiv) was added with vigorous stirring and the stirring was continued at this temperature for 5 min. The reaction was warmed to room temperature and monitored by TLC until completion. Upon consumption of the starting material, the reaction was partitioned between DCM (2.0 mL) and saturated aqueous NaHCO₃ (2.0 mL). The organic layer was separated, and the aqueous layer was extracted with DCM (3×2.0 mL). The combined organic layers was dried over Na₂SO₄, concentrated in vacuum and purified with column chromatography to provide 42 in 83% yield as a white solid: $R_f = 0.60$ (1:1 EtOAc:hexanes); m.p. = 118–120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 8.2, 1.3 Hz, 1 H), 7.64 (ddd, J = 8.4, 7.2, 1.4 Hz, 1 H), 7.52-7.32 (m, 2 H), 3.52 (t, J = 6.7 Hz, 2 H), 2.59-2.47 (m, 2 H), 1.81-1.74 (m, 2 H),1.65–1.58 (m, 2 H), 1.52–1.40 (m, 4 H); ¹³C NMR (151 MHz, CDCl₃) δ 154.7, 150.6 (t, $J_{\rm CF}$ = 27.5 Hz), 132.6, 132.1, 131.6, 130.3, 125.0, 120.4 (t, $J_{\rm CF}$ = 244.5 Hz), 116.1, 45.1, 35.0 (t, $J_{CF} = 23.9$ Hz), 32.5, 28.7, 26.7, 22.0 (t, $J_{CF} = 3.9$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –101.9; IR (neat) v = 2934, 2853, 1668, 1609, 1161, 1025, 970, 909, 763, 718, 635, 589, 481, 466 cm⁻¹; HRMS (ESI-TOF) calc'd for $C_{15}H_{18}N_2OF_2Cl$ [M+H⁺] 315.1070; found 315.1073.

3-(2-(4-Bromophenyl)-1,1-difluoroethyl)quinoxalin-2-ol (43)

To a solution of 2-quinoxalinol (14.6 mg, 0.10 mmol, 1.0 equiv), sodium 2-(4bromophenyl)-1,1-difluoroethanesulfinate (**41**, 46 mg, 0.14 mmol, 1.5 equiv) and ZnCl_2 (20.0 mg, 0.14 mmol, 1.5 equiv) in DCM (0.3 mL) and water (0.12 mL) was added TsOH•H₂O (19.0 mg, 0.10 mmol, 1.0 equiv). The reaction mixture was cooled in ice and TBHP (70% solution in water, 0.068 mL, 0.5 mmol, 5.0 equiv) was added with vigorous

stirring and the stirring was continued at this temperature for 2 h. Then, a second addition of sodium 2-(4-bromophenyl)-1,1-difluoroethanesulfinate (41) (46 mg, 0.14 mmol, 1.5 equiv) and TBHP (70% solution in water, 0.068 mL, 0.5 mmol, 5.0 equiv) was performed to drive the reaction further. After 2 h the reaction mixture was warmed to room temperature and upon consumption of the starting material (10-15 min) the reaction was immediately partitioned between EtOAc (2.0 mL) and saturated NaHCO₃ (2.0 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (3×2.0) mL). The combined organic layers was dried over Na₂SO₄, concentrated in vacuum and purified with preparative TLC (1:1 EtOAc:hexane) to provide 43 in 56% yield as a white solid: m.p. = 240 °C; $R_f = 0.48$ (1:1 EtOAc/hexanes); ¹H NMR (600 MHz, acetone- d_6) δ 7.82 (dd, J = 8.1, 1.4 Hz, 1 H), 7.65 (ddd, J = 8.4, 7.3, 1.4 Hz, 1 H), 7.50–7.44 (m, 3 H), 7.38 (ddd, J = 8.4, 7.3, 1.3 Hz, 1 H), 7.30 (d, J = 8.3 Hz, 2 H), 3.86 (t, J = 17.2 Hz, 2 H); ¹³C NMR (151 MHz, acetone- d_6) δ 153.4, 151.7 (t, J_{CF} = 25.9 Hz), 134.0, 133.6, 133.1, 133.0 (t, J_{CF} = 4.5 Hz), 132.2, 131.7, 130.7, 124.8, 121.8, 119.5 (t, J_{CF} = 245.6 Hz), 116.3, 41.2 (t, $J_{CF} = 24.8$ Hz); ¹⁹F NMR (376 MHz, acetone- d_6) δ –100.1; IR (neat) = 2917, 2836, 1665, 1608, 1565, 1484, 1404, 1337, 1212, 1166, 975, 916, 894, 757, 648, 589, 528 cm⁻¹; HRMS (ESI-TOF) calc'd for C₁₆H₁₁N₂OF₂Br [M+H⁺] 365.0096; found 365.0101.

Quantum mechanical analysis for anisole

Figure 1: Full QM conformational scan with 10° dihedral increment around C1-C2-O3-C4 of anisole. Minimum energy conformation suggests that the methyl group is in plane

with the benzene ring. B3LYP method with 6-31G** basis set was used for QM calculations.

Quantum mechanical analysis for difluoroethylbenzene

Figure 2: Full conformational scan with 10° dihedral increment around C1-C2-C3-C4 of difluoroethylbenzene. Minimum energy conformation suggests that the methyl group is out of plane (\sim 90⁰) with the benzene ring unlike anisole. B3LYP method with 6-31G** basis set was used for QM calculations.

Quantum mechanical electrostatic potential surfaces of anisole and difluoroethylbenzene

Figure 3: Red represents regions of relatively negative electrostatic potential, while blue represents regions of positive electrostatic potential. Left: Dark red patches observed over the π -system of ring and the methoxy oxygen in anisole. Right: A relatively weaker red patch is observed around the π -system due to the inductive effect of the fluorine atoms in di-fluoroethylbenzene system. The color scale below the images shows the range of electrostatic potential values in au.

SI-31

3-57-pure-F/1 F-19, CDCl3, DPX-400 QNP Probe. CF3Cl as Ref at 0 ppm.

r						· · ·	· .	· · · · ·							·	·	·		· -			· .		·	·	·
-35	-40	-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-100 f1 (ppi	-105 m)	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160	-165

SI-33

3-DFES-13C/1 C-13 Routine 1D, DCH CryoProbe, 10-26-2006

3-70-crude-F/999 F-19/D2O, Ref with CCl3F

SI-36

3-90-ZnCl2-F/1 F-19, CDCl3, DPX-400 QNP Probe. CF3Cl as Ref at 0 ppm.

---91.399

3-71-Py-1-F-re/1 F-19, CDCl3, DPX-400 QNP Probe. CF3Cl as Ref at 0 ppm.

-10

-20

-30

-40

-50

-60

-70

-80

-90

-120

-130

-140

-150

-160

-170

-180

-190

-20

-110

-100 f1 (ppm)

3-71-py-2-F/1 F-19, CDCl3, DPX-400 QNP Probe. CF3Cl as Ref at 0 ppm.

///////

-			1	, I				<u>і</u> і			· 1						· 1	1					·				
	-10	D	-20	-3	0	-40	-!	50	-60	-70	-80	-90	-100 f1 (ppm	ı) -1	10	-120	-130)	-140	-150	-	160	-170	-18	0	-190	-20

aler-174-13C.1.fid C-13 Routine 1D, DCH CryoProbe, 10-26-2006	-165.14 -156.85 156.65 156.45 150.28	-138.80 -138.80 124.13 -122.34 -119.07 -119.07 -119.04 -119.01	 23.62 23.44 23.26

--91.21

Aler_227_1A_F.1.fid F-19, CDCI3, DPX-400 QNP Probe. CF3CI as Ref at 0 ppm. -91.64 -100 f1 (ppm) -10 -20 -30 -50 -60 -90 -110 -140 -150 -160 -40 -70 -80 -120 -130 -170 -180 -190 -20(

Aler_231_1t_F.1.fid F-19, CDCl3, DPX-400 QNP Probe. CF3Cl as Ref at 0 ppm.

F-19, CDCI3, DPX-400 QNP Probe. CF3Cl as Ref at 0 ppm.

AR_240_1-2_C13.1.fid C-13 Routine 1D, DCH CryoProbe, 10-26-2006	.02	.08 88 68 .68	53 94 91 89 68 68	42	57 39 52 52	
	-165	-156 -155 -155 -148	-138 -126 -122 -122 -122 -122 -122 -122 -121 -121 -121	-62.4	-14.6	
		$\langle \gamma \rangle$			\checkmark	
	ł					
						A

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

AR-240-1-2-F.555.fid	
F-19, CDCI3, DPX-400 QNP Probe.	CF3CI as Ref at 0 ppm.

-10 -20 -30	-40 -50	-60 -70 -80	$^{-90}$ $^{-100}$ $^{-11}$ $SI-68$ f1 (ppm)	0 -120 -130 -140	-150 -160 -170	-180 -190 -

Aler_228_2Fnw.1.fid F-19, CDCl3, DPX-400 QNP Probe. CF3Cl as Ref at 0 ppm.

--91.11

F-19, CDCl3, DPX-400 QNP Probe. CF3Cl as Ref at 0 ppm.

30.06-----

Aler_230_F.1.fid F-19, CDCI3, DPX-400 QNP Probe. CF3CI as Ref at 0 ppm. --89.30

3-71-3-acylazine-TsOH-crude-F/1 F-19, CDCl3, DPX-400 QNP Probe. CF3Cl as Ref at 0 ppm.

--91.712

Aler_232_1_F.1.fid F-19, CDCI3, DPX-400 QNP Probe. CF3CI as Ref at 0 ppm.

--91.78

SI-86

SI-99

3-85-1-2-F/1 F-19, CDCl3, DPX-400 QNP Probe. CF3Cl as Ref at 0 ppm.

SI-109

																		·				
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm)	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

3-106-salt-redisue-2/999 H-1 Routine 1D experiment. BBO Probe, 9-13-2007

1.0

8.5

8.0

7.5

SI-144

SI-145

SI-146

SI-147

