Supporting Information

Imperi et al. 10.1073/pnas.1222706110

Fig. S1. Response of the PvdS-dependent *pvdE* promoter (*PpvdE*) ::*lux* reporter to pyoverdine signaling. Bacterial growth (gray lines, left *y* axis) and bioluminescence emission (black lines, right *y* axis) of PAO1 *PpvdE::lux* (filled circles), PAO1*pvdA PpvdE::lux* (open squares), and PAO1*pvdA PpvdE::lux* plus 10 μ M exogenously added pyoverdine (open circles) cultured in TSBD medium at 37 °C in microtiter plates. Values represent the mean of five independent assays (SD < 9% of the mean values).

Fig. 52. 5-Fluorocytosine (5-FC) specifically inhibits transcription of iron-dependent genes. (A) Effect of 5-FC (0–100 μ M) on β -gal expression by PAO1 PpvdA:: *lacZ* (gray bars) and PAO1 PpvdD::*lacZ* (white bars) at 14 h of growth in TSBD. *Inset* shows a representative anti-PvdA Western blot on whole-cell lysates from 5-FC-treated or -untreated *Pseudomonas aeruginosa* PAO1 cells grown for 14 h in TSBD. (B) Effect of 5-FC (0–100 μ M) on β -gal expression by PAO1 PproC::*lacZ* at 8 and 14 h of growth (gray and black bars, respectively) in TSBD. Values represent the mean (\pm SD) of at least three independent assays. (C) Bioluminescence emission by PAO1 PfoxA::*lux* (*Left*) and β -gal expression by PAO1 PfooA::*lacZ* (*Right*) at 14 h of growth in TSBD shows a represent of 5-FC (0–100 μ M) on bioluminescence emission by PAO1 PfooA::*lacZ* (*Right*) at 14 h of growth in TSBD. (D) Effect of 5-FC (0–100 μ M) on pyoverdine production by PAO1 PfooA::*lacZ* (*Right*) at 14 h of growth in TSBD. (E) Effect of 5-FC (0–100 μ M) on pyoverdine production by PAO1 PfooA::*lacZ* (*Right*) at 14 h of growth in TSBD. (E) Effect of 5-FC (0–100 μ M) on pyoverdine production by PAO1 and the *fur* mutant PAO1 A4 expressing a Fur variant, which is strongly impaired in iron-dependent gene repression (1), at 14 h of growth in TSBD. Values represent the mean (\pm SD) of at least three independent assays.

1. Barton HA, Johnson Z, Cox CD, Vasil AI, Vasil ML (1996) Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments. Mol Microbiol 21(5):1001–1017.

Fig. S3. 5-FC does not affect *P. aeruginosa* persistence in mouse lungs. (*A*) Percentage of mice showing $\geq 10^3$ viable *P. aeruginosa* cells per lung among mice surviving the pulmonary infection (corresponding to 100%) with *P. aeruginosa* PAO1 or the isogenic PAO1*pvdS* mutant treated or not treated with 5-FC (Fig. 4A). (*B*) Bacterial load [colony-forming unit (CFU) per lung] in the lungs of mice showing $\geq 10^3$ viable *P. aeruginosa* cells per lung. No statistically significant differences between groups (0.16 $\leq P \leq 1$) were observed (Fisher and unpaired two-tailed *t* tests for *A* and *B*, respectively).

Strain*	Source
BT2	1
BT73	1
KK1	1
KK28	1
KK71	1
KK72	1
TR1	1
TR66	1
FM-01	2
FM-02	2
FM-04	2
FM-11	2
FM-12	2
FM-13	2
FM-14	2
FM-15	2
FM-17	2
FM-19	2
FM-20	2
FM-21	This work

Table S1. P. aeruginosa cystic fibrosis isolates used in this study

*Numbers of FM isolates refer to the sputum samples and thus, patients from whom strains have been isolated (described in ref. 2). FM-21 was isolated from the sputum sample of a CF patient chronically infected by *P. aeruginosa* and hospitalized at the Policlinico Umberto I Hospital (Rome, Italy).

1. Bragonzi A, et al. (2009) Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. Am J Respir Crit Care Med 180(2): 138–145.

2. Massai F, et al. (2011) A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoyl-homoserine lactone quorum sensing signal. Biosens Bioelectron 26(8):3444-3449.

Table S2. Bacterial strains and plasmids used in this study

S A L

	Genotype and/or relevant characteristics	Source
Strain		
P. aeruginosa		
PAO1	WT (prototroph), type I pyoverdine producer	ATCC
7NSK2	Type II pyoverdine producer (type IIa pyoverdine receptor)	1
ATCC27853	Type II pyoverdine producer (type IIb pyoverdine receptor)	1
LESB58	Type III pyoverdine producer	2
PAO1 <i>pvdS</i>	PAO1 Δ <i>pvdS</i> , Gm ^R	This work
PAO1codA	PAO1 $\Delta codA$, in-frame deletion mutant in the $codA$ (PA0437) gene	This work
PAO1codB	PAO1 $\Delta codB$, in-frame deletion mutant in the codB (PA0438) gene	This work
PAO1 <i>pvdA</i>	PAO1 ApvdA	3
K1660	K767 ΔfpvA	4
PAO1 <i>fpvR</i>	PAO1 <i>fpvR</i> ::Km ^R	5
PAO1 A4	PAO1 carrying a <i>fur</i> mutation resulting in the H86 \rightarrow Y substitution in the Fur protein	6
Escherichia coli		
DH5αF′	recA1 endA1 hsdR17 supE44 thi-1 gyrA96 relA1 Δ (lacZYA-argF)U169 [Φ 80dlacZ Δ M15] Nal ^R	7
S17-1 λ <i>pir</i>	TpR SmR recA, thi, pro, hsdR-M+RP4: 2-Tc:Mu: K_m Tn7 λpir	8
Plasmid		
pEX18Tc	pMB1 replicon, <i>oriT sacB lac</i> $Z\alpha$, <i>Mob</i> ⁺ Tc ^r , allelic exchange vector	9
pPS858	Ap ^r ; source of Gm ^r -GFP cassette	9
pUCP18	<i>E. coli–Pseudomonas</i> shuttle vector; Ap/Cb ^R	10
pDM4	Suicide vector; <i>sacBR, oriR6K</i> ; Cm ^R	11
Mini-CTX- <i>lux</i>	Promoter-probe vector containing the <i>luxCDABE</i> operon; Tc ^R	12
Mini-CTX-PpvdE::lux	Plasmid to insert a PpvdE::/ux fusion into the chromosome of P. aeruginosa; Tc ^R	This work
pEX∆ <i>pvdS</i>	pEX18Tc derivative carrying the Gm ^r -GFP cassette between flanking regions of the <i>pvdS</i> coding sequence	This work
pDM4∆ <i>codA</i>	pDM4 derivative carrying the flanking regions of the codA coding sequence	This work
pDM4∆ <i>codB</i>	pDM4 derivative carrying the flanking regions of the codB coding sequence	This work
pUCPcodA	pUCP18 derivative carrying the entire <i>codA</i> coding sequence under the control of the P_{T5} <i>lacO</i> region	This work
pUCP <i>codB</i>	pUCP18 derivative carrying the entire $codB$ coding sequence under the control of the P _{T5} <i>lacO</i> region	This work
pUCP <i>pvdS</i>	pUCP18 derivative carrying the entire $pvdS$ coding sequence under the control of the P _{TS} lacO region; Ap ^R	13
pMP220::P <i>pvdA</i>	pMP220 derivative carrying a PpvdA:: <i>lacZ</i> transcriptional fusion; Tc ^R	13
pMP190::P <i>pvdD</i>	pMP190 derivative carrying a P <i>pvdD::lacZ</i> transcriptional fusion; Cm ^R	14
pMP190::P <i>pvdE</i>	pMP190 derivative carrying a P <i>pvdE::lacZ</i> transcriptional fusion; Cm ^R	14
pPZ- <i>pvdS</i>	pPZTC derivative carrying a PpvdS::lacZ transcriptional fusion; Cb ^R	15
pPZ- <i>toxA</i>	pPZ20 derivative carrying a PtoxA::/acZ translational fusion; Cb ^R	5
pPZ- <i>prpL</i>	pPZTC derivative carrying a PprpL::lacZ transcriptional fusion; Cb ^R	5
pMP220::PpchR	pMP220 derivative carrying a PpchR::/acZ transcriptional fusion; Tc ^R	This work
pMP220::PfeoA	pMP220 derivative carrying a PfeoA::lacZ transcriptional fusion; Tc ^R	This work
pME6425	Translational <i>pchE'-'lacZ</i> fusion, Tc ^R	16
pME3641	Plasmid carrying a translational PproC::lacZ fusion, Cb ^R	17
Mini-CTX- <i>lux</i> ::PfoxA	Plasmid to insert a PfoxA::lux fusion into the chromosome of P. aeruginosa; TcR	18

1. Bodilis J, et al. (2009) Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11(8):2123-2135.

2. Kukavica-Ibrulj I, et al. (2008) In vivo growth of Pseudomonas aeruginosa strains PAO1 and PA14 and the hypervirulent strain LESB58 in a rat model of chronic lung infection. J Bacteriol 190(8):2804-2813.

3. Imperi F, et al. (2008) Membrane-association determinants of the omega-amino acid monooxygenase PvdA, a pyoverdine biosynthetic enzyme from Pseudomonas aeruginosa. Microbiology 154(Pt 9):2804-2813.

4. Shen J, Meldrum A, Poole K (2002) FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa. J Bacteriol 184(12):3268-3275.

5. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa. Proc Natl Acad Sci USA 99(10): 7072-7077.

6. Barton HA, Johnson Z, Cox CD, Vasil AI, Vasil ML (1996) Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments. Mol Microbiol 21(5):1001–1017.

7. Liss L (1987) New M13 host: DH5 F' competent cells. Focus 9:13.

8. Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Biotechnology (NY) 1:784–791. 9. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range FIp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212(1):77-86.

10. Schweizer HP (1991) Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97(1):109-121.

11. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H (1996) Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178(5):1310-1319.

12. Becher A, Schweizer HP (2000) Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. Biotechniques 29(5): 948-950, 952.

13. Ambrosi C, Tiburzi F, Imperi F, Putignani L, Visca P (2005) Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1. J Bacteriol 187(15):5097-5107. 14. Cunliffe HE, Merriman TR, Lamont IL (1995) Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. J Bacteriol 177(10):2744-2750.

15. Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002) GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: Identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45(5):1277-1287.

16. Reimmann C, Serino L, Beyeler M, Haas D (1998) Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa. Microbiology 144(Pt 11):3135-3148.

17. Savioz A, Zimmermann A, Haas D (1993) Pseudomonas aeruginosa promoters which contain a conserved GG-N10-GC motif but appear to be RpoN-independent. Mol Gen Genet 238(1-2):74-80.

18. Mettrick KA, Lamont IL (2009) Different roles for anti-sigma factors in siderophore signalling pathways of Pseudomonas aeruginosa. Mol Microbiol 74(5):1257-1271.

Table S3. Primers used in this study

PNAS PNAS

Primer name	Sequence*	Restriction site	Application
pvdS mut_UP_FW	5'-CGGAATTCCGTCTCCTGCTGCGC-3'	EcoRI	Generation of the PAO1pvdS deletion mutant
pvdS mut_UP_RV	5′-ACGCGTCGACCGACATGGAAATCACCTTG-3′	Sall	Generation of the PAO1pvdS deletion mutant
<i>pvdS</i> mut_DOWN_FW	5′-ACGC <u>GTCGAC</u> TGACGGCGGCGAGCATTC-3′	Sall	Generation of the PAO1pvdS deletion mutant
<i>pvdS</i> mut_DOWN_RV	5'-CCCAAGCTTCCGTCCCCAGCCTC-3'	HindIII	Generation of the PAO1pvdS deletion mutant
codA mut_UP_FW	5′-GC <u>TCTAGA</u> CCGCCGTGGTGGTGTGC-3′	Xbal	Generation of the PAO1codA in-frame deletion mutant
codA mut_UP_RV	5′-CG <u>GAATTC</u> GCGGCCGCGCAGGC-3′	EcoRI	Generation of the PAO1codA in-frame deletion mutant
codA mut_DOWN_FW	5′-CG <mark>GAATTC</mark> GACGCGGTGCGCCG-3′	EcoRI	Generation of the PAO1codA in-frame deletion mutant
codA mut_DOWN_RV	5′-GGCCTG <u>CTCGAG</u> GTCTGG-3′	Xhol	Generation of the PAO1codA in-frame deletion mutant
codB mut_UP_FW	5′-GC <u>TCTAGA</u> TGGACAGCCATGGCTAC-3′	Xbal	Generation of the PAO1codB in-frame deletion mutant
<i>codB</i> mut_UP_RV	5′-CG <u>GAATTC</u> CGCCAGCGGGACCGG-3′	EcoRI	Generation of the PAO1codB in-frame deletion mutant
codB mut_DOWN_FW	5′-CG <mark>GAATTC</mark> GCTTGCGGCACCGCC-3′	EcoRI	Generation of the PAO1codB in-frame deletion mutant
codB mut_DOWN_RV	5′-GCGCAC <u>CTCGAG</u> CATGGC-3′	Xhol	Generation of the PAO1codB in-frame deletion mutant
codA_FW	5′-CG <u>GGATCC</u> CCCACGGAGACTCGCG-3′	BamHI	Construction of codA-complementing plasmid
codA_RV	5′-CCC <u>AAGCTT</u> GTCAATCAGCATGGAGGAC-3′	HindIII	Construction of codA-complementing plasmid
codB_FW	5′-CG <u>GGATCC</u> AGAAGAGGTCCTCCATG-3′	BamHI	Construction of codB-complementing plasmid
codB_RV	5′-CCCAAGCTTCGCTAGAAGGCTCCGG-3′	HindIII	Construction of codB-complementing plasmid
PpchR_FW	5′-GG <u>AAGATCT</u> ACCGTGTCGCCATGTG-3′	Bglll	Construction of PpchR::lacZ transcriptional fusion
PpchR_RV	5′-GC <mark>GGAATTC</mark> GATGTGCGCGACGCC-3′	EcoRI	Construction of PpchR::lacZ transcriptional fusion
PfeoA_FW	5′-CG <u>GAATTC</u> GACAACCGCCCGGCC-3′	EcoRI	Construction of PfeoA::lacZ transcriptional fusion
PfeoA_RV	5'-GCTCTAGATGCGGTAGGAACGGGAC-3'	Xbal	Construction of PfeoA::lacZ transcriptional fusion

All PCRs were performed using the genomic DNA of the PAO1 strain as template. *The restriction site used for cloning is underlined in the primer sequence.