The American Journal of Human Genetics, Volume 92

Supplemental Data

Mutations in ERCC4, Encoding the DNA-Repair

Endonuclease XPF, Cause Fanconi Anemia

Massimo Bogliolo, Beatrice Schuster, Chantal Stoepker, Burak Derkunt, Yan Su, Anja Raams, Juan P. Trujillo, Jordi Minguillón, María J. Ramírez, Roser Pujol, José A. Casado, Rocío Baños, Paula Rio, Kerstin Knies, Sheila Zúñiga, Javier Benítez, Juan A. Bueren, Nicolaas G.J. Jaspers, Orlando D. Schärer, Johan P. de Winter, Detlev Schindler, and Jordi Surrallés

Figure S1. Genetic Analysis of Back Mutations in ERCC4 in Reverted MMC-Resistant FA Cell Lines

(A) Sequence analysis of individual exon 8 alleles cloned from the FA104R cell line. Exons 8 was amplified from FA104R DNA and the PCR products were cloned with the Topo TA Cloning kit (Invitrogen) and transfected into Library Efficiency DH5alpha Competent Cells (Invitrogen). The plasmids from single bacterial colonies were prepared with the NucleoSpin® Plasmid QuickPure Kit (Macherey-Nagel). Sequencing of single bacterial clones revealed the presence of a 12 bp deletion in exon 8 encompassing the pathogenic 5 bp deletion and restoring the reading frame of the *ERCC4* gene.

(B) Quantification of XPF expression by immunoblot in lymphoblasts from FA104, FA104R, HSC536 (FA-C), HSC536R (HSC536 reverted to wt) and FA139 (wt). XPF levels are expressed as a ratio of the loading control (vinculin). Further details on antibodies used can be obtained upon request. The histogram represents XPF levels in the different cell lines normalized to the levels of the loading control. Means and SEM of at least three independent experiments are shown.

(C) Immunoblot analysis showing low levels of two XPF proteins in 1333 and a normal size XPF protein in the reverted cell line 1333R.

(D) Absence of the 28 bp duplication in *ERCC4* exon 11 in 1333R eliminating the longer *ERCC4* mutant allele with the 28 bp duplication (upper panel) and restoring the wt sequence in exon 11 (lower panel).

Figure S2. XPF Mutants Leading to FA Restore UVC Resistance of NER-Deficient Human and Mouse Fibroblasts

(A) UVC-induced growth inhibition of human XPF-deficient immortal cell lines from XP and FA individuals (XP2YO and 1333, respectively) transduced with lentiviral particles carrying cDNAs coding for XPF-WT, XPFp.Arg689Ser and XPF-p.Leu230Pro. Data represent means and SD of two independent experiments.

(B) UV-induced growth inhibition of *Ercc4* KO MEFs transduced with lentiviral particles expressing GFP (negative control vector), wild type XPF, XPF-p.Arg689Ser and XPF-p.Leu230Pro. Data represent means and SD of at least four independent experiments. Lentivirus mediated cDNA transduction and survival analysis were performed as shown in Fig. 1 and 2 (main text).

Figure S3. XPF Relocation to DNA Damage and Protein-Protein Interactions

(A) Immunoblot analysis of XPF protein in cytoplasmic (CE), nucleoplasmic (NE) and chromatin (CR) fractions from wild type, 1333 and FA104 lymphoblast cell lines. FA104 and FA104 show an abundance and a distribution of XPF between the cytoplasmic, nuclear and chromatin compartments comparable to a normal control, whereas 1333 reveals reduced abundance and two species of that protein with sizes predicted by its mutations but, of note, XPF is still detected in the nucleus and on chromatin with grossly unaffected ratios to the cytoplasmic fraction. Specificity of the separation of extracts from lymphoblasts is confirmed by the compartment-specific marker proteins tubulin, p300 and histone H3. Subcellular Protein Fractionation Kit from Pierce (Thermo Scientific) following the manufacturer's instructions. Further details on antibodies used and subfractioning conditions can be optained upon request.

(B) Graphical representation of the percent co-localization of XPF with (6-4)PP in XP2YO cells expressing various forms of XPF. XP2YO cells were transduced with HA-tagged wild type XPF, XPF-p.Arg689Ser, XPF-p.Leu230Pro, or XPF-28bp dup, irradiated with UVC (120 J m⁻²) through a polycarbonate filter with 5 μ m pores, incubated for 0.5 h, fixed and stained with antibodies to (6-4)PP and antibodies to HA. Data represent the average of at least 3 independent experiments ± the SD. For each experiment 100 cells were counted.

(C) Normal SLX4 interactions in XPF-deficient FA individuals. SLX4 was immunoprecipitated with a polyclonal antibody raised against the first 300 amino acids of SLX4 (SLX4 N-terminus; gift from J. Rouse, Dundee). Precipitated proteins were visualized by immunoblotting with antibodies to SLX4 N-terminus, XPF, ERCC1 and MUS81. Reduced XPF and ERCC1 protein expression was found in lymphoblasts of individual 1333. In these cells, full-length and truncated XPF and MUS81 were coprecipitated with SLX4, whereas ERCC1 is barely detectable. In lymphoblasts of individual FA104, the interaction between SLX4 and its binding partners XPF-ERCC1 and MUS81 is normal. Wild type lymphoblasts (HSC93) and lymphoblasts of FA-P individuals (EUFA1354-L and 457/3) were used as controls.

(D) Normal ERCC1-XPF interactions in FA104 and 1333 lymphoblast cell lines. ERCC1 was immunoprecipitated with a polyclonal antibody against ERCC1 and the precipitated proteins were visualized by immunoblotting with antibodies against XPF and P83 as internal control. Further technical details on co-immunoprecipitation conditions and antibodies used can be obtained upon request.

Chrom	Pos	Ref	Alt	Ensembl pred	AA change	GN	NRR	SNV Q	GT Q
1	169489751	А	W	SS	-	F5	42	171	171
1	169525877	Т	Y	SS	-	F5	52	36	36
2	73675227	-	CTC	NFC	S/SP	ALMS1	16	N/A	N/A
2	73678183	G	R	NSC	G1509D	ALMS1	156	120	120
3	49094490	G	S	NSC	N381K	QRICH1	122	228	228
3	49095011	С	S	NSC	G208R	QRICH1	109	43	43
4	126238305	С	М	NSC	P247T	FAT4	52	178	178
4	126355484	С	М	NSC	A2368E	FAT4	56	190	190
5	156479444	TTG	-	NFC	TS/S	HAVCR1	61	N/A	N/A
5	156479568	-	GTT	NFC	T/TT	HAVCR1	106	N/A	N/A
6	31238942	G	W	NSC	A176V	HLA-C	23	61	39
6	31239577	А	С	NSC	S48A	HLA-C	21	90	90
6	32709309	А	R	SS	-	HLA-DQA2	29	84	84
6	32713044	С	Y	NSC	T64M	HLA-DQA2	192	228	228
6	32713188	С	Y	SS	-	HLA-DQA2	126	228	228
6	38840915	А	R	NSC	I2479V	DNAH8	72	216	216
6	38879340	А	Т	NSC	E3267D	DNAH8	12	34	34
7	100686777	С	Y	NSC	T4027M	MUC17	323	228	228
7	100687107	G	R	SS	-	MUC17	66	79	79
8	30700598	Т	Y	NSC	N1979S	TEX15	33	97	97
8	30701995	А	М	NSC	D1513E	TEX15	141	228	228
10	69682773	Т	Y	NSC	D920G	HERC4	64	69	69
10	69785435	-	А	SS	-	HERC4	9	N/A	N/A
16	14029271	AACTC	-	FC	-	ERCC4	22	N/A	N/A
16	14041518	С	М	NSC	R689S	ERCC4	121	228	228
16	72137553	С	S	NSC	Q564E	DHX38	56	85	85
16	72142141	А	R	NSC	S994G	DHX38	52	106	106
17	74272839	С	Y	NSC	V1593M	QRICH2	54	33	33
17	74277009	Т	Y	NSC	Q1264R	QRICH2	23	81	81
18	14105016	С	М	NSC	R508I	ZNF519	136	228	228
18	14105853	С	М	NSC	R229I	ZNF519	23	51	51
19	51918360	А	R	NSC	S445P	SIGLEC12	43	39	39
19	52004795	G	CT	FC	-	SIGLEC12	19	N/A	N/A
Х	53561632	А	W	NSC	F4226I	HUWE1	42	53	53
Х	53642759	С	М	NSC	E665D	HUWE1	16	33	33

Table S1. List of Candidate Genes with Biallelic Mutations after Whole-Exome Sequencing

Chrom: chromosome number; Pos: genomic position (GRCh37/hg19);Ref: reference allele; Alt: sample allele; Ensembl pred: consequence prediction of variants on transcript according to Ensembl v59. This column contains one of the following values: SS=splice site, NSC=non-synonymous coding, FC=frameshift coding, NFC=non-frameshift coding; AA change: amino acid change in the affected protein; GN: Gene name; NRR: Number of non-redundant reads; SNV Q: the phred-scaled likelihood that the genotype is identical to the reference; GT Q: Phred-scaled likelihood that the genotype is wrong.

Clinical/Cellular	XPF	XFE	FA	
Features				
Skin phosensitivity	mild	severe	no	
Atrophic epidermis	variable	yes	no	
Neurologic features	rare	yes	no	
Hematology	normal	anemia ^a	anemia, BMF	
Growth retardation ^b	no	yes	yes	
Premature death	no	16уо	4yo (FA104). 1333 alive	
			at age 10	
UV sensitivity	mild	severe ^c	none (FA104) ^d , mild	
			(1333)	
UDS defect	mild	severe ^c	mild (1333), ND in	
			(FA104) ^d	
MMC sensitivity	mild	severe	severe	
DEB-test	negative	positive	positive	
MMC induced G2/M	negative	positive	positive	
arrest	-	-		
Nuclease activity on	ves ^e	ves ^e	no	

Table S2. Comparative Summary of Clinical and Cellular/Molecular Features of XP, XFE, and FA Individuals with Mutations in ERCC4

^aIt is not known whether anemia evolved to BMF in the XFE individual (Laura Niedernhofer, personal communication).

^bInclude microsomy in 1333, FA104 and XFE and microcephaly in XFE and 1333.

^cReported in Niedernhofer et al., 2005.

stem loop susbtrates

^dUDS assay was not done in FA104 due to the lack of skin fibroblasts but FA104 lymphoblasts were resistant to UV.

^eReported in Ahmad et al., 2010 for XP mutation p.Arg799Trp and XFE mutation p.Arg153Pro. Typically XP and FA features are marked in yellow and green, respectively.