Supporting Information

Śledź et al. 10.1073/pnas.1305782110

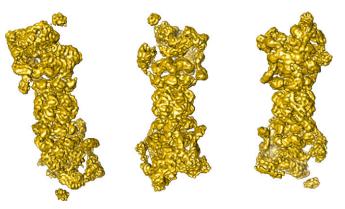


Fig. S1. Nonsymmetrized (C1) reconstruction of ATP-γS-bound form of 26S proteasome from Saccharomyces cerevisiae.

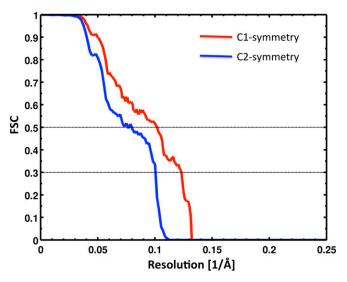


Fig. S2. Fourier-shell correlation (FSC) of C₁- and C₂-symmetrized reconstruction. To ensure the same effective particle numbers in both reconstructions, the C₂ reconstruction has been carried out with 50% randomly chosen particles.

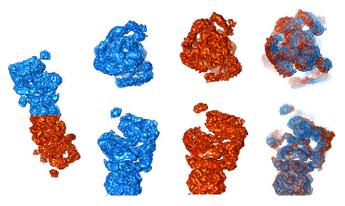


Fig. S3. Superposition of the two caps (half-proteasomes) from the ATP- γ S map.

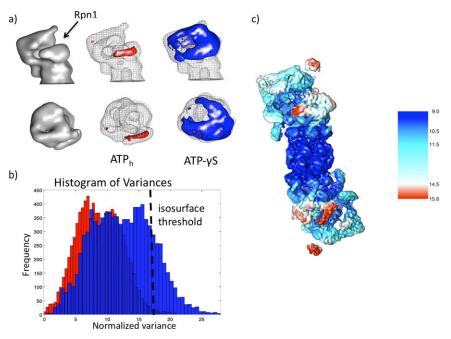


Fig. 54. (A) Variance maps of ATP-γS-bound and ATP-hydrolysing (ATP_h) maps. The variance maps were normalized to the background. (B) Histogram of variances for both structures. (C) Local resolution of ATP-γS density. The isosurface is colored according to the local resolution as indicated by the color bar (in angstroms).

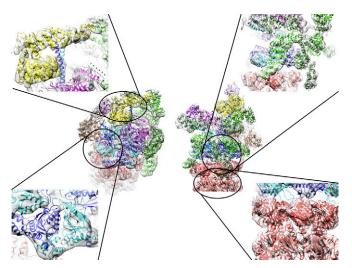


Fig. S5. Agreement between the pseudoatomic model of ATP-γS-bound proteasome and EM density. (*Upper Left*) Regulatory particle non-ATPase (Rpn) 2 subunit. (*Upper Right*) PCI (proteasome, COP9, and initiation factor 3) subunits. (*Lower Left*) AAA ATPases. (*Lower Right*) The 20S core particle.

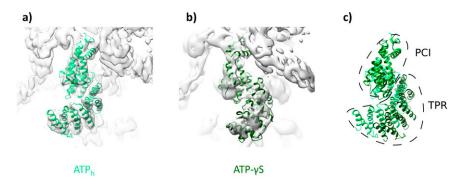


Fig. S6. Conformational changes of Rpn6 upon transition between the nucleotide states. (A) Rpn6 and corresponding EM density in ATP_h structure. (B) Rpn6 and corresponding EM density in ATP_{-γ}S–bound structure. (C) Superposition of two models of Rpn6.

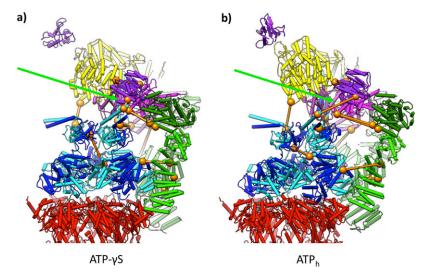
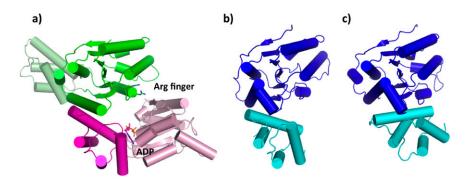
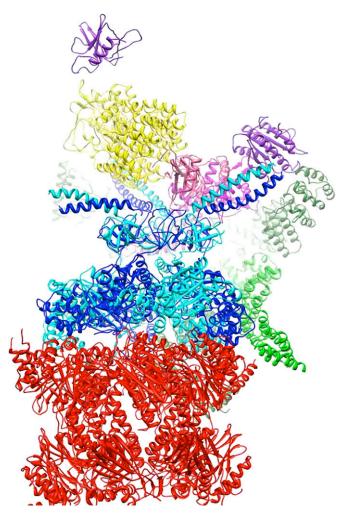
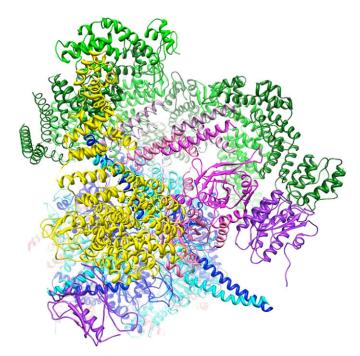
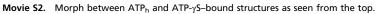




Fig. 57. Site-specific cross-links that display a large difference in length between ATP- γ S-bound (A) and ATP_h (B) structures. The arrow indicates the cross-link between Rpn10:K30 and regulatory particle AAA-ATPase (Rpt) 5:K45, which were 44 Å apart in the ATP_h structure, whereas the distance is only ~10 Å in the ATP- γ S-bound structure (C α -C α distances).




Fig. S8. Comparison of intersubunit module (ISM) structures. (*A*) ISM in the crystal structure of proteasome-activating nucleotidase-ADP (PDB ID code: 3H4M). (*B*) An open ISM₁₋₅ from the ATP_h structure. The large AAA domain has been aligned to the same position as in *A*. (*C*) The closed ISM₆₋₃ seen from the ATP_h structure. Again, the large AAA domain has been aligned to the same position as in *A*.

Movie S1. Morph between ATP_h and $ATP_\gamma S$ -bound structures as seen from the side.

Movie S1

Movie S2

Z