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1 The Chen2004 Model

Chen2004 is a collection of biochemical reactions that describe protein synthesis and degra-
dation, complex formation, regulatory activity, etc. for 27 genes known to be involved in
regulating the yeast cell cycle. These reactions are modeled by a set of ordinary differential
equations that describe the rate of change of each species (i.e., a protein or protein complex
from the model) as a function of the quantities of other species in the model. By solving
these ODEs numerically, Chen et al. simulated the changing quantities of every species in
the model as a wild-type cell progresses through the cell cycle. To refine and test the model,
Chen et al. then tried to simulate the unique physiological characteristics of 131 mutant
strains of budding yeast. In each simulation, changes were made to the “wild-type” param-
eter set to reflect the genetic makeup of the mutant. For example, if the CDC20 gene is
deleted, then the rate constant for synthesis of Cdc20 protein is set to 0, and the model must
reproduce the phenotype of the cdc20∆ deletion strain (“inviable, blocked in metaphase”).
Of the 131 test strains, Chen2004 faithfully reproduces the phenotypes of 120 mutants.

2 Assessing Edge Confidence

We assigned a confidence score to each edge in the interactome using a probabilistic approach
similar to that of Yeger-Lotem et al. [8]. The approach assigns higher confidence to pairs of
interacting proteins that participate in the same biological process. Given a pair of proteins
u and v, let I ∈ {0, 1} be a binary random variable such that I = 1 if u and v truly interact
and I = 0 otherwise. Let E = [E1, . . . , En] ∈ {0, 1}n be a vector of binary random variables
where Ei = 1 if experiment i supports an interaction between u and v and Ei = 0 otherwise.
To each edge we compute a score cuv representing the confidence that u and v interact given
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the experimental evidence for this pair as

cuv = Pr(I = 1|E)

=
Pr(E|I = 1)Pr(I = 1)

Pr(E)
(1)

=
Pr(E|I = 1)Pr(I = 1)

Pr(E, I = 0) + Pr(E, I = 1)

=
Pr(I = 1)

∏
k Pr(Ek|I = 1)

Pr(I = 0)
∏

k Pr(Ek|I = 0) + Pr(I = 1)
∏

k Pr(Ek|I = 1)
, (2)

where Equation (1) is an application of Bayes rule, and Equation (2) assumes conditional
independence of the experimental evidence types conditioned on I such that Pr(E|I) =∏

k Pr(Ek|I).
Let P and N be disjoint sets of true positive and true negative pairs, respectively. We

constructed the set of gold standard positive protein pairs P as all pairs (u, v) such that both
u and v were co-annotated by at least one of the Gene Ontology (GO) biological processes
listed by Meyers et al. [5]. Expert biologists manually curated this list by selecting GO terms
specific enough to be verified experimentally and general enough to be tested using high-
throughput experiments. We randomly selected protein pairs that were not co-annotated
by any of these biological functions as the set of negative protein pairs N , and we chose
|N | = 10 · |P | such pairs. We computed the prior probability of an interaction P (I) as

Pr(I = i) =

{
|P |

|P∪N | , if i = 1
|N |

|P∪N | , if i = 0.

Letting Xk be the set of protein pairs observed to interact under experiment k (i.e., the
set of edges in the interactome with evidence code k), we computed the probability of an
individual experiment Ek conditioned on I as

Pr(Ek = e|I = i) =


|P∩Xk|

|P | , if e = 1, i = 1
|N∩Xk|

|N | , if e = 1, i = 0
|P\Xk|
|P | , if e = 0, i = 1

|N\Xk|
|N | , if e = 0, i = 0.

Tables S1, S2 and S3 report the confidence scores for individual experimental evidence
codes from BioGRID, KID, and YEASTRACT, respectively. Table S3 additionally reports
the confidence scores for the Bodenmiller et al. experiment and the “Miscellaneous” category,
which is the union of all experimental evidences that identified fewer than 25 interactions.
The confidence reported for each experiment k was calculated as Pr(I = 1|E) where Ek = 1
and Ej = 0 for experiment j 6= k. Many edges were discovered from multiple experiments,
thus when weighting edges in the network, we computed Pr(I|E) where E is the true vector
of experimental evidence codes for the pair of nodes incident on that edge. We computed
confidence values close to 1 for many interactions. Such edges may have an unduly large in-
fluence on our network-based algorithms, thus we imposed a cap of 0.75 on all edge confidence
scores, similar to the approach of Yeger-Lotem et al. [8].
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BioGRID Experimental Evidence Confidence
BioGRID Far Western 0.958770
BioGRID FRET 0.947431
BioGRID Co-purification 0.884050
BioGRID Reconstituted Complex 0.852362
BioGRID Co-crystal Structure 0.847589
BioGRID Affinity Capture-Western 0.845484
BioGRID Co-localization 0.829430
BioGRID Co-fractionation 0.817224
BioGRID Protein-peptide 0.637902
BioGRID Two-hybrid 0.576677
BioGRID Affinity Capture-MS 0.554754
BioGRID PCA 0.442114
BioGRID Biochemical Activity 0.364076
BioGRID Affinity Capture-RNA 0.257074
BioGRID Protein-RNA 0.140180

Table S1: BioGRID experimental evidence confidence scores. The confidence reported for
experiment k is calculated as Pr(I = 1|E) where Ek = 1 and Ej = 0 for experiment j 6= k.

KID Experimental Evidence Confidence
KID LTP Co-localization 0.935624
KID In vivo phosphorylation site mapping using phospho-specific antibodies (West-
ern blot) or by phospho-peptide mapping

0.874626

KID In vivo site-directed mutagenesis in substrate showing same biological conse-
quence as the kinase delete

0.860848

KID Phosphorylation reduced or absent in kinase mutant (Phospho-shifts, Western
blot using Phospho-specific antibody)

0.857989

KID Phosphorylation or kinase-dependent change in localization 0.828909
KID In vitro phosphorylation site mapping (Mass Spec, Phospho-specific antibodies
by Western, in vitro site-directed mutagenesis)

0.779821

KID Reconstituted complex 0.775033
KID Physical interaction by Two-hybrid or PCA 0.759793
KID HTP in vitro phosphorylation 0.749032
KID LTP in vitro kinase assays 0.735180
KID Co-Immunoprecipitation / Co-purification 0.670492
KID Reduction in phospho-peptide in vivo by mass-spec 0.646097
KID Yeast 2-Hybrid studies or PCA assay 0.641095
KID Co-Immunoprecipitation by Mass Spec 0.413561
KID Localized to same subcellular compartment 0.358568
KID Protein Chip data for in vitro phosphorylated substrates 0.224782
KID HTP In vitro PPI 0.178653

Table S2: KID experimental evidence confidence scores. The confidence reported for exper-
iment k is calculated as Pr(I = 1|E) where Ek = 1 and Ej = 0 for experiment j 6= k.
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YEASTRACT Experimental Evidence Confidence
YEASTRACT Indirect: S1 nuclease protection assays - wild type vs TF mutant 0.871503
YEASTRACT Indirect: Northern blotting - wild type vs TF mutant 0.574786
YEASTRACT Direct: emsa 0.570063
YEASTRACT Direct: DNA footprinting 0.552197
YEASTRACT Indirect: RT-PCR - wild type vs TF mutant 0.536940
YEASTRACT Indirect: lacz - wild type vs TF mutant 0.487956
YEASTRACT Direct: lacz - wild type vs target promoter mutant 0.402631
YEASTRACT Indirect: GFP - wild type vs TF overexpression 0.398648
YEASTRACT Indirect: Proteomics - wild type vs TF mutant 0.332573
YEASTRACT Indirect: Microarrays - wild type vs TF mutant 0.199460
YEASTRACT Direct: ChIP-on-chip 0.194607
YEASTRACT Direct: ChIP 0.182758
YEASTRACT Indirect: Microarrays wild type vs TF mutant 0.154906

Bodenmiller et al. [3] Confidence
Bodenmiller phosphorylation 0.236203

“Miscellaneous” Experimental Evidence Confidence
Miscellaneous 0.588910

Table S3: YEASTRACT and miscellaneous experimental evidence confidence scores. The
confidence reported for experiment k is calculated as Pr(I = 1|E) where Ek = 1 and Ej = 0
for experiment j 6= k. We additionally report the confidence scores for the Bodenmiller et
al. interactions and the Miscellaneous collection of interacting pairs.

3 Selection of Functional Enrichment Algorithm

A wide variety of functional enrichment methods are available in the literature [2, 4, 6, 7].
These approaches typically perform a term-by-term analysis, reporting the significance of the
relationship between each function and a collection of genes being studied. The disadvantage
of these approaches is that they typically return long lists of significantly enriched functions,
from which the user must determine which are the most relevant. After applying FuncAs-
sociate [2], GSEA [7], and PAGE [4] on our datasets, we found it difficult to distinguish
top-ranking functions from one another because they annotated similar collections of genes.
However, Model-based Gene Set Analysis (MGSA) [1] simultaneously evaluates all gene sets
using a Bayesian approach that integrates overlap between gene sets into the enrichment
analysis. MGSA attempts to compute a non-overlapping set of pathways that annotate the
study set. MGSA computes a posterior probability for each pathway that reflects how well
the pathway overlaps with the study set while not overlapping with other pathways with
higher posterior probability. We performed all tests for functional enrichment using MGSA.
MGSA allows ranges to be set for two primary parameters α and β. Parameter α controls
the fraction of unknown false positive genes, while β controls the fraction of unkown false
negatives. We set an upper limit of 0.5 on β. Thus, less than half of the genes from the
study set are not annotated by any enriched function. All other parameters were left to their
default settings.
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4 Extending Chen2004
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Figure S1: Two regulatory control mechanisms of Dbf2 by Cdc5.

Figure S1 illustrates the two regulatory control mechanisms of Dbf2 by Cdc5 discussed in
the main manuscript. We propose the following extensions to Chen2004 that incorporate
the second regulatory role of Cdc5 elucidated by Linker (i.e., Cdc5 a Bfa1 a Tem1); for
consistency, we use the same notation as Chen2004:

d[TEM1f ]

dt
=

katem · [LTE1a] · ([TEM1T ]− [TEM1f ])

Jatem + ([TEM1T ]− [TEM1f ])
− kitem · [BFA1BUB2] · [TEM1f ]

Jitem + [TEM1f ]
(3)

d[BFA1]

dt
=

(kabfacdc14 · [CDC14] + kabfapp2a · [PP2A]) · ([BFA1T ]− [BFA1])

Jabfa + ([BFA1T ]− [BFA1])

− kibfacdc5 · [CDC5P ] · [BFA1]

Jibfa + [BFA1]
(4)

d[BFA1BUB2]

dt
= kasbfa1bub2 · [BFA1] · [BUB2]− kdibfa1bub2 · [BFA1BUB2] (5)

[MEN ] =
[CDC15] · [TEM1f ]

[CDC15] + [BFA1]
(6)
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5 Supplementary Figures
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Figure S2: The k = 10 shortest paths connecting Hsl1 and Hsl7 to the cell cycle proteins.
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