Supplementary data

Band	Protein name (species)	Acc. No.	MS/mps*	Sequence coverage
1	Integration Host Factor Protein alpha (Escherichia coli)	2IIE_A	701/22	54%
2	HU protein beta (Escherichia coli)	NP_286182	656/11	65%

Table S1. Protein identification by LC-nanoESI-MS/MS.

* MS/mps: Mowse Score/matched peptides.

Supplementary Figure Legends

Figure S1. A His-pulldown assay found interactions between DMP12 and two DNA binding proteins. When total extracted *E.coli* proteins were used as prey, the N-terminal His₁₀-tagged DMP12 bait pulled down two DNA binding proteins. LC-nano ESI-MS/MS identified these proteins as HU beta (HUB) and IHF alpha (Table S1 for protein details).

Figure S2. BS3 Cross-linking assays only confirmed the interaction between DMP12 and *Neisseria* **HU.** Protein-protein interactions produced a clear band only in the DMP12/HU reaction. Conversely there is no evidence for DMP12-IHF cross-linking because the faint bands in the DMP12-IHF columns are not significantly stronger than the ~ 38 kDa band in the IHF-only control. White asterisks indicate the shifted, cross-linked bands.

Figure S3. Sedimentation velocity (SV) analysis of DMP12/Neisseria HU complex by analytical ultracentrifugation. For sedimentation velocity (SV) analysis, all samples were diluted to a suitable concentration (OD 280 absorption between 0.1~0.8) using 20 mM Tris pH 7.4 buffer and 5 mM MgCl₂. All analytical ultracentrifugation analyses were performed at 45000 rpm using a 4-hole AnTi60 rotor at 20 °C in a Beckman Optima XL-1 AUC equipped with absorbance optics (OD 280 nm). Data were analyzed using the c(s) distribution of the Lamm equation solutions calculated by the program SEDFIT (http://www.analyticalultracentrifugation.com). The SEDFIT parameters were: buffer density 0.9988 g/ml; buffer viscosity 0.01069 poise; the protein partial specific volume was 0.73. The HYDROPRO program (20) was used to calculate the theoretical sedimentation coefficient (S value) from the proposed binding model and from the PDB coordinate files for the DMP12 and Anabaena HU. (A) 10 μ M N-terminal His₁₀ tagged DMP12. Only the monomeric form could be found. The S value from the SV data (2.01) is a good match to the theoretical S value of N-terminal His₁₀ tagged DMP12 monomer, which is given by HYDROPRO as 2.0. (B) 100 µM C-terminal His₆ tagged Neisseria HU protein. Only the dimeric form could be found. The S value from the SV data (2.11) is close to the theoretical S value of HU dimer, given by HYDROPRO as 1.9. (C) 10 µM N-terminal His10 tagged DMP12 and 10 µM C-terminal His₆ tagged Neisseria HU protein. The observed S value (3.02) could only have resulted from the DMP12 monomer binding to the HU dimer form (HYDROPRO: 3.19). A full comparison of the theoretical and observed S values is given in Table 2.

Figure S4. The DMP12 structure binds a magnesium ion. The magnesium ion that interacts with the Asp13 of the DMP12 protein may come from the magnesium

acetate in the reservoir. This finding suggests that DMP12may have a divalent metal ion binding activity. However, we also found that the presence or absence of magnesium did not make very much difference in our subsequent studies on HU-DMP12 interaction. More work will therefore be needed to determine the functional roles of this metal binding activity, if any.

Figure S5. EMSA results from different concentrations of *Neisseria* HU and 2.5 nM plasmid DNA substrate. *Neisseria* HU protein produced band shift of the plasmid DNA in a dose-dependent manner.

Figure S6. DMP12's ability to protect *Neisseria* HU protein from trypsin digestion is dose-dependent. The increasing molar ratios of DMP12 to 100 μ M *Neisseria* HU protein are 1:1, 2:1, 4:1, respectively. His-pulldown was used to purify the un-cleaved C-terminal tagged *Neisseria* HU protein.

Figure S7. The expression of DMP12 increased the growth rate of *E. coli*. (A) The cell density was monitored at OD_{600} after the addition of 1mM IPTG. Data were obtained from three replicate experiments. The different baseline OD_{600} values at 0 hour suggest that *E.coli* transformed with the DMP12 plasmid grows more slowly

than *E.coli* transformed with the empty pET21 plasmid. The reason for this is unknown. (B) Recombinant DMP12 expression in the soluble fraction extracted from the *E.coli* cells. The temperature used in this assay was $37 \degree$ C.

Figure S8. Structural comparison of HI1450 and DMP12 (A), and multiple sequence alignment of HI1450 (B) and DMP12 (C) homologs in different species.

Supporting figures

Figure S1

	B	S 3-	Cr	ossl	ink	ing	Inj	put		B	S3-	Input					
DMP12		+	+	-	Ŧ	Ŧ	-	+	DMP12	-	+	+	-	+	+	-	+
Neisseria HU (C-His6)	+	-	+	+	-	+	+	-	Neisseria IHFalpha (C-His6)	+	-	+	+	-	+	+	-
MgCl2	-	-	-	+	+	+	-	-	MgCl2	-	-	-	+	+	+	-	-
BS3	+	+	+	+	+	+	-	-	BS3	+	+	+	+	+	+	-	-
$\begin{array}{c} \mathbf{kDa} \\ 98 \\ - \\ 49 \\ - \\ 38 \\ - \\ 28 \\ - \\ 17 \\ - \\ 14 \\ - \\ 6 \end{array}$	5 16 1		14 .	*		*		-	$\begin{array}{c} \mathbf{kDa} \\ 98 \\ 62 \\ 49 \\ 38 \\ 28 \\ 17 \\ 14 \\ 6 \end{array}$		-	-	-	-	1		

Figure S2

Figure S3

Figure S4

Neisseria HU (C-His6) (µM) 0 1 2 4

DNA substrate concentration: 2.5 nM

Figure S5

Figure S6

Figure S7

Figure S8 (B)

HI1450 (Haemophilus influenzae) HI1450 homolog (Pasteurella multocida) HI1450 homolog (Vibrio splendidus) HI1450 homolog (Vibrio cholerae) HI1450 homolog (Escherichia coli) Consensus	1 1 1 1	- MT N - MT M	TE TE EA - N	I KI I TI N DI A EI N N	II KLD KLD LMS LIS RLT ;	PD PD YD ID ED	TA VA DA DT ET	- D D D D D E (: :	A Y A Y F A Y F A Y A Y A Y	20 DI DI DI DI DI * *	FL FL FL FL	EM EM EM EM EL	AG AP AP AP AA	E N I E H I D N I D N I D N I : :	0 D P D P E P E T D P * : .	A D A D A D A D A D * *	. L L V V V .	L FI L FI L F ^T L F ^T L FI * *	40 NL NL TA TA NL	QF QF QF QF QF	E E E D D D E E : :	R G R G R G R G R G R G	GV GV AA AA GA	50 E F E F E L E L E L	
H11450 (Haemophilus influenzae) H11450 homolog (Pasteurella multocida) H11450 homolog (Vibrio splendidus) H11450 homolog (Vibrio cholerae) H11450 homolog (Escherichia coli) Consensus	50 49 50 47 51 32	VET VET VET VDV FEP	AD GD GD AE		EEE EME VEH DDG QEH	IG IG VG VG VD	VL VL FD FD			70 	E V E V E V E V E V	WV WI RI VI	GL GL GL GL SL	VN VN VN AD	20 E Q - E Q - E A D E E N S E D	D E D E D V G E	MD MD LD LD IN ::	DV DI DV DV DV VV	90 FA FA FA FA FA	KF KF RL RM RI ::	L L L L L L L	SH SH SR SR CR	R E R E D P D P E K	100 E D E D E H D Q D H : .	
HI1450 (Haemophilus influenzae) HI1450 homolog (Pasteurella muliocida) HI1450 homolog (Vibrio splendidus) HI1450 homolog (Vibrio cholerae) HI1450 homolog (Escherichia coli) Consensus	99 98 100 97 101 61	R E F R E F K F C K F C K L C	H V H V H I H N H I		11 (K - (K - (R D (R D (R D R E -	0																			
Figure S8 (C) DMP12 (Neisseria meningitidis MC58) 1 conserved hypothetical protein (Neisseria gonorrhoeae PID332) 1 hypothetical protein NgonD_00327 (Neisseria gonorrhoeae DG118) 1 hypothetical protein (Neisseria lactamica 020-06) 1 hypothetical protein E9Q_09985 (Moraxella catarrhalis BC1) 1 Consensus							NEH NEH NEH NEH NTR		10 IF IF IF VF	CLK CLK CLK CLE * * :	D N D N D N D N R N	VSI VSI VSI VSI IEI	20 SE SE SE SE	YTE YTE YTE LPK	MV MV MV MV	DWA DWA DWA DWA DWA	30 Y EI Y EI Y EI Y KI Y AI	N I Q N I Q N I Q N I Q N I Q N A G	S E S E S E S E S Q * :	T V\ T V\ T V\ T V\ T V\ T V\	40 /EI /EI /EI /EI /EI /IL	TE TE TE NE	NQ NQ NQ EE'	IIE IIE IIE IIE VRY	50 YQN YQN YQN YQN YQN YES *:
DMP12 (Neisser conserved hypothetical protein (Neisser hypothetical protein NgonD_00327 (Neisser hypothetical protein (Nei hypothetical protein E9Q_09985 (Mon	R G I R G I R G I C G I T G I	WG WG WG WG	LVS LVS LVS IIS ::*	60 E I E I E I E I E I	T D N T D N T D N T D N T D N T D N	· WL WL WL WL	F G F F G F F G F F G F F G L	70 SE SE SE SE SE SE SE SE	G D V G D V G D V G D V D D V	/L /L /L /L /I /	OKE OKE OKE OFD	80 SI SI SI SI IM :	LTV LTV LAV QNI :	KE KE KE IN	K L 0 K L 0 K L 0 A 1 1 : :	90 2 N S 2 N S 2 N S 2 N S 3 N S 4	D F D F D F D F Y I	STI STI STI KII	E P L E P L E P L E P L E P L D Q T	100 VKN VKN VKN VKN VGK * :					
DMP12 (Neisser conserved hypothetical protein (Neisser hypothetical protein NgonD_00327 (Neisser hypothetical protein (Neis hypothetical protein E9Q_09985 (Mod	eria me a gono ia gon sseria l raxella	ningitia rrhoeae orrhoea actamic catarrh Q	lis M e PIL e DC e 02 e alis Conse	C58) 332) 3118) 9-06) BC1) ensus	100 100 100 100 101 63	 	1 V L 1 V F 1 V L 1 V L 1 V L 5 I L	E Y A E Y A E Y A E Y A D Y A : * *	110 	N E K N E K N E K N E K N Q K * : *	TV TV TV TV SV	I FH I FH I FH I FH V F Y : * :													