## **Supporting Information**

Profile integration in the TCGA IDC cohort. To establish the integrated miRNA/mRNA expression profile we normalized mRNAs as RPKM(1) and miRNAs as reads per million of total aligned miRNA reads. Two expression filters were used to include only the genes with highest variability in the integrated profile. One filter was towards minimum fold change: 20% of a gene's expression values must have at least 1.5 fold-change in either direction from the gene's median value. The second filter was towards log-intensity variation: the variance of the log<sub>2</sub> normalized reads for each gene was compared to the median of all the variances and only the genes more variable than the median gene passed the filter (p<0.05). After these two variability filters were used, 7735 mRNAs and 247 miRNAs were retained in the integrated RNA profile (RNA expression matrix in Supplemental Information). The Catalogue Of Somatic Mutations In Cancer database (ver. 60)(2) was used to identify the genes which are known to harbor functional somatic mutations in cancer. The breast cancer dataset was incremented with the highly related ovarian cancer dataset in order to evaluate a large tumors sample size. The genes with at least two validated somatic mutations resulting in alteration of the primary protein structure were identified. DNA methylation (meDNA) was studied using the Infinium 450K platform on 296 patients from the same IDC cohort. The M value, (3) i.e. the  $\log_2$  ratio of the intensities of a methylated probe versus its corresponding un-methylated probe, was used to measure CpG methylation (DNA methylation dataset in Supporting Information).

1

**Risk stratification and ROC curves.** The ability of the RNA models to predict outcome was assessed by comparing the AUC of the respective ROC curves. Analysis of area under curve (AUC) for the Receiver Operating Characteristic (ROC) curve was conducted using the *survivalROC* package in R, allowing for time dependent ROC curve estimation with censored data(4). Since in all of the survival analyses, fewer events occurred after 60 months (see Kaplan-Meier curves), we compared the ability of models to predict outcome at, and around, this time point. The ROC curve plots the true-positive vs. false-positive predictions, thus higher AUC indicates better model performance (with AUC=0.5 indicating random performance). RNA risk scores and groups (risk-high or - low defined above) were based on weightings in the linear risk predictor.

**Biological processes associated to risk genes.** The functional association of the genes in the integrated signature with key clinical covariates was assessed in the TCGA cohort. *DAAM1*, thought to function as a scaffolding protein for the Wnt-induced assembly of a disheveled (DvI)-Rho complex, was the prognostic gene harboring the highest correlation with lymph node involvement (N stage) in the TCGA dataset (Spearman correlation test, p<0.001, FDR=0.01). *CXCR7* and *FAM199X* were also strongly associated to N stage (p<0.01, FDR=0.1). *MCM10* was down-regulated in tumors with mutations in the *PIK3CA/AKT1/PTEN* axis (p-value<1E-07) and *TRIM23* was down-regulated in *TP53* mutants (p-value<1E-07). Among these genes, *CXCR7* was retained in the final multivariate model where N stage, *PIK3CA* axis mutations and ER status were also present (Table S6).

The BiNGO(5) plugin in Cytoscape(6) was used to retrieve the GO annotations for the BC risk genes and propagate them upwards through the GO hierarchy. The

2

hypergeometric test, in which sampling occurs without replacement, was used to assess the enrichment of gene ontology (GO) terms in the gene-set in the form of a p-value. The GO p-values were corrected using Benjamini and Hochberg method(7). Lipid modification (*PIK3CA, SMG1* and *CPT1A*) and regulation of nitric oxide biosynthesis (*HSP90AA1* and *GLA*) had corrected p-values lower than 0.05. There were no other functional enrichments when the coding genes in the risk predictor were considered together. This finding was in agreement with the risk genes impacting on a range of independent pathways and cellular processes.

We then investigated each single gene in detail, whether an mRNA or a miRNA, by performing GO analysis on the mRNAs with whom it correlated in the integrated RNA profile. Genes, involved in mitotic cell cycle and nuclear division, were positively associated with *miR-484. miR-328* was correlated with genes of M phase and DNA repair, *miR-874* with genes involved in cell adhesion. *miR-484* was negatively correlated with genes in morphogenesis and angiogenesis, and also in the development of epidermis and the assembly of hemidesmosomes, which anchor epithelial cells to extracellular matrix components such as the basal laminae. *CPT1A* was associated with the mammary gland branching involved in thelarche, the onset of postnatal breast development, usually occurring at the beginning of puberty, as well as Ral GTPase regulation. The expression of *PIK3CA* was associated with activation of protein phosphorylation and transcription initiation and with the repression of mitochondrial ATP synthesis coupled proton transport.

3

| Covariates                     |               | n=4 | 66   |
|--------------------------------|---------------|-----|------|
| Disease Stage, no (%)          |               | 94  | 20.2 |
| <i><i>o</i>, <i>v</i>,</i>     | IIA           | 157 | 33.8 |
|                                | IIB           | 97  | 20.9 |
|                                | IIIA          | 65  | 14.0 |
|                                | IIIB          | 12  | 2.6  |
|                                | IIIC          | 17  | 3.7  |
|                                | IV            | 12  | 2.6  |
| Lymph Node Involvement, no (%) | NO            | 197 | 44.4 |
|                                | N1            | 168 | 37.8 |
|                                | N2            | 55  | 12.4 |
|                                | N3            | 24  | 5.4  |
| M stage, no (%)                | M0            | 419 | 89.9 |
|                                | M1            | 12  | 2.6  |
| T stage, no (%)                | T1            | 146 | 31.3 |
|                                | Т2            | 267 | 56.2 |
|                                | Т3            | 38  | 8.2  |
|                                | T4            | 18  | 3.6  |
| ER, no (%)                     | Negative      | 110 | 24.3 |
|                                | Positive      | 342 | 75.7 |
| PR, no (%)                     | Negative      | 151 | 33.4 |
|                                | Positive      | 301 | 66.6 |
| HER2, no (%)                   | Negative      | 255 | 79.7 |
|                                | Positive      | 65  | 20.3 |
| TNBC, no (%)                   | Non TN        | 256 | 80.0 |
|                                | TN            | 64  | 20.0 |
| Age, years, no (%)             | <=45          | 102 | 21.9 |
|                                | 46-55         | 105 | 22.5 |
|                                | 56-65         | 141 | 30.3 |
|                                | >65           | 118 | 25.3 |
| <i>TP53</i> Mutation, no (%)   | Mutated       | 165 | 35.4 |
|                                | Wild-type     | 301 | 64.6 |
| PIK3CA Mutation, no (%)        | Mutated       | 142 | 30.5 |
|                                | Wild-type     | 324 | 69.5 |
| Molecular subtype, no (%)      | Basal-like    | 104 | 22.4 |
|                                | HER2-enriched | 49  | 10.5 |
|                                | Luminal A     | 110 | 23.7 |
|                                | Luminal B     | 148 | 31.8 |

## Table S1. The TCGA IDC Cohort of Patients with Invasive Ductal Carcinoma

ER, estrogen receptor; PR, progesterone receptor

Unique ID Correlation Parametric Coefficient FDR (Illumina **Genomic Coordinates P-value** 450K) (Spearman) -0.217 cg01792902 3.06E-05 0.0004 chr3:178864927-178864976 -0.249 1.70E-06 6.53E-05 cg22806557 chr3:178865282-178865331 -0.242 8.76E-05 0.0009 cg00658016 chr3:178865679-178865728 0.256 8.00E-07 4.30E-05 cg19522332 chr3:178866005-178866054

cg22384366

cg01753796

chr3:178867005-178867054

chr3:178867106-178867155

< 1e-07

2.31E-05

-0.337

-0.289

< 1e-07

2.00E-07

Table S2. The negative correlation between mRNA expression and CpG DNA methylation of *PIK3CA* (FDR <0.001)

| Gene Symbol  | Probe      | Cox Regression p value | Hazard Ratio |
|--------------|------------|------------------------|--------------|
| ADAT1        | cg02576610 | 0.033                  | 0.60         |
| ANKRD52      | cg10803923 | 4.127E-04              | 0.18         |
| ANKRD52      | cg23759554 | 0.012                  | 0.58         |
| APC          | cg11057897 | 0.004                  | 0.47         |
| APC          | cg18315896 | 0.029                  | 2.75         |
| APC          | cg25922032 | 0.036                  | 2.94         |
| ARSK / TTC37 | cg01559436 | 0.009                  | 6.02         |
| BIRC6        | cg12233946 | 0.003                  | 0.35         |
| BIRC6        | cg20351608 | 0.015                  | 3.70         |
| BIRC6        | cg11971852 | 0.020                  | 0.45         |
| C10orf18     | cg09262442 | 0.013                  | 0.65         |
| C10orf18     | cg08452525 | 0.015                  | 0.52         |
| C10orf18     | cg21302771 | 0.032                  | 1.85         |
| C2CD2        | cg00054774 | 0.021                  | 0.76         |
| C2CD2        | cg04723534 | 0.049                  | 0.83         |
| CEP350       | cg21944557 | 0.014                  | 2.54         |
| CHD9         | cg04770195 | 0.001                  | 0.57         |
| CHD9         | cg05788994 | 0.008                  | 2.48         |
| CHD9         | cg08944236 | 0.028                  | 0.78         |
| СНМ          | cg19000468 | 0.049                  | 0.53         |
| CPT1A        | cg03855388 | 8.100E-06              | 0.63         |
| CPT1A        | cg18262591 | 1.250E-04              | 0.57         |
| CPT1A        | cg20629021 | 1.751E-04              | 0.49         |
| CPT1A        | cg01926073 | 5.880E-04              | 0.41         |
| CPT1A        | cg20809737 | 6.307E-04              | 0.58         |
| CPT1A        | cg13491471 | 0.002                  | 0.58         |
| CPT1A        | cg22911054 | 0.004                  | 0.69         |
| CPT1A        | cg19964581 | 0.005                  | 0.55         |
| CPT1A        | cg00574958 | 0.008                  | 0.68         |
| CPT1A        | cg12031060 | 0.008                  | 0.55         |
| CPT1A        | cg09737197 | 0.009                  | 0.78         |
| CPT1A        | cg26192826 | 0.011                  | 1.53         |
| CPT1A        | cg10970946 | 0.013                  | 0.56         |
| CPT1A        | cg19081843 | 0.014                  | 2.36         |
| CPT1A        | cg14249520 | 0.017                  | 0.70         |
| CPT1A        | cg17058475 | 0.029                  | 0.77         |
| CPT1A        | cg23756264 | 0.030                  | 0.58         |
| CPT1A        | cg11867574 | 0.032                  | 0.58         |
| CPT1A        | cg10553894 | 0.043                  | 0.75         |
| CPT1A        | cg26989316 | 0.044                  | 0.70         |

Table S3. DNA methylated CpG sites associated with OS in the TCGA cohort.

| DAAM1      | cg18819791     | 0.003     | 0.63 |
|------------|----------------|-----------|------|
| DAAM1      | cg17326597     | 0.017     | 0.71 |
| DAAM1      | cg19768143     | 0.020     | 0.65 |
| DAAM1      | cg23315932     | 0.021     | 0.74 |
| DAAM1      | cg05342987     | 0.022     | 1.98 |
| DAAM1      | cg23862792     | 0.027     | 0.34 |
| DIP2B      | cg16248432     | 2.832E-04 | 0.60 |
| DIP2B      | cg23925540     | 0.009     | 0.52 |
| DIP2B      | cg05827208     | 0.013     | 0.16 |
| DIP2B      | ch.12.1034102F | 0.038     | 0.51 |
| DIP2B      | cg05512157     | 0.047     | 0.72 |
| DPY19L3    | cg09577932     | 0.022     | 0.64 |
| DPY19L3    | cg11416386     | 0.026     | 0.24 |
| DPY19L3    | cg02871028     | 0.033     | 3.71 |
| FAM91A1    | cg00189906     | 6.218E-04 | 0.13 |
| GADD45GIP1 | cg03539717     | 6.240E-05 | 0.41 |
| GADD45GIP1 | cg14393411     | 0.029     | 0.24 |
| GBE1       | cg02980152     | 0.011     | 3.15 |
| GBE1       | cg16472210     | 0.014     | 9.15 |
| GBE1       | cg03785807     | 0.036     | 0.40 |
| GMCL1      | cg04590956     | 0.019     | 0.25 |
| GMCL1      | cg19393587     | 0.021     | 0.65 |
| GMCL1      | cg19598605     | 0.036     | 0.58 |
| GOLGA4     | cg12435059     | 0.001     | 0.39 |
| GOLGA4     | cg09456388     | 0.009     | 7.80 |
| HSP90AA1   | cg11789371     | 0.021     | 0.76 |
| MAN2A1     | cg23500208     | 0.006     | 0.66 |
| MAN2A1     | cg07541465     | 0.015     | 1.59 |
| MAN2A1     | cg04020816     | 0.022     | 1.48 |
| MAN2A1     | cg19117777     | 0.025     | 3.06 |
| MAN2A1     | cg10569493     | 0.041     | 0.75 |
| ME1        | cg16701167     | 0.009     | 0.75 |
| ME1        | cg01354879     | 0.011     | 0.71 |
| MPND       | cg12985235     | 0.008     | 0.59 |
| NCOA2      | cg22304838     | 2.726E-04 | 0.41 |
| NCOA2      | cg16282160     | 8.596E-04 | 0.55 |
| NCOA2      | cg13312403     | 0.004     | 0.48 |
| NCOA2      | cg24536624     | 0.005     | 0.40 |
| NCOA2      | cg02492405     | 0.006     | 1.45 |
| NCOA2      | cg24857609     | 0.020     | 0.48 |
| NCOA2      | cg1119/908     | 0.030     | 0.50 |
| NCOA2      | cg20679659     | 0.044     | 0.37 |
| NCOA2      | cg20699548     | 0.049     | 0.71 |

| OTUD6B           | cg06670766 | 8.910E-04 | 0.22  |
|------------------|------------|-----------|-------|
| OTUD6B           | cg25987774 | 0.017     | 3.74  |
| OTUD6B           | cg06216901 | 0.018     | 0.24  |
| OTUD6B           | cg23863900 | 0.020     | 2.32  |
| OTUD6B           | cg18888595 | 0.042     | 0.42  |
| PDSS2            | cg26954751 | 8.150E-04 | 0.59  |
| PDSS2            | cg06931193 | 0.004     | 2.19  |
| PDSS2            | cg14957497 | 0.005     | 0.13  |
| PDSS2            | cg01959896 | 0.006     | 2.72  |
| PDSS2            | cg01917202 | 0.007     | 0.13  |
| PDSS2            | cg26312839 | 0.009     | 0.15  |
| PDSS2            | cg09699384 | 0.020     | 0.21  |
| PDSS2            | cg21122684 | 0.033     | 0.23  |
| PIGP / TTC3      | cg27382599 | 0.003     | 0.14  |
| PIGP / TTC3      | cg14220272 | 0.034     | 0.42  |
| PIK3CA           | cg13435326 | 0.013     | 0.65  |
| PIK3CA           | cg22384366 | 0.029     | 0.66  |
| PIK3CA           | cg01753796 | 0.037     | 0.75  |
| PIK3CA           | cg22806557 | 0.038     | 0.39  |
| RC3H2            | cg14500628 | 0.019     | 1.95  |
| SCYL2 / DEPDC4   | cg18548043 | 0.012     | 20.06 |
| SCYL2 / DEPDC4   | cg02430089 | 0.016     | 0.33  |
| SCYL2 / DEPDC4   | cg11940847 | 0.041     | 5.80  |
| SMG1             | cg01079632 | 0.007     | 0.58  |
| SMG1             | cg27302229 | 0.009     | 4.02  |
| SMG1             | cg03614442 | 0.047     | 0.40  |
| THAP2 / ZFC3H1   | cg19966154 | 0.004     | 2.88  |
| THAP2 / ZFC3H1   | cg21830480 | 0.041     | 0.57  |
| TOPBP1           | cg12655621 | 0.001     | 3.38  |
| TOPBP1           | cg13024018 | 0.004     | 3.72  |
| TRIM23 / C5orf44 | cg08307039 | 0.005     | 0.21  |
| TTC3             | cg00302270 | 0.001     | 0.48  |
| UBR5             | cg12517050 | 1.500E-06 | 0.31  |
| UBR5             | cg14897263 | 0.018     | 0.71  |
| UBR5             | cg15001633 | 0.021     | 1.71  |
| UBXN7            | cg15925179 | 0.031     | 0.44  |
| UBXN7            | cg03191919 | 0.042     | 0.77  |
| WDR20/HSP90AA1   | cg04414295 | 0.009     | 1.73  |
| ZFC3H1 / THAP2   | cg07821172 | 0.008     | 0.37  |
| ZFC3H1 / THAP2   | cg03191116 | 0.028     | 0.35  |
| ZNF292           | cg15511114 | 0.044     | 2.10  |

\* Cox regression, p value <0.05.

| Gene                               | Validated Subclasses                                             |                               | [N0, N+], [N0 Marg Neg, N+                                 |
|------------------------------------|------------------------------------------------------------------|-------------------------------|------------------------------------------------------------|
| ADAT1                              | [Stl, StIIA]                                                     | hsa-miR-874                   | Marg Neg], [Stl, StIIIA], [N1,<br>N231                     |
| ANKRD52                            | [Stl, StIIA, StIIB], [PI3K,<br>TP53 PIK3CA]                      | hsa-miR-93                    | [N0 Marg Neg, N+ Marg<br>Neg]                              |
| BIRC6                              | [Stl, StlIA]                                                     | ME1                           | [LumA, LumB]                                               |
| C10orf18<br>C2CD2                  | [Stl, StIIA]<br>[LumA, BL]                                       | NCOA2                         | [LumB Marg Neg, BL Marg<br>Neg]                            |
| CHD9<br>CHM                        | [StI, StIIB]<br>[StI, StIIA]                                     | OTUD6B                        | [N0, N+], [Low MutRate,<br>Med MutRate]                    |
|                                    | [LumA, LumB], [LumB Marg<br>Neg, BL Marg Neg], [N+               | PDSS2                         | [N0, N+], [Low MutRate,<br>High MutRate]                   |
| CPT1A                              | Horm Rec+ ERBB2- Marg<br>Neg, TNBC Marg Neg], [N0,               | PIK3CA                        | [LumA, BL], [Low MutRate,<br>High MutRate]                 |
|                                    | N+], [StIIB, StIIIA], [PI3K,                                     | SMG1                          | [Stl, StllA]                                               |
|                                    | NoMajoriviutj, [Low<br>MutRate, Med MutRate]                     | TRIMZ3                        |                                                            |
| ΠΔΔΜ1                              |                                                                  | 1163                          |                                                            |
|                                    |                                                                  | UBR5                          | [StIIA, StIIB]                                             |
|                                    |                                                                  |                               | Ned [Stl StllA] [PI3K                                      |
| <i>ΕΓ ΓΙΟΣΟ</i><br><i>ΕΔΜ</i> 91Δ1 |                                                                  | UBXN7                         | noMajorMut], [Low                                          |
| GMCL1                              | [StIIA, StIIB, StIIIA], [PI3K,<br>noMajorMut]                    | ZFC3H1                        | MutRate, High MutRate]<br>[Stl, StIIA]                     |
| hsa-miR-103                        | [ERBB2+, TNBC]                                                   | * The codi                    | na agnos woro restricted                                   |
| hsa-miR-                           |                                                                  | further by D                  | NA methylation/OS analysis                                 |
| 1307<br>hsa-miP-                   | [TP53, PI3K]                                                     | and presen                    | ce of somatic mutations                                    |
| 148b                               | [TP53, MAPK]                                                     | Square brack                  | sets indicate the independent                              |
| hsa-miR-324                        | [Low MutRate, Med<br>MutRate]                                    | IDC subclass                  | ses used for validation. Marg<br>Negative. Horm Rec+ means |
| hsa-miR-326                        | [N0, N+]                                                         | ER+ and/or P                  | R+ tumors. Mutation rate: Low                              |
| hsa-miR-328                        | [N0, N+], [Stl, StIIB, StIIIA],<br>[Low MutRate, Med<br>MutRate] | <25 mutations<br>High>50. Mut | s in exome, 25<=Medium<=50,<br>ations: PI3K (PIK3CA, AKT1, |
| hsa-miR-365                        | [LumA, BL]                                                       | PIEN, PIK3F                   | (1), 1P53 PIK3CA are double                                |
| hsa-miR-484                        | [N0, N+], [N0 Marg Neg, N+<br>Marg Neg]                          | TP53, MAPK                    | and GATA3.                                                 |

Table S4. Twenty four mRNAs and ten miRNAs commonly associated with clinical outcome across independent IDC subclasses.

| RNA          | p-value | Univariate HR (95% CI) | Multivariate HR (95% CI) | Weight ( <i>w</i> i) |
|--------------|---------|------------------------|--------------------------|----------------------|
| ACSL1        | 0.002   | 1.43 (1.14-1.79)       | 0.84 (0.58-1.21)         | 0.151                |
| ADAT1        | <0.001  | 1.69 (1.26-2.26)       | 0.76 (0.41-1.43)         | 0.126                |
| ANKRD52      | <0.001  | 1.94 (1.34-2.83)       | 2.43 (1.09-5.39)         | 0.004                |
| BIRC6        | <0.001  | 2.23 (1.50-3.32)       | 2.19 (0.75-6.34)         | 0.062                |
| CPT1A        | <0.001  | 1.78 (1.38-2.30)       | 1.20 (0.79-1.84)         | 0.056                |
| CXCR7        | 0.021   | 1.28 (1.04-1.58)       | 1.47 (1.03-2.10)         | 0.267                |
| DAAM1        | 0.001   | 1.64 (1.22-2.22)       | 0.93 (0.55-1.57)         | 0.142                |
| DIP2B        | <0.001  | 2.55 (1.65-3.94)       | 1.10 (0.49-2.45)         | 0.078                |
| FAM199X      | <0.001  | 2.62 (1.66-4.14)       | 1.59 (0.59-4.27)         | 0.068                |
| FAM91A1      | <0.001  | 1.62 (1.24-2.12)       | 0.73 (0.35-1.50)         | -0.021               |
| FRZB         | 0.012   | 0.78 (0.64-0.95)       | 0.79 (0.57-1.10)         | -0.239               |
| GLA          | 0.005   | 0.58 (0.39-0.85)       | 0.35 (0.19-0.64)         | -0.001               |
| GMCL1        | <0.001  | 2.23 (1.47-3.38)       | 0.34 (0.11-1.06)         | 0.076                |
| HRASLS       | 0.015   | 1.31 (1.05-1.63)       | 2.24 (1.50-3.34)         | 0.165                |
| hsa-miR-103  | 0.003   | 1.69 (1.19-2.40)       | 1.64 (0.82-3.27)         | -0.090               |
| hsa-miR-1307 | 0.001   | 1.44 (1.16-1.80)       | 0.63 (0.39-1.01)         | 0.090                |
| hsa-miR-148b | <0.001  | 2.06 (1.40-3.02)       | 1.01 (0.54-1.88)         | 0.026                |
| hsa-miR-328  | <0.001  | 1.80 (1.36-2.38)       | 1.80 (0.96-3.35)         | 0.221                |
| hsa-miR-484  | <0.001  | 1.86 (1.37-2.52)       | 1.72 (0.92-3.22)         | 0.138                |
| hsa-miR-874  | <0.001  | 1.89 (1.41-2.53)       | 1.15 (0.70-1.89)         | 0.275                |
| hsa-miR-93   | 0.02    | 1.40 (1.05-1.85)       | 0.87 (0.43-1.74)         | -0.069               |
| HSP90AA1     | <0.001  | 1.90 (1.37-2.64)       | 1.05 (0.61-1.79)         | 0.117                |
| MCM10        | 0.038   | 1.25 (1.01-1.54)       | 0.93 (0.56-1.55)         | 0.029                |
| ME1          | <0.001  | 1.37 (1.15-1.63)       | 1.05 (0.80-1.39)         | 0.035                |
| NDRG1        | 0.035   | 1.21 (1.01-1.44)       | 0.95 (0.68-1.32)         | 0.040                |
| NOTCH2NL     | 0.203   | 1.28 (0.88-1.87)       | 2.03 (1.12-3.67)         | 0.024                |
| OTUD6B       | 0.001   | 1.54 (1.19-2.00)       | 0.90 (0.47-1.71)         | -0.086               |
| PDSS2        | <0.001  | 1.80 (1.35-2.40)       | 1.43 (0.85-2.39)         | 0.089                |
| PGK1         | <0.001  | 2.47 (1.73-3.52)       | 2.52 (1.24-5.13)         | 0.144                |
| PIK3CA       | <0.001  | 2.09 (1.58-2.76)       | 2.11 (1.31-3.39)         | 0.062                |
| PTAR1        | 0.001   | 1.84 (1.26-2.67)       | 1.17 (0.52-2.65)         | -0.010               |
| SMG1         | 0.002   | 1.86 (1.26-2.75)       | 0.55 (0.20-1.49)         | 0.029                |
| TRIM23       | 0.001   | 1.77 (1.25-2.51)       | 1.56 (0.66-3.68)         | 0.034                |
| TTC3         | <0.001  | 2.25 (1.43-3.53)       | 1.12 (0.53-2.38)         | 0.064                |
| UBR5         | 0.001   | 1.74 (1.25-2.41)       | 1.71 (0.70-4.15)         | -0.036               |
| UBXN7        | <0.001  | 1.74 (1.31-2.32)       | 0.41 (0.18-0.96)         | 0.060                |
| ZFC3H1       | <0.001  | 1.88 (1.38-2.57)       | 1.33 (0.68-2.61)         | 0.019                |

 Table S5. The Integrated miRNA/mRNA Linear Risk Predictor in the TCGA Cohort

\*A new sample was predicted as high risk if its prognostic index was larger than 0.033. The prognostic index was computed by the formula  $\sum_i w_i x_i - 8.877$  where  $w_i$  and  $x_i$  were respectively the weight and  $\log_2 RNA$  normalized reads for the *i*-th gene. The p-value was from the univariate Cox regression.

| Store                        | B SE          |             | Wald df | Sig | ЦВ   | 95.0% CI for HR |       |        |
|------------------------------|---------------|-------------|---------|-----|------|-----------------|-------|--------|
| Steps                        |               |             | wald u  |     | Sig. | пк              | Lower | Upper  |
| Step 1                       |               |             |         |     |      |                 |       |        |
| ACSL1                        | 006           | .272        | .000    | 1   | .983 | .994            | .583  | 1.694  |
| ADAT1                        | 268           | .393        | .464    | 1   | .496 | .765            | .354  | 1.652  |
| ANKRD52                      | .361          | .498        | .527    | 1   | .468 | 1.435           | .541  | 3.805  |
| BIRC6                        | 1.140         | .716        | 2.537   | 1   | .111 | 3.127           | .769  | 12.715 |
| CPT1A                        | .495          | .280        | 3.134   | 1   | .077 | 1.640           | .948  | 2.837  |
| CXCR7                        | .704          | .269        | 6.871   | 1   | .009 | 2.022           | 1.194 | 3.423  |
| DAAM1                        | 368           | .362        | 1.032   | 1   | .310 | .692            | .340  | 1.408  |
| DIP2B                        | 020           | .530        | .001    | 1   | .970 | .980            | .347  | 2.769  |
| FAM199X                      | 457           | .639        | .512    | 1   | .474 | .633            | .181  | 2.215  |
| FAM91A1                      | 018           | .451        | .002    | 1   | .969 | .982            | .406  | 2.376  |
| FRZB                         | 215           | .228        | .885    | 1   | .347 | .807            | .516  | 1.262  |
| GLA                          | -1.107        | .469        | 5.567   | 1   | .018 | .331            | .132  | .829   |
| GMCL1                        | -1.394        | .714        | 3.810   | 1   | .051 | .248            | .061  | 1.006  |
| HRASLS                       | .611          | .276        | 4.895   | 1   | .027 | 1.841           | 1.072 | 3.163  |
| hsa-miR-103-1                | 227           | .462        | .241    | 1   | .623 | .797            | .322  | 1.971  |
| hsa-miR-1307                 | 197           | .359        | .300    | 1   | .584 | .822            | .407  | 1.660  |
| hsa-miR-148b                 | .528          | .372        | 2.022   | 1   | .155 | 1.696           | .819  | 3.514  |
| hsa-miR-328                  | .402          | .427        | .889    | 1   | .346 | 1.495           | .648  | 3.451  |
| hsa-miR-484                  | .230          | .423        | .296    | 1   | .586 | 1.259           | .550  | 2.884  |
| hsa-miR-874                  | .308          | .355        | .756    | 1   | .385 | 1.361           | .679  | 2.728  |
| hsa-miR-93                   | .243          | .429        | .320    | 1   | .572 | 1.275           | .549  | 2.958  |
| HSP90AA1                     | 141           | .432        | .106    | 1   | .745 | .869            | .372  | 2.028  |
| MCM10                        | 016           | .338        | .002    | 1   | .962 | .984            | .507  | 1.908  |
| ME1                          | 100           | .197        | .260    | 1   | .610 | .905            | .615  | 1.330  |
| NDRG1                        | 375           | .271        | 1.916   | 1   | .166 | .687            | .404  | 1.169  |
| NOTCH2NL                     | .710          | .394        | 3.244   | 1   | .072 | 2.035           | .939  | 4.409  |
| OTUD6B                       | 501           | .453        | 1.226   | 1   | .268 | .606            | .250  | 1.471  |
| PDSS2                        | .280          | .334        | .702    | 1   | .402 | 1.323           | .687  | 2.548  |
| PGK1                         | 1.908         | .523        | 13.328  | 1   | .000 | 6.738           | 2.420 | 18.765 |
| PIK3CA                       | .583          | .302        | 3.735   | 1   | .053 | 1.791           | .992  | 3.234  |
| PTAR1                        | 010           | .560        | .000    | 1   | .986 | .990            | .330  | 2.969  |
| SMG1                         | .532          | .772        | .475    | 1   | .491 | 1.703           | .375  | 7.732  |
| TRIM23                       | .710          | .617        | 1.324   | 1   | .250 | 2.033           | .607  | 6.809  |
| TTC3                         | .638          | .441        | 2.093   | 1   | .148 | 1.893           | .797  | 4.494  |
| UBR5                         | .314          | .589        | .283    | 1   | .595 | 1.368           | .431  | 4.342  |
| UBXN7                        | -1.099        | .543        | 4.091   | 1   | .043 | .333            | .115  | .967   |
| ZFC3H1                       | .845          | .555        | 2.313   | 1   | .128 | 2.328           | .784  | 6.914  |
| <i>TP</i> 53 Mut             | .093          | .604        | .024    | 1   | .877 | 1.098           | .336  | 3.589  |
| PIK3CA/AKT/PTEN Mut          | 1.101         | .554        | 3.944   | 1   | .047 | 3.006           | 1.015 | 8.906  |
| PAM50                        |               |             | 3,940   | 3   | .268 |                 |       |        |
| PAM50 (1)                    | 072           | 1 186       | 004     | 1   | 052  | 1 075           | 105   | 10 078 |
| PAM50(1)                     | -1 060        | 723         | 2 151   | 1   | 1/2  | 3/6             | 084   | 1 / 20 |
| PAM50 (2)                    | -1.000<br>3∩1 | 020         | 103     | 1   | 7/9  | 1 251           | 215   | 8 508  |
| Disease Store                | 144           | .909        | 103     | 1   | .740 | 1 155           | .210  | 2.500  |
| T stopp                      | .144          | .409<br>102 | .124    | 1   | .720 | 1.100           | .010  | 2.074  |
| i slaye<br>Estrogen Pacantar | 1 002         | .403<br>810 | 5 206   | 1   | .971 | 6 600           | 1 2/6 | 2.200  |
| N stage                      | 1.902         | .019        | 1 201   | 1   | .020 | 0.099           | 720   | 2 750  |
| in stage                     | .498          | .422        | 1.391   |     | .∠38 | 1.045           | .120  | 3.159  |

 Table S6. Multivariate Cox proportional hazards model for OS in IDC.

| Store               | в     | ee.  | Wold   | ન | Cim  | μр    | 95.0% CI for HR |       |
|---------------------|-------|------|--------|---|------|-------|-----------------|-------|
| Steps               | D JE  |      | walu u |   | Sig. | пк    | Lower           | Upper |
| Step 30             |       |      |        |   |      |       |                 |       |
| CPT1A               | .586  | .205 | 8.172  | 1 | .004 | 1.797 | 1.202           | 2.686 |
| CXCR7               | .497  | .187 | 7.086  | 1 | .008 | 1.643 | 1.140           | 2.368 |
| GLA                 | 872   | .310 | 7.906  | 1 | .005 | .418  | .228            | .768  |
| HRASLS              | .421  | .185 | 5.169  | 1 | .023 | 1.523 | 1.060           | 2.190 |
| hsa-miR-1307        | 400   | .224 | 3.197  | 1 | .074 | .670  | .432            | 1.039 |
| hsa-miR-328         | .622  | .243 | 6.556  | 1 | .010 | 1.862 | 1.157           | 2.996 |
| NOTCH2NL            | 1.002 | .304 | 10.832 | 1 | .001 | 2.724 | 1.500           | 4.946 |
| PGK1                | 1.253 | .280 | 20.049 | 1 | .000 | 3.502 | 2.023           | 6.062 |
| PIK3CA              | .687  | .243 | 7.986  | 1 | .005 | 1.987 | 1.234           | 3.200 |
| TTC3                | .653  | .307 | 4.529  | 1 | .033 | 1.921 | 1.053           | 3.504 |
| UBXN7               | 843   | .328 | 6.627  | 1 | .010 | .430  | .227            | .818  |
| ZFC3H1              | .816  | .353 | 5.354  | 1 | .021 | 2.261 | 1.133           | 4.513 |
| PIK3CA/AKT/PTEN Mut | 1.126 | .419 | 7.211  | 1 | .007 | 3.084 | 1.356           | 7.016 |
| Estrogen Receptor   | 1.106 | .462 | 5.723  | 1 | .017 | 3.021 | 1.221           | 7.472 |
| N stage             | .596  | .184 | 10.538 | 1 | .001 | 1.815 | 1.266           | 2.600 |

Stratified by age groups (143 patients <=55 years, 195 patients >55 years). Method = Backward Stepwise (Wald)

| Cohort                                          | Clinical<br>End<br>point | RNA<br>profile | Integrated<br>miRNA/<br>mRNA | 10-miRNA<br>(8)   | GGI<br>97-gene<br>(9)                   | IGS<br>186-Gene<br>(10) | 95-gene<br>Naoi<br>(11) | 76-gene<br>Rotterdam<br>(12) | NKI<br>Mamma<br>Print<br>70-gene<br>(13, 14) | Oncotype<br>DX<br>(15) |
|-------------------------------------------------|--------------------------|----------------|------------------------------|-------------------|-----------------------------------------|-------------------------|-------------------------|------------------------------|----------------------------------------------|------------------------|
| TCGA IDC<br>(n=466)                             | OS                       | mRNA/<br>miRNA | 0.74<br>(p<0.001)            | n.s. <sup>§</sup> | 0.62<br>(p=0.034)                       | 0.61<br>(p=0.032)       | 0.61<br>(p=0.043)       | n.s. <sup>§</sup>            | n.s. <sup>§</sup>                            | n.s. <sup>§</sup>      |
| TCGA IDC<br>Early stages<br>I and II<br>(n=348) | OS                       | mRNA/<br>miRNA | 0.77<br>(p<0.001)            | n.s. <sup>§</sup> | n.s. <sup>§</sup>                       | n.s. <sup>§</sup>       | n.s. <sup>§</sup>       | n.s. <sup>§</sup>            | 0.66<br>(p=0.028)                            | n.s. <sup>§</sup>      |
| UK(8)                                           | DRES                     | mRNA/          | 0.65                         | 0.76              | 0.66                                    | 0.70                    | 0.72                    | 0.66                         | 0.73                                         | 0.68                   |
| (n=207)                                         | 2                        | miRNA          | (p=0.004)                    | (p<0.001)         | (p=0.001)                               | (p<0.001)               | (p<0.001)               | (p=0.003)                    | (p<0.001)                                    | (p<0.001)              |
| NKI(16)                                         | 05                       | mRNΔ           | 0.75*                        | na <sup>#</sup>   | 0.73                                    | 0.75                    | 0.74                    | 0.67                         | 0.76                                         | 0.76                   |
| (n=295)                                         | 05                       |                | (p<0.001)                    | na                | (p<0.001)                               | (p<0.001)               | (p<0.001)               | (p<0.001)                    | (p<0.001)                                    | (p<0.001)              |
| Hatzis(17)                                      |                          | mDNA           | 0.65*                        | ~~ <sup>#</sup>   | 0.66                                    | 0.65                    | 0.64                    | 0.62                         | 0.62                                         | 0.63                   |
| (n=508)                                         | DKFS                     | IIIKINA        | (p<0.001)                    | nu                | (p<0.001)                               | (p<0.001)               | (p<0.001)               | (p=0.001)                    | (p<0.001)                                    | (p<0.001)              |
| Kao(18)                                         | 0                        | m DNA          | 0.62*                        | ~~ <sup>#</sup>   | 0.58                                    | 0.66                    | 0.66                    | 0.58                         | 0.64                                         | 0.65                   |
| (n=327)                                         | US                       | MRNA           | (p=0.006)                    | па                | (p=0.051)                               | (p<0.001)               | (p<0.001)               | (p=0.038)                    | (p=0.005)                                    | (p<0.001)              |
| Wang(12)                                        |                          |                | 0.59*                        |                   | 0.59                                    | 0.60                    | 0.71                    | 0.65                         | 0.57                                         | 0.62                   |
| (n=286)                                         | DRFS                     | MKNA           | (p=0.025)                    | na                | (p=0.017)                               | (p=0.006)               | (p<0.001)               | (p<0.001)                    | ( <i>p=0.051</i> )                           | (p<0.001)              |
| TRANSBIG(19)                                    | 0                        |                | 0.64*                        | #                 | 0.70                                    | 0.63                    | ξ                       | 0.64                         |                                              | 0.65                   |
| (n=198)                                         | US                       | MKNA           | (p=0.015)                    | na                | " (p=0.002) (p=0.018) n.s. <sup>3</sup> | n.s.°                   | (p=0.023)               | n.s. <sup>°</sup>            | (p<0.001)                                    |                        |
| Bos(20)                                         |                          |                | 0.68*                        |                   | 0.67                                    | 0.68                    |                         |                              | 0.69                                         | 0.74                   |
| (n=195)                                         | DKF2                     | ткNA           | (p=0.011)                    | na                | (p=0.031)                               | (p=0.016)               | n.s.°                   | n.s.°                        | (p=0.01 <u>6</u> )                           | (p=0.003)              |
| TNBC(21)                                        | החרכ                     | m DNA          | 0.69*                        | ~~ <sup>#</sup>   | 0.65                                    | 0.68                    | 0.69                    | 0.65                         | 0.68                                         | 0.66                   |
| (n=383)                                         | DKF2                     | MKNA           | (p<0.001)                    | па                | (p<0.001)                               | (p<0.001)               | (p<0.001)               | (p<0.001)                    | (p<0.001)                                    | (p<0.001)              |

## Table S7. The Prognostic Values of Eight RNA Signatures in Nine Breast Cancer Cohorts

<sup>§</sup> n.s., p>0.05. The permutation p value was computed for testing the null hypothesis (AUC=0.5) using 1000 permutations. The ROC and KM curves are shown in Supporting Information. <sup>#</sup>na, no assessment was possible, since the miRNA signature could not be applied to an mRNA only profile. \*only the mRNA component of the miRNA/mRNA integrated signature was evaluated in the mRNA only datasets.



**Figure S1.** Kaplan Meier survival estimates by Regional Lymph Node involvement (N) in invasive ductal carcinoma (Overall log-rank test, p-value=0.005)



**Figure S2.** Kaplan Meier survival estimates by Distant Metastases (M) in invasive ductal carcinoma (Overall log-rank test, p-value=0.026)



**Figure S3.** Kaplan Meier survival estimates by intrinsic subtypes in invasive ductal carcinoma (Overall log-rank test, p-value=0.042).



**Figure S4.** Kaplan Meier survival estimates by the AJCC Disease Stage in invasive ductal carcinoma (Overall log-rank test, p-value=0.002)



**Figure S5.** Kaplan Meier survival estimates by the T stage in invasive ductal carcinoma (Overall log-rank test, p-value <0.001)



**Figure S6.** Kaplan Meier survival estimates by the Estrogen Receptor (ER) status in invasive ductal carcinoma (Breslow test, p-value=0.016)



**Figure S7.** Kaplan Meier survival estimates by the Triple Negative (TNBC) status in invasive ductal carcinoma (Breslow test, p-value=0.041)



**Figure S8.** Kaplan Meier survival estimates by the *TP53* somatic mutation status in invasive ductal carcinoma (log-rank test, non significant).



**Figure S9.** Kaplan Meier survival estimates by the *PIK3CA* pathway somatic mutation status in invasive ductal carcinoma (log-rank test, non significant).



**Figure S10.** A) KM and B) ROC curves for the miRNA/mRNA signature in early stage I and II IDC tumors of the TCGA cohort.



Figure S11. A) KM and B) ROC curves for the miRNA/mRNA signature in the NKI cohort.



Figure S12. A) KM and B) ROC curves for the miRNA/mRNA signature in the Hatzis cohort.



Figure S13. A) KM and B) ROC curves for the miRNA/mRNA signature in the Kao cohort.



Figure S14. A) KM and B) ROC curves for the miRNA/mRNA signature in the Wang cohort.



Figure S15. A) KM and B) ROC curves for the miRNA/mRNA signature in the TRANSBIG cohort.



Figure S16. A) KM and B) ROC curves for the miRNA/mRNA signature in the Bos cohort.



**Figure S17.** A) KM and B) ROC curves for the miRNA/mRNA signature in the TNBC cohort.

## References

- 1. Mortazavi A, Williams BA, McCue K, Schaeffer L, & Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nature methods* 5(7):621-628.
- 2. Bamford S, et al. (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355-358.
- 3. Du P, et al. (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. *BMC Bioinformatics* 11:587.
- 4. Heagerty PJ, Lumley T, & Pepe MS (2000) Time-dependent ROC curves for censored survival data and a diagnostic marker. *Biometrics* 56(2):337-344.
- 5. Maere S, Heymans K, & Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. *Bioinformatics* 21(16):3448-3449.
- 6. Shannon P, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res* 13(11):2498-2504.
- 7. Storey JD & Tibshirani R (2003) Statistical significance for genomewide studies. *Proceedings of the National Academy of Sciences of the United States of America* 100(16):9440-9445.
- 8. Buffa FM, et al. (2011) microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer research 71(17):5635-5645.
- 9. Sotiriou C, et al. (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262-272.
- 10. Liu R, *et al.* (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. *N Engl J Med* 356(3):217-226.
- 11. Naoi Y, et al. (2011) Development of 95-gene classifier as a powerful predictor of recurrences in node-negative and ER-positive breast cancer patients. *Breast Cancer Res Treat* 128(3):633-641.
- 12. Wang Y, et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-nodenegative primary breast cancer. *Lancet* 365(9460):671-679.
- 13. Buyse M, *et al.* (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. *J Natl Cancer Inst* 98(17):1183-1192.
- 14. Glas AM, *et al.* (2006) Converting a breast cancer microarray signature into a high-throughput diagnostic test. *BMC Genomics* 7:278.
- 15. Paik S, *et al.* (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. *N Engl J Med* 351(27):2817-2826.
- 16. van de Vijver MJ, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. *N Engl J Med* 347(25):1999-2009.
- 17. Hatzis C, et al. (2011) A genomic predictor of response and survival following taxaneanthracycline chemotherapy for invasive breast cancer. JAMA 305(18):1873-1881.
- 18. Kao KJ, Chang KM, Hsu HC, & Huang AT (2011) Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization. *BMC Cancer* 11:143.
- 19. Desmedt C, *et al.* (2007) Strong time dependence of the 76-gene prognostic signature for nodenegative breast cancer patients in the TRANSBIG multicenter independent validation series. *Clin Cancer Res* 13(11):3207-3214.
- 20. Bos PD, et al. (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459(7249):1005-1009.
- 21. Rody A, et al. (2011) A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast cancer research : BCR 13(5):R97.