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Supplementary Note 1

Derivation of model for electron scattering between top and bottom electrodes.

Here we consider how the misalignment of the Dirac cones of the graphene electrodes in our devices

a�ects our measured I(Vb) curves. We separate the real-space scattering potential, VS(r, z), into

the product of an in-plane r =(x, y)-part and a longitudinal z-part by expanding the (x, y)-part

over the Bloch states centred on the Dirac point of the top graphene electrode (collector). We

�nd that, to �rst order, the scattering potential VS(q) reduces to a form in which the angular

misorientation of the two graphene layers appears only as a prefactor term outside the scattering

integral. Hence, the misorientation reduces the overall amplitude of the tunnel current but not its

dependence on Vb and / or Vg. In e�ect, apart from a small reduction of the tunnelling probability

due to the misorientation, the e�ect of the scattering potential on the Vb- and Vg-dependence of

the tunnel current is the same as if the two graphene layers were aligned.

The Bardeen Transfer Hamiltonian matrix element for a transition from a state ΨB in the

bottom layer to a state ΨT in the top layer has the form

MS
BT =

ˆ
V

dVΨ∗T (r, z)VS(r, z)ΨB(r, z), (S1)

where the integral is over all space, V , r is the in-plane position vector, z is the co-ordinate

in the tunnelling direction normal to the graphene plane and VS(r, z) is the scattering potential

that induces transitions between states with di�erent in-plane wavevectors. This potential could

originate, for example, from ionized impurities, mis-alignment of the graphene and barrier layers,

and / or �uctuations in the electron density. The wavefunction for a state with wavevector k can

be written in terms of basis functions,Φjk, on two identical atoms labelled 1 and 2 (j = 1, 2) per

unit cell in the following way [44]

Ψk(r, z) = χ1(k)Φ1k (r, z) + χ2(k)Φ2k (r, z) , (S2)

where Φjk (r, z) is of the Bloch form:

Φjk (r, z) =
1√
A

exp(ik.r)ujk(r)h(z). (S3)

Here, ujk(r) is the cell-periodic part of the Bloch function in the graphene layer, and h(z)

describes the z dependence of the electron wavefunction in the graphene and barrier.

In Eq. (S2), the χj factors have the well-known form for graphene within the tight binding

approximation:
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[
χ1

χ1

]
=

[
e∓iθk/2

se±iθk/2

]
, (S4)

where the upper (lower) sign is used for the band around the K (K') point of Brillouin zone,

s = +1 or −1 for electrons in the conduction or valance band respectively, and θk = arctan (ky/kx)

speci�es the orientation of the wavevector. When we take the overlap integral between states in

the two di�erent graphene layers, we have to consider all of the di�erent combinations of the basis

functions. However, for simplicity, here we only show explicitly the contribution to the matrix

element due to the j = 1 parts of ΨT and ΨB i.e. ignoring the j = 2 components. These cross

terms are reintroduced in Eq. (S18) and fully included in our numerical calculations.

We consider the case where the graphene lattices are rotationally misaligned by an angle ω,

which produces a corresponding misalignment of equivalent Dirac points in the two graphene layers.

We de�ne the displacement of the Dirac cones in k space by the wavevector QD, which satis�es

ω = 2 sin−1(3a|QD|/8π) [15,45] Therefore, the matrix element becomes:

MS
BT =

ˆ
V

dVΨ∗kT+QD
(r, z)VS(r, z)ΨkB

(r, z), (S5)

where kB is the wavevector in the bottom layer relative to the Dirac point in that layer, and

kT + QD is the wavevector of the electron in the top layer measured relative to the position of

the same Dirac point in the LH layer. Equivalently, kT is the electron wavevector in the top layer

relative to the Dirac point position in that layer. In the following analysis we show that the relative

rotation of the graphene layers does not a�ect the shape of the I(Vb) curve for any Vg (although

it does determine the magnitude). To do this, we �rst let the scattering potential be separable of

the form

VS(r, z) = VS(z)V
||
S (r) (S6)

and expand V
||
S (r) over Bloch states centred on the Dirac point in the rotated (top) layer, i.e. we

set

V
||
S (r) =

∑
k

uVSk (r)eik.r (S7)

where the wavevector, k, is relative to the the Dirac point in the bottom layer, i.e. expressed in

terms of the unrotated co-ordinates in the bottom layer, and uVSk (r) is the appropriate cell-periodic

function. Writing k = QD + k′T, the scattering potential becomes:
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V
||
S (r) = eiQD.r

∑
k′
T

C(k′T)uVSk′
T+QD

(r)eik
′
T.r. (S8)

Substituting this form of the potential into the matrix element, Eq. (S5), reveals that

MS
11BT =

1

A

ˆ
V

dV
[
χ∗1(kT + QD)e−ikT.ru∗1kT+QD

(r)hT (z)×

VS(z)

∑
k′
T

C(k′T)uVSk′
T+QD

(r)eik
′
T.r


︸ ︷︷ ︸

V
||
S (r)

χ1(kB)eikB.ru1kB
(r)hB(z). (S9)

The function V
||
S (r) is closely related to the scattering potential V

||
S (r). In particular, since

these functions have the same Fourier coe�cients, they have the same width in real and reciprocal

space. In the barrier region, we assume that the wavefunctions have the form

hB(z) ≈ 1√
D
e−κ(z+b) and hT (z) ≈ 1√

D
eκz, (S10)

where b is the barrier width, κ is the decay constant in the barrier, and D is a normalization

constant for h(z), which is comparable to an inter-planar separation in graphite. Consequently, by

also inserting the form of χ1(k) given in Eq. (S4) for scattering between the K to K Dirac points,

we �nd that the matrix element, Eq. (S9), becomes

MS
11BT =

e−κb

AD
ei(θT−θB+ω)/2Ξ×

ˆ
S

dSei(kB−kT).ru∗1kT+Q(r)u1kB
(r)V

||
S (r) (S11)

where Ξ =
´
VS(z)dz is an integral over the barrier region. Assuming that the magnitudes of kB

and kT are much smaller than the width of the Brillouin zone, we may set u1k(r) = u1k=0(r) [46]

so that the matrix element becomes

MS
11BT =

e−κb

AD
ei(θT−θB+ω)/2Ξ

ˆ
S

dSei(kB−kT).rV
||
S (r)u∗1kT=0(r)u1kB=0(r). (S12)

Since the e�ective scattering potential, V
||
S (r) and plane wave in the integral vary slowly over

a unit cell,



4

MS
11BT =

γ11(ω)e−κb

AD
ei(θT−θB+ω)/2Ξ

∑
C

ei(kB−kT).rCV
||
S (rC), (S13)

where rC is the position within the Cth unit cell, the sum is over all unit cells in the x, y plane,

and γ11(ω) =
´
S
dSu∗1QD,kT=0(r)u1kB=0(r) is the overlap integral over a unit cell. We can rewrite

Eq. (S13) in the form

MS
11BT =

γ11(ω)e−κb

dSCAD
ei(θT−θB+ω)/2Ξ

∑
C

ei(kB−kT).rCV
||
S (rC)dSC , (S14)

where dSC is the area of a unit cell. Converting the sum to an integral gives

MS
11BT =

α11(ω)e−κb

AD
ei(θT−θB+ω)/2Ξ

ˆ
S

dSei(kB−kT).rV
||
S (r), (S15)

where α11(ω) = γ11(ω)/dSC . Since the Fourier transform of the e�ective scattering potential is

V
||
S (q) =

´
S
dSei(kB−kT).rV

||
S (r), it follows that

MS
11BT =

α11(ω)e−κb

AD
ei(θT−θB+ω)/2ΞV

||
S (q), (S16)

where q = kB − kT. The matrix element is therefore a product of two terms: the scattering poten-

tial in Fourier space, V
||
S (q), and a prefactor, which contains the barrier transmission coe�cient,

e−κb, and an amplitude term, α11(ω), which depends on the mis-orientation of the two graphene

layers.

We obtain qualitatively similar I(V ) curves for a range of potentials with similar spatial extents.

In our simulations we set

V
||
S (q) =

1

(q2c + q2)
(S17)

where q−1c ≈ 12 nm de�nes the spatial extent of the scattering potential.

If we consider the additional terms in the matrix element, and also scattering between like and

unlike Dirac points we �nd that

MS
BT = g(θB, θT )

e−κb

AD
ΞV

||
S (q) (S18)

where

g(θB, θT ) = α11(ω)
[
ei(θB∓θ

′
T )/2 + sBsT e

−i(θB∓θ′T )/2
]

+



5

α12(ω)
[
sT e

i(θB±θ′T )/2 + sBe
−i(θB±θ′T )/2

]
, (S19)

in which θ′T = θT +ω, s = ±1 for electrons in the conduction or valence band in the top or bottom

layers and the upper sign is for transitions between like valleys (i.e. K to K or K ′ to K ′) and the

lower sign is for transitions between unlike valleys (i.e. K to K ′ or K ′ to K). The current is then

I =
4πe

~
gV
∑
BT

∣∣MS
BT

∣∣2 [fB(EB)− fT (ET )] δ (EB − ET ) . (S20)

where the summation is over all states in the top and bottom layers and the Fermi functions for

the top and bottom layers are given by

fB,T (EB,T ) =
1

1 + e(EB,T−µB,T )β
(S21)

where µB and µT are the chemical potential in the bottom and top electrodes respectively, and

β−1 is the thermal energy.
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