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Supplementary Figure 1: Analytical Workflow of lrGW AS (left) and µGWAS (right).  (A) Initial data cleaning based 
on univariate cut-offs for minor allele frequency (MAF), high observed LD among neighboring SNPs (LDobs), violation 
of Hardy-Weinberg equilibrium (HWE), or missing calls (NA). (B) Exclusion of data based on low data quality µ-
scores, including low ratio of observed vs. expected LD from HapMap is a unique feature of µGWAS. HapMap infor-
mation can also be used to determine whether to consider recombination hotspots in the diplotype structure. (C) µStat 
discrimination utilizes the same information about the diplotype structure as logistic regression with sequential inter-
action terms. Excluding a polarity in µGWAS based on polarity conflict or low µIC compared to µIC among its super-
sets serves a similar purpose as excluding SNPs in logisktic regression based on the AIC. (D) Identification of signifi-
cant results with low reliability is a unique feature of µGWAS. 

 
 
 
 
 
 
 
 
 
Supplementary Table 1:  Most significant genes by either method (lrGWAS 61,  >7.0, µGWAS: 60,  >6.5, total: 96)  
(−log10(p), rank) by lrGWAS and µGWAS. Len/Dst: length of gene and distance from gene (−0►: promoter region, ☼: 
direct hit, +0◄: beyond stop codon, ±0▲: entire gene). Results with low reliability µ-score are indicated in red. 
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 Method  Symbol Entrez lrGWAS  µGWAS Chr Coor  Len/Dst  (kb) P Name 
             

Both (Chr11) -1 8.69 (8) 10.11 (1) 11 80,664,454    --- 
 EEF1A1P12 1915 8.70 (7) 8.74 (2) 2 106,702,196 2 ±0▲   eukaryotic translation elongation factor  
 SYN3 8224 8.02 (22) 8.53 (3) 22 31,464,046 493 ☼   Synapsin III  
 RBFOX1 54715 8.77 (5) 8.31 (5) 16 6,268,023 659 ☼   ataxin 2 -binding protein 1  
 FAT4 79633 8.11 (17) 8.21 (6) 4 127,111,750 175 +250◄   FAT tumor suppressor …  
 PANX1 24145 8.19 (16) 7.70 (13) 11 93,415,789 52 −0►   pannexin 1  
µGWAS CREB5 9586 5.13 (94) 8.35 (4) 7 28,348,933 406 ☼   cAMP responsive element binding protein 5  
 B3GALT1 8708 7.37 (48) 8.19 (7) 2 168,340,869    beta-1,3-galactosyltransferase 1 
 OPHN1 4983 5.46 (90) 8.18 (8) X 67,037,602 385 +0▲   oligophrenin 1 / ARHGAP41  
 PITPNB 23760 7.02 (61) 8.03 (9) 22 26,626,038    phosphatidylinositol transfer protein, beta 
 SEC16B 89866 6.95 (65) 7.82 (10) 1 174,647,155 38 ☼   SEC16 homolog B (S. cerevisiae)  
 ARHGAP32 9743 7.08 (58) 7.80 (11) 11 128,420,261 223 ☼−0►   Rho GTPase activating protein 32  
 ABCC8 6833 5.90 (81) 7.76 (12) 11 17,400,710 84 ☼   ATP-binding cassette, sub -family C (CFTR/MRP)  
 KCNJ15 3772 6.47 (73) 7.67 (14) 21 38,578,375 4 −0►   potassium inwardly -rectifying channel …  
 BRE 9577 7.60 (34) 7.61 (15) 2 28,235,520 444 ☼   brain and reproductive organ expressed  
 NLRP3 114548 7.71 (31) 7.61 (16) 1 243,940,658 30 +0◄   NLR family, pyrin domain …  
 RASSF8 11228 7.60 (33) 7.50 (17) 12 25,927,109 24 −20►   Ras association (RalGDS/AF -6) dom ain family …  
lrGWAS CA397621 -1 9.50 (1) 2.34 (92) 5 25,722,226    --- 
 DYSF 8291 9.18 (2) 5.06 (73) 2 71,622,796    dysferlin 
 KCNB2 9312 9.03 (3) 3.80 (80) 8 73,488,130 370 −100►   potassium voltage -gated channel, Shab -related …  
 ?  -1 8.90 (4) 0.00 (96) 7 118,571,616    --- 
 ? -1 8.75 (6) 2.93 (88) 1 83,607,917    --- 
 PNP 4860 8.57 (9) 6.12 (62) 14 20,027,673    purine nucleoside phosphorylase 
 DOK6 220164 8.53 (10) 3.26 (84) 18 65,507,016 440 ☼   docking protein 6  
 VPS54 51542 8.46 (11) 6.55 (60) 2 64,169,397    vacuolar protein sorting 54 homolog 
 FAM13C 220965 8.33 (12) 3.15 (86) 10 60,917,716    family with sequence similarity 13, member C 
 MYO16 23026 8.27 (13) 4.35 (79) 13 107,967,111 577 −20►   myosin XVI  
 TMCO7 79613 8.22 (14) 4.94 (74) 16 67,514,126 240 ☼  transmembrane channel-like 7 
 SETD7 80854 8.21 (15) 6.69 (56) 4 140,865,487    SET domain containing (lysine methyltransferase) 7 
 OR10H3 26532 8.05 (18) 2.52 (90) 19 15,712,229    olfactory receptor … 
 MVK 4598 8.05 (19) 7.27 (29) 12 108,547,979    mevalonate kinase 
 MLC1 23209 8.05 (19) 5.59 (70) 22 48,812,715    megalencephalic leukoencephalopathy … 
 COL21A1 81578 8.04 (21) 4.52 (78) 6 56,216,468    collagen, type XXI, alpha 1 
Both PPP2R2C 5522 7.60 (35) 7.38 (22) 4 6,565,679 212 +20◄   protein phosphatase 2 …  
 MLEC 9761 7.58 (37) 7.32 (24) 12 119,598,228    malectine 
 COL8A1 1295 7.89 (24) 7.10 (36) 3 100,886,715    collagen, type VIII, alpha 1 
µGWAS ATP8B1 5205 5.44 (91) 7.40 (18) 18 53,604,782    ATPase, aminophospholipid transporter 
 SHISA6 388336 6.31 (76) 7.40 (19) 17 11,178,551    shisa homolog 6 (Xenopus laevis) 
 ? -1 5.51 (89) 7.40 (20) 22 25,862,056    --- 
 ?  -1 7.07 (59) 7.39 (21) 16 61,231,559    --- 
 BI918059 -1 7.16 (55) 7.35 (23) 3 35,141,439    --- 
 TFDP2 7029 6.66 (69) 7.30 (25) 3 143,151,151    transcription factor Dp-2 (E2F dimerization partner 2) 
 PARD3 56288 6.43 (74) 7.29 (26) 10 34,324,843 704 +100◄   par-3 partitioning defective 3 homolog (C. elegans)  
 CNTNAP2 26047 6.64 (70) 7.29 (27) 7 146,696,753 2,299 ☼   contactin associated protein -like 2  
 DLGAP1 9229 5.84 (82) 7.27 (28) 18 4,162,963 381 *−200►   discs, large (Drosophila) homolog -associated  
 MYO1B 4430 5.75 (85) 7.25 (30) 2 192,230,956    myosin 1B 
 NALCN 259232 6.52 (72) 7.24 (31) 13 100,580,679 344 ☼   sodium leak channel, non -selective  
 BG205085 -1 6.96 (64) 7.21 (32) 3 70,521,278    --- 
 ISOC1 51015 6.30 (77) 7.19 (33) 5 128,517,352    isochorismatase domain 
 DST 667 7.25 (52) 7.18 (34) 6 56,824,034 184 −0►   dystonin  
 BAZ2B 29994 6.99 (62) 7.15 (35) 2 160,127,655    bromodomain adjacent to zinc finger domain, 2B 
 AI028357 -1 6.82 (66) 7.09 (37) 13 61,594,422    --- 
 MCTP2 55784 6.09 (79) 7.02 (38) 15 92,923,138    multiple C2 domains, transmembrane 2 
 ATP2B2 491 5.41 (92) 7.02 (39) 3 10,432,572 121 ☼   ATPase, Ca++ transporting, plasma membrane 2  
 FAM59A 64762 5.55 (88) 7.02 (40) 18 28,282,875 203 ☼   Family with sequence simila rity 59, member A  
lrGWAS HLADQB1 3119 7.99 (23) 2.49 (91) 6 32,760,295    MHC, class II, DQ alpha 1 
 ? -1 7.89 (25) 3.21 (85) 7 156,366,610    --- 
 COBLL1 22837 7.89 (26) 5.84 (66) 2 165,394,092    cordon-bleu protein-like 1 
 MED17 9440 7.83 (27) 5.80 (67) 11 93,190,216    mediator complex subunit 17 
 KCNS3 3790 7.78 (28) 6.02 (64) 2 18,114,469 1 +50◄   potassium voltage -gated channel …  
 LOC... 100616530 7.72 (29) 4.74 (76) 8 96,508,202    --- 
 LOC... 388882 7.71 (30) 5.66 (68) 22 22,159,593    --- 
 NAV3 89795 7.64 (32) 6.37 (61) 12 77,352,055    neuron navigator 3 
 SPTLC1 10558 7.60 (35) 3.42 (83) 9 91,986,563    protein tyr phosphatase, receptor type, V, pseudogene 
 PLCE1 51196 7.57 (38) 2.81 (89) 10 95,741,477 294 ☼   phospholipase C, epsilon 1  
 DLG2 1740 7.52 (39) 5.31 (72) 11 83,257,555 2,139 ☼   discs, large homolog 2 (Drosophila)  
 EXOC6 54536 7.50 (40) 6.61 (58) 10 94,769,530 224 ☼   exocyst complex component 6  
Both GRB14 2888 7.31 (51) 6.77 (49) 2 165,040,586 128 +100◄   growth factor re ceptor -bound protein 14  
 SLC25A13  10165 7.39 (46) 6.76 (51) 7 95,392,974 201 +5◄   solute carrier family 25, member 13 (citrin)  
 HEATR3 55027 7.48 (41) 6.73 (54) 16 48,631,409    HEAT repeat containing 3 
 ? -1 5.40 (93) 6.95 (41) 4 106,143,434    --- 
 ITPR1 3708 6.99 (63) 6.95 (42) 3 4,703,008 330 ☼   inositol 1,4,5 -triphosphate receptor, type 1  
 SCN4A 6329 5.01 (95) 6.92 (43) 17 59,402,439 32 ±0▲   sodium channel, voltage -gated, type IV, alpha subunit  
 CR591360 -1 6.68 (68) 6.90 (44) 5 38,796,716    --- 
 TYK2 7297 6.04 (80) 6.87 (45) 19 10,333,933 28 +0◄   tyrosine kinase 2  
 LHX2 9355 6.42 (75) 6.86 (46) 9 123,915,038    LIM homeobox … 
 ? -1 5.80 (84) 6.82 (47) 9 27,859,510    --- 
 CNTNAP4 85445 6.16 (78) 6.79 (48) 16 75,163,254 281 +10◄   contact in associated protein -like 4  
 PDIA5 10954 6.57 (71) 6.77 (50) 3 124,348,989    protein disulfide isomerase … 
 ? -1 4.83 (96) 6.75 (52) 18 66,372,380    --- 
 LY6H 4062 5.70 (86) 6.74 (53) 8 144,308,256    lymphocyte antigen 6 complex … 
 FAM81A 145773 5.63 (87) 6.73 (55) 15 57,615,590 63 +0◄   family with sequence similarity 81, member A  
 GABRB3  2562 5.81 (83) 6.66 (57) 15 24,599,861 226 -50►   gamma -aminobutyric acid (GABA) A receptor, beta 3  
 VPS13B 157680 6.75 (67) 6.56 (59) 8 100,007,646    vacuolar protein sorting 13 homolog B (yeast) 
 SETD4 54093 7.48 (42) 1.47 (95) 21 36,344,836    SET domain containing 4 
 GPC5 2262 7.43 (43) 5.62 (69) 13 91,710,120    glypican5 
 ALG6 29929 7.40 (44) 4.81 (75) 1 63,530,843    asparagine-linked glycosylation 6 homolog 
 BE794467 -1 7.40 (45) 3.46 (82) 2 140,701,918    --- 
 IYD 389434 7.38 (47) 6.11 (63) 6 150,731,193    iodotyrosine deiodinase 
 KIAA0146 23514 7.36 (49) 5.95 (65) 8 48,244,020    --- 
 SGSM1 129049 7.36 (50) 5.34 (71) 22 23,550,433    small G protein signaling modulator 1 
 BU665313  -1 7.23 (53) 3.03 (87) 18 39,506,698    --- 
 AUTS2 26053 7.21 (54) 3.58 (81) 7 69,533,347    autism susceptibility candidate 2 
 GTF3C5 9328 7.13 (56) 2.24 (94) 9 132,943,037    general transcription factor … 
 DCN 1634 7.09 (57) 4.73 (77) 12 90,068,162 32 -50►   decorin/bone proteoglycan II  
 POSH 57630 7.07 (60) 2.27 (93) 4 170,489,901 177 ☼   SH3 domain containing ring finger 1   
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Supplementary Figure 2: Extended Manhattan Plot for  the Comparison of 185 CAE cases vs matched con-
trols. top/center: see Figure 2 legend for details; bottom: lrGWAS with sequential interaction. Genes implicated by 
only one of the methods are shown with that method against the dark background of univariate results. 
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Cases 

The study was approved by the IRBs of both the Mount Sinai School of Medicine and The 
Rockefeller University. Our cases included 185 patients with CAE according to the criteria 
devised by the International League against Epilepsy [50]. To reduce genetic heterogeneity, we 
required that patients did not have seizures other than febrile seizures prior to the onset of 
absence seizures, that they had at least one EEG with a 3 Hz spike-wave pattern, and that all 
patients were be seizure free on antiepileptic medication. Only 21 patients developed 
generalized tonic clonic seizures after the onset of absence seizures, and only one patient had 
myoclonic jerks.  

 

Controls 

Only the 8,231 controls that were typed for the Illumina HumanHapmap 300 array or higher 
were considered. To reduce confounding due to population stratification and the risk of spurious 
results, we genotypically matched three sets of controls to the cases by ancestry information 
markers [51] using distinct criteria, and we then performed a stratified analysis [52] adjusted for 
overlaps of subjects between strata. We randomly split the top 96 ancestry informative markers 
(AIMS) [51] into two sets to create distinct control groups matched for different variables. 
Matching was performed in two different ways: 1) matching the frequency distribution at those 
AIMS on a population level and 2) matching cases individually to controls for as many 
genotypes as possible at either of the AIMS subsets, giving preference to controls matching by 
several sets of criteria. To check the quality of our matching algorithms, we calculated lambda 
(the inflation factor of the chi square distribution [53]) from all genotyped loci in the respective 
case/control samples. Lambda with all three control groups was 1.00–1.01, consistent with 
absence of population stratification. The availability of three different control groups is helpful to 
reduce the risk of false positives due to random variation in the control genotype frequencies.  

 

Genotyping 

To match the controls, we restricted the analysis to those markers included in the Illumina 
HumanHapmap300 SNPs. Genotyping was performed at the Illumina preferred vendor 
laboratory of the DNA Sequencing and Genotyping facility at Cincinnati Children’s Hospital 
(CCHMC).  

We performed extensive data checking for quality assurance. First, the reported sex was 
validated using X-linked SNPs. Although µGWAS does not require SNPs to be in Hardy-
Weinberg Equilibrium (HWE), we then inspected all SNPs that deviated from HWE (p < 0.001, 
3589 SNPs) and visually inspected all loci with >10% missing calls. After the first 140 subjects, 
we switched from the Illumina HumanCNV370_Duo to the HumanCNV370_Quad chip, which, in 
general, provides higher quality calls. After the GeneTrain2 algorithm became available, we 
manually rescored all loci with >1% of missing calls and visually inspected all SNPs where the 
new algorithm did not substantially reduce or even inflated the number of missing calls. We also 
inspected all SNPs where a χ2 test rejected the homogeneity between duo and quad chip case 
distributions (p<0.0001). 

After visual inspection, we removed all SNPs where 20% of calls were missing. If either >98% 
were AA or >98% were BB across cases and controls, the SNP was excluded as non-
informative (minor allele frequency, MAF). Similarly, if two neighboring SNPs had >98% 
“identical” contingency tables, the SNP was also excluded as non-informative (LD). Missing data 
were recoded as interval censored, based on the sign of ‘theta’ (A−B)/(A+B). SNPs missing by 
design in the duo chip were excluded from the comparison. 



WITTKOWSKI KM et al.  Pharmacogenomics  (2013) 14(4), 391–401 -S5- 

 

To guard against differences between chips, we included the χ2 test for homogeneity across 
case distributions across chips when computing the data quality µ-scores. 

Statistics 

U-statistics for multivariate data have been recently extended to allow variables to be hierarchi-
cally structured [14]. Since then, details of the method have been repeatedly published (see [54] 
for an overview) with applications ranging from sports [21] and policy making [22] to medicine 
[14]. 

As each of six neighboring SNPs could be either ‘good’, ‘bad’, or ‘irrelevant’, a comprehensive 
analysis requires 36 = 729 ‘polarities’ (combinations of −1/0/+1) to be considered, and each of 
these multivariate analyses is substantially more complex than a univariate analysis. For each 
polarity, the allele profiles form a partial order (PO), where allele profile A confers more risk than 
profile B if it has the same risk alleles as profile B plus some additional risk alleles. Denoting risk 
alleles with capital letters, (Xx, YY, zz), for example, confers a greater risk than (Xx, Yy, zz), but 
the pairwise ordering of either profile with (xx, Yy, Zz) is ambiguous, because the contribution of 
Z to the overall risk vs. that of X and Y is unknown. The profile µ-score (u-scores for multivariate 
data) is the number of profiles with an unambiguously lower risk minus the number of profiles 
with an unambiguously higher risk. Treating loci with one unknown allele as ‘interval-censored’, 
i.e., as not-xx (xX or XX) or not-XX (xx or xX), respectively, further decreases ambiguities. One 
then compares disease categories by a linear rank test [55] applied to the µ-scores [18]. As the 
direction of each SNP’s effect is unknown, many polarities need to be considered when screen-
ing for the one that best discriminates between disease categories. 

Here, we first scored the subjects within each stratum, and then computed hierarchically struc-
tured µ-scores [14], using a special case of such a hierarchical structure. At the first level of the 
hierarchy one computes the matrices of pairwise comparisons representing the order (partial or-
der in case of censored calls) of the SNPs, e.g. in the context of Figure 1, X, Y, and Z. At the 
second level of the hierarchy, the matrices of two adjacent SNPs are combined into a matrix for 
interval between these SNPs, e.g., (Y,Z), unless the two SNPs are separated by a recombina-
tion hotspot, where the matrix is filled with zeroes (X,Y)=0. Then, at the third level, the n single 
SNP and n−1 interval matrices are combined to obtain the diplotype matrix, from which the µ-
scores were computed.  

At each locus, we performed tests for diplotypes of length 1–6 centered at or above the locus. 
We allowed <50% of SNPs to be excluded from a diplotype, but not the first and the last, and 
considered all combinations of polarities (−1, 0, +1) among the SNPs included, except that the 
first and the last SNP as well as at least 50% of the SNPs included needed to be non-null. I.e., 
for a diplotype of length 5, the polarities (±1, ±1, ±1, ±1, ±1), (±1, 0, ±1, ±1, ±1), (±1, ±1, 0, ±1,  
±1), (±1, ±1, ±1, 0, ±1), (±1, 0, 0, ±1, ±1), (±1, 0, ±1, 0, ±1), and (±1, ±1, 0, 0, ±1). 

The effect and variance estimates of each block were then incorporated into a stratified Wil-
coxon/Mann-Whitney type test statistic [52]. To adjust for the overlap between strata, the aver-
age across the three strata was weighted with an empirically confirmed √3, rather than 3.  

By construction, tests based on µ-scores are sensitive to all monotonous (including dominant, 
trend, and recessive) alternatives.  

As no particular hypotheses regarding specific loci were to be confirmed and most adjustments 
do not change the order of the results, no adjustment for multiple confirmative testing is war-
ranted. 
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To avoid artifacts, we used four strategies: 

• Quality-of-Data µ-score:  We excluded SNPs not only based on the usual univariate criteria 
for missing calls, HWE, and minor allele frequency (MAF), but also when they had a low 
overall data quality µ-score, even if no category met the univariate criteria. We included ob-
served short distance LD and the ratio between observed and expected LD (from HapMap) 
among the criteria. 

• Polarity conflict, PC:  We excluded polarities from analysis when the product of the signs 
assigned to pairs of SNPs in high LD and the sign of the LD were discordant.  

• Monotonicity in µIC:  As µIC (number of unambiguous pairwise orderings) tends to decline 
with diplotype length, we also excluded polarities resulting in lower µIC for a diplotype than 
the median µICs of its supersets as a non-parametric approach to regularization. 

• Reliability µ-score:  Finally, we highlighted results as questionable (red) when the reliability 
µ-score µ(p value, µIC) was low. 

As the length of diplotypes increases, more pairwise orderings become ambiguous with µGWAS 
as soon as more ‘noise’ than ‘signal’ is added [14]. Hence, in contrast to lrGWA, no arbitrary up-
per limit (based, e.g., on AIC [27]) for diplotype length is needed. Significant results were asso-
ciated with a particular gene only for regions within 20 kB of a gene or overlapping EST.  

 

Software and resources used:   Relationships were compiled using IPA (Ingenuity® Systems, 
www.ingenuity.com), KEGG (Kyoto Encyclopedia of Genes and Genomes, 
http://www.genome.jp/kegg), and BioGraph (Biomedical knowledge discovery server, 
http://www.biograph.be). Figure 3 was created using the IPA Path Designer. The pathway in-
volved in presynaptic cycling (SYN3 ... DLG4) was adapted from [31].  

Web services provided:  GWAS data can be uploaded to a grid server via the Web 
(http://mustat.rockefeller.edu).  
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