Supplementary Online Content

Levin GP, Robinson-Cohen C, de Boer IH, Houston DK, Lohman K, Liu Y, et al. Genetic variants and associations of 25-hydroxyvitamin D concentrations with major clinical outcomes. *JAMA*. 2012;308(18):doi:10.1001/jama.2012.17304.

- **eTable 1.** Detailed methods for measurement of 25(OH)D concentrations and genotyping in the Cardiovascular Health Study, Health ABC, InCHIANTI, and ULSAM cohorts
- **eTable 2.** Incident events in the Cardiovascular Health Study, Health ABC, InCHIANTI, and ULSAM cohorts
- **eTable 3.** Detailed results in the Cardiovascular Health Study, Health ABC, InCHIANTI, and ULSAM cohorts for interactions between low vitamin D and *VDR* SNPs rs7968585 and rs2239179 on risk of the composite outcome
- eFigure 1. Flow chart defining the Cardiovascular Health Study discovery cohort
- **eFigure 2.** Penalized spline describing the association between season-specific 25-hydroxyvitamin D Z score and risk of the composite outcome, adjusted for age and sex, in the Cardiovascular Health Study
- **eFigure 3.** Estimates of interaction between low vitamin D and the number of minor alleles on risk of the composite outcome, by study and overall, for the two VDR variants: rs7968585 and rs2239179
- **eFigure 4.** Kaplan-Meier plots describing the association of low vitamin D with risk of the composite outcome in the Cardiovascular Health Study, stratified according to the number of copies of the minor allele for the 2 *VDR* variants: rs7968585 and rs2239179

eReferences

This supplementary material has been provided by the authors to give readers additional information about their work.

© 2012 American Medical Association. All rights reserved.

eTable 1. Detailed methods for measurement of 25(OH)D concentrations and genotyping in the Cardiovascular Health Study¹, Health ABC², InCHIANTI³, and ULSAM⁴ cohorts

	CHS	Health ABC	InCHIANTI	ULSAM
25(OH)D Concentration				
Measurement	Mass spectrometry (Waters Quattro Micro)	Radioimmunoass ay (DiaSorin RIA)	Radioimmunoass ay (DiaSorin RIA)	Liquid chromatography- mass spectrometry (HP 1100)
Coefficient of Variation	< 3.4%	< 6.8%	< 10.2%	< 7.6%
Genotyping	< 3.4%	< 6.8%	< 10.2%	< 7.6%
	< 3.4% Illumina 370 CNV BeadChip	< 6.8% Illumina Human1M-Duo BeadChip	< 10.2%	< 7.6% Illumina Golden Gate, Illumina Infinum II

eTable 2. Incident events in the Cardiovascular Health Study, Health ABC, InCHIANTI, and ULSAM cohorts

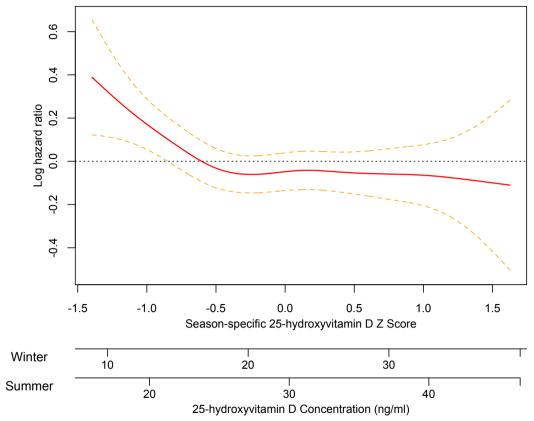
	CHS	Health ABC	InCHIANTI	ULSAM
	(N = 1,514)	(N = 922)	(N = 835)	(N = 970)
Median (maximum) follow-up, in years	11 (15)	7 (8)	6 (8)	13 (19)
Numbers of events Composite outcome	948	317	184	715
Hip fracture	129	28	15	63
Myocardial infarction	179	45	58	132
Cancer	304	137	12	258
Death	336	107	99	262
Person-years of follow-up Incidence rates ^a of composite outcome (95% CI)	11,424	5,554	8,128	10,612
Overall	6.8 (6.3, 7.2)	5.7 (5.1, 6.4)	3.9 (3.5, 4.3)	6.7 (6.3, 7.2)
Normal 25(OH)D	6.4 (6.0, 6.9)	5.5 (4.8, 6.2)	3.2 (2.9, 3.8)	6.7 (6.2, 7.2)
Low 25(OH)D	8.2 (7.2, 9.3)	6.6 (5.2, 8.3)	6.2 (5.1, 7.5)	7.0 (5.9, 8.2)
Difference ^b	1.8 (0.6, 2.9)	1.1 (-0.6, 2.8)	2.9 (1.6, 4.2)	0.3 (-1.0, 1.5)
Association ^c of low 25(OH)D ^d with risk of the composite outcome (HR (95% CI); <i>p</i> -value)	1.32	1.33	1.20	1.05
	(1.13, 1.54);	(1.02, 1.73);	(0.85, 1.70);	(0.88, 1.26);
	p = 0.001	p = 0.04	p = 0.30	p = 0.60

Abbreviations: HR = hazard ratio, CI = confidence interval a Unadjusted rates are reported as the number of events per 100 person-years, with Poisson-based confidence intervals b Difference computed as incidence rate in participants with low 25(OH)D minus rate in those with normal 25(OH)D concentrations
^c Adjusted for age and sex
^d Normal/Low 25(OH)D defined by above/below the season-specific 20th percentile of 25(OH)D concentrations

eTable 3. Detailed results in the Cardiovascular Health Study, Health ABC, InCHIANTI, and ULSAM cohorts for interactions between low vitamin D and *VDR* SNPs rs7968585 and rs2239179 on risk of the composite outcome

		CHS	Health ABC	InCHIANTI	ULSAM	Meta-analysis
SNP	Endpoint	HRR ^a (95% CI)	HRR (95% CI)	HRR (95% CI)	HRR (95% CI)	HRR (95% CI)
	Hip fracture	1.25 (0.80, 1.95)	1.50 (0.96, 2.33)	1.49 (0.24, 9.35)	0.73 (0.34, 1.53)	1.25 (0.94, 1.66)
	Myocardial Infarction	1.25 (0.81, 1.92)	1.27 (0.92, 1.81)	3.55 (0.74, 17.04)	1.31 (0.72, 2.37)	1.30 (1.02, 1.66)
	Cancer	1.51 (1.06, 2.16)	1.03 (0.80, 1.32)	2.09 (0.70, 6.21)	1.15 (0.77, 1.72)	1.18 (0.99, 1.42)
	Death	1.31 (1.04, 1.64)	1.06 (0.87, 1.29)	1.32 (0.70, 2.50)	1.02 (0.78, 1.32)	1.13 (1.00, 1.28)
rs7968585	Composite	1.40 (1.13, 1.73)	1.14 (0.97, 1.34)	1.59 (1.01, 2.51)	1.12 (0.88, 1.42)	1.22 (1.09, 1.36)
	Hip fracture	0.92 (0.59, 1.46)	0.68 (0.44, 1.04)	2.60 (0.45, 15.12)	NA	0.82 (0.60, 1.11)
	Myocardial Infarction	0.73 (0.47, 1.15)	0.90 (0.62, 1.29)	0.77 (0.14, 4.04)	NA	0.83 (0.62, 1.09)
	Cancer	0.61 (0.43, 0.87)	0.90 (0.71, 1.15)	0.54 (0.15, 1.85)	NA	0.79 (0.65, 0.96)
	Death	0.83 (0.66, 1.04)	1.09 (0.90, 1.33)	0.56 (0.29, 1.05)	NA	0.95 (0.82, 1.09)
rs2239179	Composite	0.74 (0.60, 0.92)	0.95 (0.81, 1.10)	0.66 (0.41, 1.05)	NA	0.85 (0.76, 0.97)

Abbreviations: CI = confidence interval, HRR = hazard ratio ratio (adjusted for age and sex), SNP = single nucleotide polymorphism


^a The hazard ratio ratio (HRR) is the ratio, for each additional minor allele, of the hazard ratio describing the association between low 25-hydroxyvitamin D and disease risk. Normal/Low 25(OH)D defined by above/below the season-specific 20th percentile of 25(OH)D concentrations.

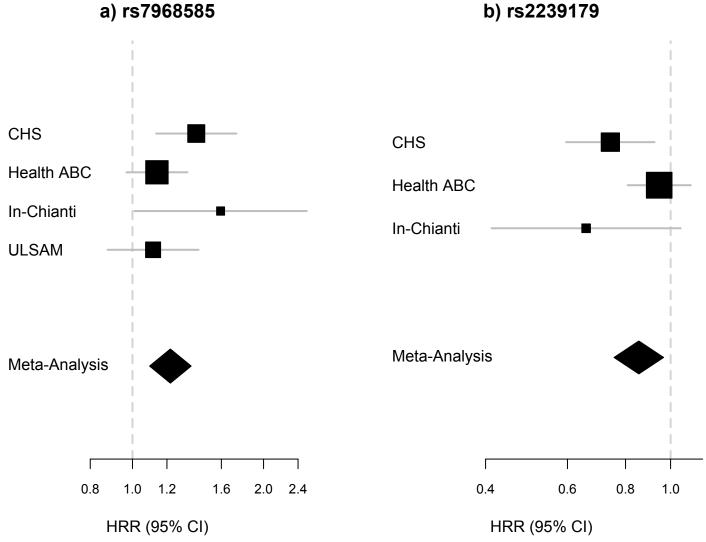
eFigure 1. Flow chart defining the Cardiovascular Health Study discovery cohort

Downloaded From: http://iama.jamanetwork.com/ by a University of Washington Libraries User on 03/18/2013

5,201 attended 1989-1990 CHS Exam 354 died 269 dropped out of study > 573 without kidney function measurements 687 African American participants added 4,692 with complete 1992-1993 CHS Exam 1,414 with prevalent cardiovascular disease: coronary heart disease, heart failure, stroke or TIA, claudication, atrial fibrillation, or pacemaker 3,278 eligible for measurements > 958 with inadequate serum volume > 4 with 25-OHD >100 ng/ml 4 taking lithium 2,312 with serum 25-OHD measured 328 with prevalent cancer > 13 with previous hip fracture > 309 with non-Caucasian race 148 with unsuccessful genotyping 1,514 participants in CHS study population

eFigure 2. Penalized spline describing the association between season-specific 25-hydroxyvitamin D Z score and risk of the composite outcome, adjusted for age and sex, in the Cardiovascular Health Study Downloaded From: http://jama.jamanetwork.com/ by a University of Washington Libraries User on 03/18/2013

Downloaded From: http://jama.jamanetwork.com/ by a University of Washington Libraries User on 03/18/2013


X-axes representing the corresponding 25(OH)D concentrations in the winter and summer seasons are also displayed. The spline was estimated using a proportional hazards model. The dashed lines represent pointwise 95% confidence intervals for the estimated log hazard ratios. The dotted line indicates a log hazard ratio of 0 (hazard ratio of 1).

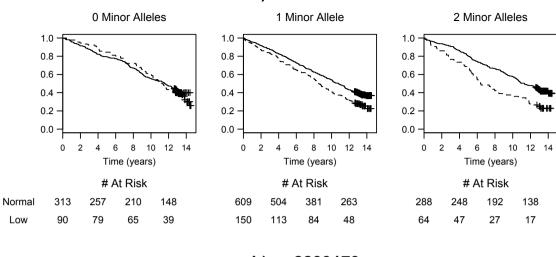
Downloaded From: http://jama.jamanetwork.com/ by a University of Washington Libraries User on 03/18/2013

eFigure 3. Estimates of interaction between low vitamin D and the number of minor alleles on risk of the composite outcome, by study and overall, for the two

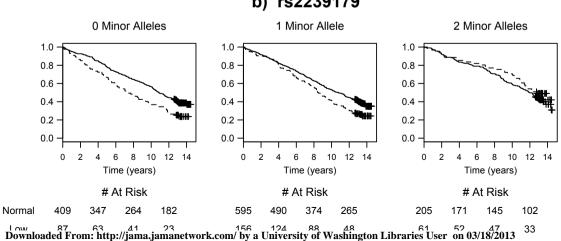
VDR variants: rs7968585 and rs2239179

Downloaded From: http://iama.jamanetwork.com/ by a University of Washington Libraries User on 03/18/2013

Downloaded From: http://jama.jamanetwork.com/ by a University of Washington Libraries User on 03/18/2013


The diamond displays the meta-analysis hazard ratio ratio (HRR). The size of the squares is Downloaded From: http://jama.jamanetwork.com/ by a University of Washington Libraries User on 03/18/2013

eFigure 4. Kaplan-Meier plots describing the association of low vitamin D with risk of the composite outcome in the Cardiovascular Health Study, stratified according to the number of copies of the minor allele for the 2 VDR variants:


rs7968585 and rs2239179

Downloaded From: http://jama.jamanetwork.com/ by a University of Washington Libraries User on 03/18/2013

a) rs7968585

Proportion of participants free of hip fracture, myocardial infarction, cancer, and death is presented on the y-axis. The numbers at risk at baseline, and at 4, 8, and 12 years of follow-up are given below each plot. Vertical lines indicate censoring. Normal/Low 25(OH)D defined by above/below the season-specific 20th percentile of 25(OH)D concentrations. Solid and dotted lines indicate narticinants with normal and low 25/OH\D levels respectively Downloaded From: http://jama.jamanetwork.com/ by a University of Washington Libraries User on 03/18/2013

eReferences

- **1.** Fried LP, Borhani NO, Enright P, et al. The Cardiovascular Health Study: design and rationale. *Ann Epidemiol.* Feb 1991;1(3):263-276.
- 2. Shea MK, Houston DK, Tooze JA, et al. Correlates and prevalence of insufficient 25-hydroxyvitamin D status in black and white older adults: the health, aging and body composition study. *J Am Geriatr Soc.* Jul 2011;59(7):1165-1174.
- **3.** Ferrucci L, Bandinelli S, Benvenuti E, et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. *J Am Geriatr Soc.* Dec 2000;48(12):1618-1625.
- 4. Melhus H, Snellman G, Gedeborg R, et al. Plasma 25-hydroxyvitamin D levels and fracture risk in a community-based cohort of elderly men in Sweden. *J Clin Endocrinol Metab.* Jun;95(6):2637-2645.