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Helical Structure Determines Different Susceptibilities of dsDNA, dsRNA,
and tsDNA to Counterion-Induced Condensation
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ABSTRACT Recent studies of counterion-induced condensation of nucleic acid helices into aggregates produced several puz-
zling observations. For instance, trivalent cobalt hexamine ions condensed double-stranded (ds) DNA oligomers but not their
more highly charged dsRNA counterparts. Divalent alkaline earth metal ions condensed triple-stranded (ts) DNA oligomers
but not dsDNA. Here we show that these counterintuitive experimental results can be rationalized within the electrostatic zipper
model of interactions between molecules with helical chargemotifs. We report statistical mechanical calculations that reveal dra-
matic and nontrivial interplay between the effects of helical structure and thermal fluctuations on electrostatic interaction be-
tween oligomeric nucleic acids. Combining predictions for oligomeric and much longer helices, we also interpret recent
experimental studies of the role of counterion charge, structure, and chemistry. We argue that an electrostatic zipper attraction
might be a major or even dominant force in nucleic acid condensation.
INTRODUCTION
Interactions of nucleic acids at close separations play crucial
role in some of the most fundamental biological reactions,
including packing of genetic material in cells and viruses,
homologous pairing, and RNA folding. Nucleic acid helices
are among the most highly charged biological molecules
(see Table 1). The ability of nucleic acids to overcome the
repulsion caused by their extremely high charge density is
generally attributed to counterion-induced (or mediated)
attractive interactions, because specific counterions are
needed to condense them into compact aggregates or struc-
tures (1).

The physics underlying these attractive interactions is still
debated (1–7). The proposed ideas include attractive
hydration forces (8,9), bridging by shared counterions
(10), correlated fluctuations in the density of condensed
counterions (11), attraction between Wigner-crystal-like
lattices of counterions (12,13), and zipper-like alignment
of negatively charged strands of the sugar-phosphate back-
bone opposite to positively charged strands of counterions
bound in nucleic acid grooves (14). For detailed analysis
of these and other ideas, see, e.g., Kornyshev et al. (7)
and references therein. Resolving which mechanisms of
counterion-induced attraction contribute the most to inter-
actions between nucleic acids is important not only for
understanding the principles of nucleic acid behavior but
also for rapidly expanding bioengineering applications of
these molecules (15).

One of the most straightforward approaches to this prob-
lem is to examine how the propensity of nucleic acids to
condense depends on their structure as well as on the
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charge and chemistry of the counterions. Experimental
studies along these lines produced a number of challenging
observations. Among the most puzzling: Oligomeric
double-strand (ds) RNA helices, expected to be more sus-
ceptible to counterion-induced condensation due to their
higher surface charge density, were found to resist conden-
sation (16). Oligomeric triple-strand (ts) DNA molecules
were found to be susceptible to condensation by Mg2þ

and Ca2þ whereas their dsDNA analogs were not (17).
No evidence of attractive interactions was detected be-
tween oligomeric dsDNA helices at counterion concentra-
tions below the condensation threshold (18). These
observations might be explained by different molecular
mechanisms, as proposed in the original studies. However,
the Occam’s Razor principle of simplicity (entities are not
to be multiplied beyond necessity; see, e.g., Baker (19))
provides a compelling argument for seeking a more univer-
sal interpretation.

To examine whether these observations might indeed be
different facets of a more general mechanism, here we
extend an earlier theory of DNA-DNA interactions to olig-
omeric nucleic acids with different number and configura-
tion of strands. We take into account that the total
interaction energy for oligomers may not exceed the thermal
energy kBT by much, even at short distances between the
molecules (kB is the Boltzmann constant and T is the abso-
lute temperature). In this case, thermal motions may
produce important qualitative effects, necessitating a thor-
ough statistical mechanical analysis, which is described in
this article.

Our calculations rationalize different susceptibilities of
oligomeric dsRNA, dsDNA, and tsDNA to condensation
based on known differences in the helical structure of the
molecules and preferential counterion adsorption in their
grooves rather than possible differences in the underlying
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TABLE 1 Structural parameters and charge density of dsDNA

(B-form), dsRNA, and tsDNA

Parameter B-DNA dsRNA tsDNA

Helical pitch (Å) 33.8 30.9 38.4

Number of basepairs per helical

turn

10 11 12

Groove half-width (rad/p) 0.4, 0.6 0.64, 0.36 0.36, 0.35, 0.29

Radius at the center of phosphate

groups (Å)

9 8.5 9.5

Axial distance per elementary

charge, lc (Å)

1.7 1.4 1.1

Average surface charge density of

phosphates, s (mC/cm2)

17 21 25
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interactions. These results support the idea of zipper-like
alignment of negatively charged phosphate strands with
positively charged counterions bound in grooves of the
opposing molecule as a mechanism of counterion-induced
attraction between the molecules. We argue that this electro-
static zipper mechanism might also explain recently
observed counterion charge, structure, and chemistry effects
on condensation of longer nucleic acids. Other interactions
might contribute to the condensation, but they are less uni-
versal in nature and cannot explain the entire data set.

To facilitate understanding of our results by readers who
may be less interested in mathematical aspects of the theory
than in the nature of the main results, we formulate the
model and basic equations, and then concentrate on the
physics of the predicted and observed effects. All mathemat-
ical derivations are appended in the Supporting Material.
Because the statistical mechanics is different for oligomeric
and longer nucleic acids and because relevant calculations
for long dsDNA have been published already (20), here
we focus on the calculations for oligomers. In Discussion,
however, we consider recent experimental data for both
oligomeric and longer molecules and evaluate more general
principles for the electrostatic zipper mechanism of nucleic
acid condensation.
MODEL

Basic approach

In this study, we calculate the free energy of electrostatic
interactions between helical oligonucleotides in solution
and in aggregates as a function of their interaxial separa-
tion. For simplicity, we focus on parallel-oriented oligo-
mers and use the corresponding free energy for
qualitatively evaluating whether differences in their helical
structure and preferential binding of counterions might
explain the experimental observations. This approach relies
on previous studies of longer molecules, which suggest that
chiral interactions between helices at small interaxial an-
gles do not change the qualitative conclusions on require-
ments for intermolecular attraction and aggregation (7).
Analysis of interactions at nonzero interaxial angles is
Biophysical Journal 104(9) 2031–2041
much more complicated and lies beyond the scope of this
study.

To clarify the underlying molecular mechanisms and
physical principles, we develop an analytical theory that fol-
lows the general approach recently reviewed in Kornyshev
et al. (7). Alternatively, this problem could be addressed
by computer simulations based on explicit, all-atom solvent
models or Poisson-Boltzmann solvent description. Such
simulations are realistic for short oligonucleotide helices.
Yet, they provide less clear delineation of different interac-
tion mechanisms and they are still imprecise. They also uti-
lize multiple simplifications and assumptions (interaction
potentials for the atoms, summation of long-range interac-
tions, effects of box size and boundary conditions, validity
of the nonlinear Poisson-Boltzmann model in the immediate
vicinity of the nucleic acid surface, etc.). Still, they are com-
plementary to our approach and might be interesting to
pursue.
Structure and charge state of nucleic acid helices

We model the helices as dielectric cylinders with charged
groups at the cylinder/water interface (Fig. 1). To elucidate
effects of the nucleic-acid structure and preferential coun-
terion binding at specific sites that may play a crucial role
in intermolecular interactions (7), we account not only for
the average surface charge density but also for helical
patterning of the charges (Fig. 1). In Table 1, we gather
pertinent parameters of nucleic acid structure and charge
distribution that appear in the theory. We describe nega-
tively charged phosphate groups as point charges located
along two helical strands in dsDNA and dsRNA or along
three helical strands in tsDNA. We assume that the fraction
q of the total phosphate charge is compensated by bound
counterions, which are treated as part of the nucleic acid
charge. The net surface charge density of the molecule is
(1–q)s, where s is the surface change density of phosphates.
The fraction f1 of bound counterions is located in the center
of the minor groove, the fraction f2 is located in the center of
the major groove in dsDNA and dsRNA or distributed
equally between the centers of the two other grooves in
tsDNA, and the remaining (1–f1–f2) counterions are bound
at random locations. We describe the effects of other, free
electrolyte ions within the Debye-Hückel (linearized
Poisson-Boltzmann) theory. The advantages and drawbacks
of this approach were discussed in detail in Kornyshev
et al. (7).
Pair interaction energy

We base our calculations on the theory of electrostatic inter-
actions between molecules with helical charge motifs (7).
Within this theory, the electrostatic interaction energy be-
tween two parallel helices of length L at large interaxial dis-
tances R may be approximated with



FIGURE 1 Model of electrostatic interaction between two parallel, dou-

ble-stranded nucleic acids at close separations. The molecules are repre-

sented by dielectric cylinders with helical strands of point-like negative

charges at the surface (small circles with the minus sign connected by

helical lines). Bound counterions are modeled as point-like charges (large

circleswith the plus sign) at the cylinder surface, located randomly or in the

middle between the strands of negative charges. Counterions responsible

for the nonlinear screening of the nucleic acid charge are considered to

be bound (7). Roughness of nucleic acid surfaces and poorly known dielec-

tric properties of water in their grooves preclude evaluation of the effective

cylinder radius with better than 2–3 Å accuracy from known molecular

structures. For B-DNA, the effective radius that provides the best fit for

the measured intermolecular forces is 11.2 Å, which is within the expected

range between the 9 Å radius at centers and 12 Å radius at outer surfaces of

phosphate groups (20). Because radii at the centers of phosphate groups in

dsRNA and tsDNA are within 0.5 Å of that for B-DNA (Table 1), we use the

same 11.2 Å effective radius for all three nucleic acids. It is important to

emphasize that separation between nucleic acid surfaces in aggregates

condensed by counterions is typically <10 Å (8,9), which is smaller than

the separation between the strands of negative charges (Table 1). Therefore,

it is essential to account for the discreteness and helical arrangement of the

strands in any theory of such aggregates (7). Zipper-like juxtaposition of

positively charged counterions bound in the grooves with negatively

charged phosphate strands on the opposing molecule leads to electrostatic

zipper attraction between the molecules, provided that bound counterions

balance a sufficient fraction of the phosphate charges (14).
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Here, lB z 7 Å is the Bjerrum length in water, and lc is the
axial length per phosphate group in the nucleic acid helix
(see Table 1). The summation is performed over helical har-
monics n of the interaction. dn,m ¼ 1 at n ¼ m dn,m ¼ 0 at
n s m, zn are helical harmonics of the density of the
charged groups and bound counterions on nucleic acid sur-
face (see Eq. S9 in the Supporting Material), e.g.,

zn ¼ ½f1 þ f2ð�1Þn þ ð1� f1 � f2Þdn;0�q� cos
�
n~fs

�
(2)

for double-stranded helices with the azimuthal half-width of
the minor groove ~fs, and Df(z) is the difference between the
azimuthal orientations of the helices at point z along their
length.
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is the reciprocal decay length for each helical harmonic
of the direct charge-charge interaction, k is the reciprocal
screening length in electrolyte solution,H is the helical pitch
of the molecules, and cn and c

im
n are coefficients that depend

only on kn and radius of the molecules, which are defined by
Eqs. S7 and S8 of the Supporting Material. Note that Eq. 1 is
a more transparent, simplified expression obtained by
asymptotic expansion of Bessel functions at large R. More
accurate Eqs. S1–S5, presented in the Supporting Material,
were used in all of our calculations.

Each interaction harmonic consists of two contributions
given by the two terms in the curly brackets in Eq. 1. The first
one describes the energy of the dielectric core of each helix in
the electric field created by the other helix, hereafter referred
to as ‘‘image-charge interactions’’ (interaction of a charge
with a dielectric may be represented by a sum of interaction
of this charge with a set of images of this charge across the
dielectric interface). The second one describes the energy
of charges on one helix in the electric field created by the
other helix, hereafter referred to as ‘‘direct charge-charge in-
teractions’’. It depends on mutual azimuthal orientation of
the molecules which varies over the length of the molecules
due to torsional fluctuations, as discussed in the next section.

Because kn linearly increases with n at large n and the
energy associated with each harmonic n exponentially
decreases with increasing kn, the sum over n in Eq. 1 rapidly
converges. For dsDNA it is usually sufficient to retain only
the terms with n % 2 (7). For tsDNA, however, the term
with n ¼ 3 is also important. Thus, for consistency, here we
retain the terms with n % 3 for all nucleic acid helices.

Strictly speaking, Eq. 1 was derived for long helices (L>>
R,H) and it neglects edge effects.Most of the experiments dis-
cussed in this study were performed with 25-basepair (bp) or
longer oligonucleotides. For 25-bp helices L/Rz L/H ~ 2, so
that the predictions of themodel based on this equationmight
be expected to be more qualitative than quantitative, which is
important to keep in mind. Note also that the discreteness of
the surface charges leads to additional harmonics in the elec-
trostatic pair interaction energy that are not included into
Eq. 1 (21,22). Because contribution of these harmonics is
negligible for helices that have 10–12 charges per helical
turn (7), we do not include them into our calculations.
Nonideality of the helical structure and thermal
fluctuations

For ideal helices, the difference in the azimuthal orienta-
tions is the same along the entire length of the molecules,
Biophysical Journal 104(9) 2031–2041
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i.e., Df is independent of z. In real nucleic acid
molecules, however, sequence-related variations and
thermal fluctuations in the stacking of basepairs result in
variation of Df with z. Because the interaction energy de-
pends on Df(z), the energetic cost of this variation contrib-
utes to the interaction free energy (23). This cost is
described by

EDf

kBT
¼ lhp

4

ZL

0

�
d½DfðzÞ � Df0ðzÞ�

dz

�2

dz; (4)

where Df0(z) describes intrinsic misalignment of noniden-

tical helices associated with sequence-related differences
in their basepair stacking.

lhp ¼ CtCs�
Cs þ ð2p=HÞ2Ct

�
kBT

(5)

is the helical persistence length of the molecules, and Ct

and Cs are the torsional and stretching elasticity
moduli, respectively (20). For B-DNA, kBT/Ct z
kBTð2p=HÞ2=Cs z 1.4 � 105 cm�1 (24,25) and lhp z
350 Å. Here we consider only interactions between paral-
lel, identical helices, for which Df0(z) ¼ 0. This is the
case in most experimental studies of oligonucleotide nu-
cleic acids.
Interaction free energy

The free energy of pair interaction between two parallel
helical oligonucleotides at an interaxial separation R may
thus be calculated as
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kBT
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where D{Df(z)} indicates functional integration over all
FIGURE 2 Free energy of interaction between 50 bp B-DNA double he-

lices at 7 Å Debye screening length. (A) Effects of thermal rotation,

twisting, and stretching of the helix on the pair interaction energy

(q ¼ 0.8, f1 ¼ 0.25, f2 ¼ 0.5). (B) Effects of bound counterions partitioning

between the middle of the minor groove (f1), middle of the major groove

(f2), and random locations (1–f1–f2) on the pair interaction energy

(q ¼ 0.8). (C and D) Interaction free energy per molecule in DNA pairs

(C) and hexagonal, columnar aggregates (D) at different neutralization of

DNA charge (q) by bound counterions (f1 ¼ 0.1, f2 ¼ 0.9). (B–D) We ac-

counted for thermal rotation, twisting, and stretching of the helix, using

lhp ¼ 350 Å helical persistence length.
possible trajectories of Df(z) and the reference state for
the free energy is at infinite R (Eint¼ 0). Calculation of these
functional integrals, which follows the variational trial-
function approach proposed in Lee et al. (20), is described
in the Supporting Material.

To calculate the free energy of aggregates we utilize the
approach proposed in Cherstvy et al. (26), which accounts
for both pairwise-additive and nonadditive interactions
(see Eqs. S40–S42 in the Supporting Material). In this
case, it is also important to account for renormalization of
the screening length k due to increased concentration of
free counterions in the aggregate compared to the surround-
ing solution (see Eq. S41 in the Supporting Material); we do
this renormalization here using the scheme suggested in
Cherstvy et al. (26).
Biophysical Journal 104(9) 2031–2041
RESULTS

B-DNA

Fig. 2 illustrates main features of electrostatic interactions
between nucleic acid oligomers predicted by our theory, us-
ing the example of 50-bp, double-stranded B-DNA. The
interaction becomes attractive once a sufficient fraction of
phosphate charge is neutralized by counterions bound in
the grooves. The attraction results from zipper-like align-
ment of negatively charged phosphate strands with posi-
tively charged counterions bound in grooves of the
opposing molecule (Fig. 1), as predicted earlier for long
DNA double helices (7,14). Preferential counterion binding
in the major groove favors the attraction between B-DNA
helices (Fig. 2 B). Depending on the extent of phosphate
charge neutralization and counterion partitioning between
the grooves, the attraction may become strong enough to
drive aggregation of the molecules (Fig. 2 D).

Thermal fluctuations in the helical pitch (twisting and
stretching of the helices) diminish the attraction by disrupt-
ing the zipper alignment. For long helices, this effect of



FIGURE 3 Preferential counterion binding in the major groove favors

condensation of B-DNA but not double stranded A-RNA. (A) Interaction

free energy per molecule in pairs of 25-bp A-RNA (dashed lines) and

25 bp B-DNA (solid lines) in 20 mM NaCl, 5 mM cobalt hexamine (cohex)

calculated at 85% (q ¼ 0.85) and 90% (q ¼ 0.9) of DNA and RNA charge

neutralization by cohex ions preferentially bound in the major groove (90%

in the major groove and 10% in the minor groove). (B) Interaction free en-

ergy per molecule for the same pairs in 100 mM NaCl and 0.8 mM cohex,

calculated assuming the same 90/10% partitioning of the ions between the

major and minor grooves but lower q. (C and D) Free energy per molecule

in hexagonal, columnar aggregates of 25-bp A-RNA (dashed lines) and

25-bp B-DNA (solid lines) at the same conditions as in panels A and B,

respectively.
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pitch fluctuations is small (7). For oligonucleotides, it may
be large (Fig. 2 A). Depending on the oligonucleotide length
and partitioning of bound counterions, it may completely
wipe out the attraction. Because pitch fluctuations affect
higher helical harmonics of the surface charge density
more than lower harmonics, their effect depends on coun-
terion partitioning between the grooves.

Thermal rotations of oligonucleotides as a whole about
their long axes may diminish the attraction even more
than pitch fluctuations (Fig. 2 A). Unlike pitch fluctuations,
they do not involve costly elastic deformations. The cost of
rotations is associated only with intermolecular interaction.
It is proportional to the length of the molecules and becomes
prohibitively high for long DNA molecules, but for shorter
oligonucleotides it is comparable to or even smaller than
the thermal energy, kBT.
The conditions for energetically favorable formation of

multimolecular aggregates are similar to those at which
two molecules begin experiencing net attraction in solution
(see Fig. 2, C and D). Hence, a simpler calculation of the
threshold for pairwise attraction in solution is sufficient
for qualitative evaluation of the conditions for counterion-
induced aggregation. Yet, above this attraction threshold,
the energy gain per molecule is dramatically larger in hex-
agonal, columnar aggregates, suggesting that oligonucleo-
tide pairing should not occur below the aggregation
threshold. The underlying reason is that six pairwise interac-
tions result in larger net interaction energy per molecule and
stronger suppression of thermal fluctuations in aggregates.
This effect is partially counterbalanced by shorter effective
screening length, 1/k, due to counterion accumulation inside
aggregates (26). The shorter screening length might signif-
icantly weaken attractive electrostatic interactions when a
smaller fraction, q, of DNA charge, is neutralized by bound
counterions.
dsRNA

Fig. 3 compares the interaction free energy for a pair of
B-DNA oligonucleotides with that for a pair of dsRNA,
calculated for oligonucleotide lengths and electrolyte con-
centrations corresponding to the conditions of experiments
reported in Li et al. (16). Based on the observed preferential
binding of cobalt-hexamine (27–31), we plotted the predic-
tions of our theory for 90% localization of the bound coun-
terions in the major groove. Overall, B-DNA condensation
is strongly favored whereas dsRNA condensation is not, as
long as 70% or more counterions bind in the major groove.
In contrast, dsRNA condensation is favored whereas
B-DNA condensation is not by preferential counterion bind-
ing in the minor groove.

The opposite behavior of B-DNA and dsRNA results
primarily from the difference in the relative width of their
minor and major grooves. The major groove of B-DNA is
~50% wider than the minor one. The major groove of
dsRNA is almost 50% narrower than the minor groove.
Preferential localization of bound counterions in the mid-
dle of the wider groove results in a larger separation be-
tween positive and negative charges along the molecule,
which leads to a stronger electrostatic zipper attraction.
In addition, such counterion localization favors an
azimuthal alignment of the molecules that is more compat-
ible with the symmetry of hexagonal aggregates (7). The
combination of these two factors promotes condensation
of double helices upon counterion binding in the wider
groove and inhibits the condensation upon counterion
binding in the narrower groove. Counterion adsorption in
the major grove thus induces condensation of double
stranded B-DNA, whereas dsRNA resists condensation
by such counterions.
tsDNA

Binding of the third oligonucleotide strand in the middle of
the major groove of B-DNA, which produces tsDNA
Biophysical Journal 104(9) 2031–2041
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molecules, has two major effects on intermolecular interac-
tions (Fig. 4):

One effect is that the third strand increases the axial
charge density by >50%, enhancing counterion condensa-
tion/binding to DNA surface. For instance, the value of q
predicted by the Onsawa-Manning theory at low ionic
strength is q ¼ 1�lc/qlB, yielding q z 0.88 for B-DNA
(lc z 1.7 Å) and q z 0.92 for tsDNA (lc z 1.1 Å) in the
case of divalent counterions (q ¼ 2). Stronger counterion
condensation/binding promotes intermolecular attraction
and aggregation of the molecules.

The other effect is that the third strand nearly equalizes
the widths of the grooves (Table 1). In this case, preferential
counterion adsorption in any one of the grooves favors inter-
molecular attraction and similar azimuthal orientation of all
molecules, which can be easily accommodated in columnar
aggregates.

These two effects might lead, e.g., to condensation of
tsDNA by divalent counterions that preferentially bind in
the minor groove, as discussed below.
DISCUSSION

From the perspective of experimentally distinguishable pre-
dictions, it is useful to categorize proposed condensation
mechanisms based on the following concepts of attractive
interactions between nucleic acids that might be induced
by counterions:
FIGURE 4 Preferential binding of Mg2þ, Ba2þ and Ca2þ in the minor

groove promotes condensation of triple-stranded but not double-stranded

DNA. (A) Free energy of pair interaction per one molecule calculated for

10 mM divalent ion concentrations in 10 mM Tris, 1 mM EDTA, assuming

that 60% of bound divalent counterions are located in the middle of the mi-

nor groove with the rest located at random sites on DNA surface. The ionic

strength of the Tris/EDTA buffer has only a small effect on the interaction

energy. The values of q were calculated from the Onsager-Manning theory

for divalent ions, q ¼ 1� lc=2lB, yielding q z 0.88 for double-stranded

DNA (lc z 1.7 Å) and q z 0.92 for triple-stranded DNA (lc z 1.1 Å).

The curve for tsDNA calculated at the value of q expected for dsDNA is

shown to demonstrate the relative contribution of the phosphate charge

pattern in tsDNA condensation, but for practical purposes only the dashed

and bold lines should be compared. (B) Free energy per molecule in hexag-

onal, columnar aggregates calculated at the same conditions as in panel A.
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Bridging by counterions that are bound to two or more
nucleic acid molecules (10) or form a condensed, liquid-
like layer shared by these molecules (32). This interaction
is most susceptible to changes in counterion dimensions.
It is likely to be dominant in the case of very large counter-
ions, such as poly(amido amine) dendrimers (33).

Counterion-correlation attraction between juxtaposed
negatively charged phosphates and positively charged
bound counterions that are spatially separated on the surface
of each molecule due to repulsion between the counterions
(12,13) or fluctuations in their density (11,34,35). This
attraction originates from and depends strongly on interac-
tions and resulting correlations between bound counterions
that move freely along nucleic acid surfaces. Theoretically,
it is expected to be dominant for point-like multivalent
counterions that do not have strong preferential binding sites
(7,36).

Electrostatic zipper attraction between juxtaposed helical
phosphate strands and counterions in nucleic acid grooves
(14). This attraction requires efficient zipper-like alignment
of the strands with opposing grooves. It depends strongly on
the nucleic acid structure and is expected to be dominant in
the case of significant preferential counterion binding in nu-
cleic acid grooves (7).

Our previous analysis of the published data suggested
that preferential counterion binding in grooves might be
the most prominent observed feature, likely responsible
for differences in the ability of similarly charged but chem-
ically or structurally different counterions to induce DNA
condensation (7). Comparison of calculated and measured
forces between B-DNA molecules supported the dominant
role of this mechanism in DNA condensation by many
counterions (20). Yet, interpretations of the same experi-
ments based on the other two mechanisms could not be
excluded (2–4,7).

Below we discuss studies of oligomeric dsDNA, tsDNA,
and dsRNA as well as studies of counterion charge, struc-
ture, and chemistry effects on condensation of longer
dsDNA, which are more recent and provide more data for
discriminating between predictions of different theories.
In our analysis, these studies show that zipper-like juxtapo-
sition of phosphate strands with groove counterions is a
major factor in nucleic acid condensation, although they
do not resolve whether electrostatic or hydration forces,
for which the predictions are similar (7,37), cause the zipper
attraction.
Interaction between B-DNA oligonucleotides
linked into pairs by flexible linkers at counterion
concentrations below DNA condensation
threshold

The authors of this study investigated effects of
spermidine3þ on interactions between double helices within
linked pairs of 12-bp oligonucleotides and linked pairs of
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80-bp oligonucleotides (18). They observed aggregation of
the pairs above a threshold spermidine3þ concentration,
but no significant association between the helices within
each pair below the threshold. For 12-bp oligonucleotides,
they estimated that the lack of any observable association
below the aggregation threshold means that the attraction
between the helices within each pair must be <0.1–
0.2 kBT/bp. Bai et al. (18) hypothesized that ‘‘more than
two neighboring helices are required to generate a pro-
nounced attraction’’ needed for DNA aggregation observed
in their own and multiple other studies.

Our predictions for the free energy per molecule in a pair
(Fig. 2, B and C) and columnar aggregate (Fig. 2 D) provide
a theoretical foundation for this idea, revealing the nature of
complex many-body effects in aggregates. The aggregation
occurs once the energy benefit per molecule exceeds several
kBT. Because the attractive energy per molecule is several
times lower in a pair than in an aggregate (Fig. 2, C and
D), the predicted pairwise attraction below the aggregation
threshold is <1 kBT per total length of the double helices
(50 bp in the case illustrated in Fig. 2). This energy is consis-
tent with the maximum attractive energy estimated in Fig. 6
of Bai et al. (18) and it is not sufficient to overcome the en-
tropy loss upon the association of either 12- or 80-bp oligo-
nucleotide pairs connected by flexible linkers.

Our calculations predict stable pairing below or near the
aggregation threshold only for much longer DNA mole-
cules, which are capable of forming braids that optimize chi-
ral electrostatic interactions (38). For oligomeric molecules,
stable association requires multiple pairwise attractions per
molecule in columnar assemblies. Our calculations show
that the cumulative effect of these attractions overcomes
the entropy loss and the osmotic pressure of free counterions
that make the aggregate electroneutral, provided that at least
80–90% of the DNA’s negative charge is compensated by
bound counterions (as required for the condensation (1)).
Resistance of dsRNA to condensation at cobalt-
hexamine3D concentrations that condense
dsDNA

This observation cannot be explained by theories of electro-
static interactions that do not account for the structure of
nucleic acids and approximate them as featureless, homoge-
neously charged cylinders (16). In such theories, nucleic
acid condensation propensity is determined by counterions,
which are expected to exhibit stronger binding and correla-
tions at surfaces of more charged molecules (see, e.g., Kor-
nyshev et al. (7) and Grosberg et al. (36) and references
therein). Both axial and surface densities of phosphate
charge are higher in dsRNA than double-stranded B-DNA
(Table 1), and bound counterions do appear to screen
dsRNA charge more efficiently than B-DNA (39). There-
fore, the observation of the resistance of dsRNA to conden-
sation by cobalt-hexamine3þ prompted its authors to seek an
alternative explanation. In particular, they suggested that
this resistance might be related to cobalt-hexamine3þ bind-
ing inside the narrow cleft in the major groove of dsRNA, so
that the counterions are buried deep inside the core of the
molecules and cannot effectively balance the surface charge
of phosphates (16). However, in view of the analysis pre-
sented above, there is no longer a need in this assumption.

The depth of cobalt-hexamine3þ location in the major
groove may affect interactions between dsRNAs, but our
calculations suggest an immediate, simpler explanation for
the differences in the condensation propensities of dsRNA
and B-DNA. This explanation is based on assuming that
the stereochemistry of cobalt-hexamine3þ interaction with
nucleic acid bases leads to its preferential binding in the
major groove of both dsRNA, as reported in Davis et al.
(27), Kieft and Tinoco (28), and Rüdisser and Tinoco
(29), and B-DNA, as reported in Ouameur and Tajmir-Riahi
(30) and Robinson and Wang (31). The difference in the
condensation of these molecules by cobalt-hexamine3þ is
then caused by the difference in the relative widths of their
major grooves (Fig. 3). The condensation of oligomers (as
well as longer nucleic acids) is promoted by counterion
binding in the wider groove, which enhances the electro-
static zipper attraction. In B-DNA, the major groove is
wider than the minor one. In dsRNA, the major groove is
narrower than the minor one. Less favorable electrostatic
zipper interaction upon cobalt-hexamine3þ binding in the
narrower groove rationalizes why dsRNA resists the
condensation (Fig. 3).
Condensation of tsDNA by Mg2D, Ba2D, and Ca2D

ions that do not condense dsDNA

This observation might be explained by several different
contributing factors, as noted by its authors (17). Our calcu-
lations point to two such factors, which might contribute
almost equally (Fig. 4):

The first factor is higher charge of tsDNA leads to stron-
ger binding of divalent ions to its surface, weakening the
repulsion associated with the net charge (charge of the mol-
ecules plus bound counterions) and enhancing the electro-
static zipper attraction associated with helical patterning
of this charge. Enhancement of the zipper attraction is a
straightforward consequence of more bound counterions,
which are responsible for this force. The reason behind
weakening of the repulsion between higher charged mole-
cules is less intuitive. Onsager-Manning theory predicts
counterion binding that ensures the same net axial charge
density (phosphates plus bound counterions) regardless of
the phosphate density (40). The same axial density means
that the surface density of the net charge should be lower
on tsDNA compared to dsDNA, because the former has a
larger radius. Lower surface charge density leads to weaker
electrostatic repulsion at the same surface-to-surface separa-
tion between the molecules.
Biophysical Journal 104(9) 2031–2041
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The second factor is geometry of the three tsDNA
grooves, which have similar yet not identical widths
(Table 1). Counterion binding in the middle of one of these
grooves is likely to provide more favorable salt-bridge inter-
actions with phosphates, with which alkaline earth metal
ions form poorly soluble salts. Provided that these ions do
bind preferentially in the minor groove of B-DNA (41)
and in one of the three grooves of tsDNA, we expect stron-
ger electrostatic zipper attraction and condensation of
tsDNA but not dsDNA oligonucleotides (Fig. 4). Interest-
ingly, putrescine2þ ions do not condense either tsDNA
(17) or B-DNA (42). Within our theory, this might be ex-
plained by insufficient preferential groove partitioning of
these organic ions, which have very different chemical
natures, structures, and interactions with phosphates than
alkaline earth metal ions. Yet, we agree with the tsDNA
study authors that further experiments are needed to unam-
biguously resolve the condensation mechanism.

We should note that bridging by divalent alkaline earth
metal ions and side-by-side aggregation of 10-bp dsDNA ol-
igonucleotides was predicted by computer simulations in
Luan and Aksimentiev (43). However, experimental studies
provide evidence only for end-to-end attraction and stacking
of dsDNAoligonucleotides in solutions of these ions (44–46).
Condensation of short versus long nucleic acids

The only distinction of oligonucleotides in our theory is
more pronounced independent thermal rotation of each
molecule about its axis compared to longer nucleic acid
molecules. Such rotations affect the zipper-like alignment
of phosphates and counterions, altering the requirements
for counterion-induced condensation. In the case of longer
nucleic acids, they are suppressed by prohibitively large en-
ergetic cost associated with the loss of electrostatic zipper
attraction.

Because the cost of thermal rotations depends not only
on the length of the molecules but also on counterion bind-
ing and partitioning, the resulting differences in predictions
for shorter and longer molecules are significant in some but
not all cases. For instance, our calculations predict weak
zipper attraction upon preferential counterion binding in
the narrow groove, resulting in low energetic cost and a
strong effect of thermal rotations on interactions between
short double helices. The rotations further suppress the
attraction, making 25-bp dsRNA molecules resistant to
condensation by cobalt hexamine (Fig. 3). In contrast,
preferential counterion binding in the wider groove
strengthens the zipper attraction, increasing the cost and
suppressing thermal rotations. We expect interactions be-
tween 25-bp B-DNA double helices and interactions
between much longer B-DNA molecules to be similar in
the presence of such counterions, e.g., consistent with obser-
vations for B-DNA condensation by spermine and spermi-
dine (8,47,48).
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It is also important to note that interactions between
molecules shorter or comparable in length with the helical
pitch (~10 or fewer basepairs or triplets) might be affected
by edge effects not incorporated into the theory. Neverthe-
less, our theory might work qualitatively even for these mol-
ecules, because of their tendency toward end-to-end
stacking (44–46,49).
Effects of counterion charge, chemistry, and
structure on condensation of long dsDNA
molecules

Preferential counterion binding seems to explain not only
how structures of different nucleic acid molecules affect
their condensation but also how counterion structure and
chemistry affect condensation of the same dsDNA mole-
cules. In particular, we previously argued that preferential
binding in the major groove might be responsible for the
ability of divalent transition (versus alkaline earth) metal
ions and some (but not all) polyamine ions to induce dsDNA
condensation (7). A number of more recent observations
lend further support to this hypothesis.

In particular, different effects of various chiral isoforms
of methylated spermidine3þ and spermine4þ on DNA
condensation (50) are difficult to explain without assuming
preferential adsorption of these counterions at specific sites.
Similar critical fraction of charge neutralization required for
DNA condensation by ε-oligolysines with different length
and charge (51) is consistent with the electrostatic zipper
attraction, assuming similar partitioning of these ions be-
tween DNA grooves. It is not consistent with the other
attraction mechanisms, because ε-oligolysines that vary
from 3 to 31 residue length and from 4þ to 31þ charge
are unlikely to exhibit similar counterion correlations and
ability to bridge adjacent DNA molecules. Forces measured
between DNA molecules condensed by polyarginines are
also more consistent with predictions for zipper-like align-
ment and resulting electrostatic or hydration attraction be-
tween phosphate strands and counterions bound in the
major groove (52,53).
Effects of intermolecular interaction on
counterion binding pattern

Because preferential counterion adsorption significantly
affects intermolecular interactions, the interactions might
affect the counterion binding pattern as well (7,26).
Here, we do not explicitly describe the latter effect,
because we expect the interaction energy to be insufficient
for overcoming the cost of relocating the counterions away
from their preferential binding sites in most cases of
nucleic acid condensation into hydrated aggregates. For
instance, our calculations predict more favorable interac-
tions between oligonucleotide double helices in hydrated
aggregates when counterions are located in the wider
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groove (Fig. 3). Yet, they show that the interaction energy
benefit of relocating to the wider minor groove of dsRNA
is <1 kBT per counterion and likely insufficient for over-
coming preferential cobalt-hexamine binding in the major
groove.

Counterions with weak or no preference for binding in a
specific groove might relocate upon nucleic acid aggrega-
tion, e.g., such relocation might contribute to condensation
of B-DNA byMn2þ at elevated temperatures (26). However,
detailed analysis of such counterion relocation is more
complicated and beyond the scope of this study.

More importantly, intermolecular interactions might
significantly affect counterion binding locations in nucleic
acid crystals, in which these interactions are much stronger
and favor different counterion binding patterns. In
particular, our calculations show that interactions between
very closely packed and immobilized B-DNA molecules
in crystals are optimized by counterion binding in the nar-
rower rather than wider groove, in contrast to hydrated ag-
gregates. Smaller separation between the negative and
positive charges upon narrow groove binding produces a
shorter-range electric field that leads to more favorable elec-
trostatic interactions in crystals. The corresponding energy
benefit per ion is particularly large when longer polypep-
tides with multiple positively charged residues bind in the
minor rather than major groove of B-DNA. It might explain,
e.g., why arginine-containing polypeptides expected to bind
in the major groove of fully hydrated DNA (52,53) are found
in the minor groove of deformed DNA in nucleosome
crystals (54).
Hybrid condensation mechanisms

X-ray structures of nucleosome crystals also illustrate that
different mechanisms of counterion-mediated attraction be-
tween nucleic acids might sometimes represent different
facets of the same interaction. These structures reveal
zipper-like alignment of positively charged histone tails
bound in the minor groove and phosphate strands on the
opposing double helix surface (55,56). Yet, DNA packing
in nucleosome crystals is so close that it is difficult to distin-
guish whether histone tails bind in the groove between two
phosphate strands of one double helix and attract phosphate
strands on the other helix or whether they bridge all strands
together.

Overall, separation of distinct nucleic acid condensation
mechanisms is certainly useful for conceptual clarity. How-
ever, depending on specific circumstances, several mecha-
nisms might operate at the same time and even blend
together. In another example, point-like 3þ or higher
valence ions might mediate attraction by binding along he-
lical strands of phosphate charges in a manner that blends
together counterion-correlation attraction and zipper-like
alignment of charges on opposing surfaces, as suggested
by recent calculations (57–59).
CONCLUSIONS

1. Because of inaccuracies inherent in any theory, simula-
tion, or measurement of mesoscopic phenomena, com-
parison of conceptual predictions and observations in a
wider variety of nucleic acid condensation studies is
more revealing than parsing of finer details of any spe-
cific calculation or experiment.

2. The common theme emerging from experimental studies
is that condensation efficiency depends strongly on the
nucleic acid structure and preferential counterion bind-
ing at specific sites, which are the distinguishing features
of the electrostatic zipper attraction.

3. The concept of electrostatic zipper attraction appears to
explain a wide variety of observations, including the
most puzzling features of oligonucleotide condensation
that are difficult to interpret otherwise.

4. The major role of this interaction in nucleic acid conden-
sation does not exclude contributions from bridging by
counterions or counterion-correlation attraction, which
might become significant under some circumstances.

Revisiting the concept of electrostatic zipper attraction be-
tween helical molecules was motivated by the revival of in-
terest in counterion-induced condensation of different
nucleic acids, particularly oligomeric nucleic acids whose
interactions can be better characterized experimentally and
computationally. We believe that the statistical mechanical
theory of interaction and aggregation of such molecules
developed in this study provides a useful basis for interpret-
ing the results of such studies.
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55. Luger, K., A. W. Mäder,., T. J. Richmond. 1997. Crystal structure of
the nucleosome core particle at 2.8 Å resolution. Nature. 389:251–260.
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Methods 
 

This Supporting Material provides derivations and complete expressions for all equations used in the 
present study. It is structured as follows. In section I, we provide previously published expressions for 
pair interaction potentials and derive coefficients for the simplified Eq. 1 of the main text. In section II, 
we derive the free energy of pair interaction between two parallel oligomeric helices that takes into 
account helical pitch fluctuations and rotations of the helices about their axes. In section III, we calculate 
the same free energy using a variational approximation for the rotations and demonstrate that this 
approximation works almost as well as the exact calculation of the partition function. In section IV, we 
utilize the variational approximation to derive expressions for the free energy of hexagonal, columnar 
aggregates. In section V, we discuss average azimuthal alignment of molecules in pairs and in aggregates. 
 
I. Pair interaction potentials 
 
I.a. Asymptotic expansion at large interaxial distances. 
 
For two long, parallel helices, the electrostatic interaction energy may be represented by a sum over 
helical harmonics n (1) 
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where L is the length of the helices, (z) is the difference between the azimuthal orientations of the 
helices at point z along their length, R is the interaxial distance between them, 
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lB is the Bjerrum length ( 7 Å at room temperature), 1/lc is the linear density of the fixed charged groups 
on the molecular surface (lc  1.7 Å for B-DNA), n are normalized helical moments of the surface charge 
density, a is the radius of the helices, n is the reciprocal screening length for the helical harmonic n, 
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 nK x  is the modified Bessel function of the second kind (sometimes referred to as the Macdonald 
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is the -function introduced in (2),  nI y  is the modified Bessel function of the first kind, and 

   n nI x dI x dx  .  

At R>>1, we may utilize the following asymptotic expansion 
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where we took into account that 0=  and n> . After substitution of Eq. S6 into Eqs. S2 and S5, we 

may rewrite Eq. S1 in the form presented in the main text as Eq. 1, where the coefficients  cn and im

nc  are 

given by 
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and 
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Note, however, that Eqs. S1-S5 are just as convenient for practical calculations. Because the latter 

equations are more accurate at smaller R, we have utilized them in all of our calculations. The simplified, 
less accurate Eq. 1 is provided in the main text for illustrating the exponential asymptotic dependence of 
the pair interaction energy for each helical harmonic on nR. Because n ≈ 2n/H at large n, this 
exponential dependence leads to very rapid convergence of the sums in Eqs. 1 and S1. For nucleic acids, 
it is usually sufficient to account only for the terms with n ≤ 2. Higher helical harmonics become relevant 
only for special surface charge patterns, for which 1 ≈ 0 and 2 ≈ 0. 
 
I.b. Helical moments of the surface charge density. 
 
Normalized helical moments of the surface density, n can be calculated from known distribution of fixed 
charges and bound counterions as described in (1). Here, we utilize a simplified, qualitative model 
proposed in (3, 4). Specifically, we treat all charges as point-like. We assume that all fixed charges are 
located along helical lines (strands, two in dsDNA and dsRNA or three in tsDNA) on the surface of 
cylindrical dielectric core of each molecule. The fraction  of the fixed charge is compensated by bound 
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counterions that are located either in the middle of the space (groove) between the helical strands of fixed 
charges or randomly. For a nucleic acid helix that has N similar strands of fixed phosphate charges, which 
are separated by grooves of different widths, this model yields 
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where j is the azimuthal coordinate of the middle of groove j in the ground state relative to a selected 
reference point (e.g., middle of the minor groove in double stranded helices), fj is the fraction of bound 
counterions located in the middle of this groove, j is the azimuthal width of this groove, and |z| indicates 
modulus of the complex number z.  For double helices, this expression may be rewritten in the more 
simple form of Eq. 2. Benefits and shortcomings of this model were discussed in (1).  
 
II. Two parallel helices 
 
Consider interaction between two straight, parallel oligonucleotide helices, which have identical 
sequences and are separated by the interaxial distance R. To account for thermal twisting, stretching, and 
rotations of these helices, we parameterize fluctuations in the azimuthal orientation (z) of the helix  
(=1,2) by introducing the helical phase  (z),  
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Here ≡(0) is the azimuthal orientation of the helix at z=0; (z) and h(z) are the twist and axial rise 

per base pair (triplet in ts-DNA), respectively; g h    is the average reciprocal pitch of the helix 

(2/H); and <> and <h> are the average twist and rise per base pair/triplet. In an ideal, rigid helix,  
and h are constant and (z)≡. In nucleic acid helices, which are not ideal, deviations from this value 

have two principal components:  0 z  describes intrinsic, sequence-related variations in the stacking 

of base pairs/triplets and (z) describe deformations caused by thermal stretching and twisting.  
The cost of stretching and twisting may be approximated within the elastic rod model as (5) 
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where h
pl  is the helical persistence length (Eq. 5 of the main text). Since we are interested in calculating 

the interaction free energy and the interaction energy, Eint depends only on (z)≡1(z)-2(z), for 

molecules with identical sequences (    0 0

1 2z z    ) we may use that 
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and represent the total elastic cost of helical pitch fluctuations of the two molecules as 
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determines the elastic cost of fluctuations in  (c.f., Eq. 4 of the main text), while  
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is the elastic cost of fluctuations that preserve . The latter fluctuations may be omitted from our 
analysis, since they do not alter intermolecular interactions.   

Based on this parameterization of thermal twisting and stretching, the interaction free energy may be 
calculated from 
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where 
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is the interaction free energy at fixed  and   D z   indicates integration over all possible 

“trajectories” of (z) . 
F(R) may be calculated within the following variational ansatz (5):   
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min≡min(R,) is the value of the variational parameter  at which F(,R,) is minimal, and the 
“integration” constant C ensures that F(min,R→∞,→  

After substitution of Eq. S21 into Eqs. S19,S20,S22 and straightforward calculation of the path 
integrals, we find 
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Minimization of this F(,R,) yields the following equation for min 
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which can be easily solved numerically due to the rapid convergence of the sum over n. Substitution of 
this min into Eq. S23 and subsequently into Eqs. S18 and S16 allows us to calculate the interaction free 
energy at any R and  .  

Note that the variational approach used here extends beyond the Gaussian limit by utilizing a trial 
function, the form of which corresponds to Gaussian fluctuations but the amplitude is found by 
minimizing the full, non-Gaussian free energy. Thus, it is important to keep in mind that this approach 
may lose accuracy when the fluctuations become too large.   
 
III. Variational approximation for thermal rotations of molecules as a whole 
 
Consider now an alternative approximation for the free energy of pairwise interaction, which does not 
require numerical integration over the whole range of possible thermal rotations,  The reason for 
introducing this approximation is to lay the groundwork for analysis of columnar aggregates, in which the 
dependence of Eint on  for each pair of neighbor molecules leads to interdependence of all pairwise 
, making direct integration over all  impractical. To avoid direct integration over , we rely on 
the following two assumptions: (i) At small R, thermal rotations of the molecules about their axes are 
suppressed by intermolecular interactions, justifying a variational approximation for small to moderate 
rotational fluctuations. (ii) Once the rotational fluctuations become large at larger R and the variational 
approximation fails, these fluctuations should reduce the contribution of (z)-dependent terms to ~ 1 kBT 
or less, in which case inaccuracies in the calculation of this contribution become irrelevant in the context 
of the present study. To test the validity of this approach, we use it to calculate the same free energy of 
pairwise interactions as above but within a variational approximation for thermal rotations. 

Within the latter approximation, we represent  as a sum of its average value 0 and small 
fluctuations  near the average, i.e. we replace Eq. S12 with 
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We also replace Eqs. S16, S18 with 
 
   , min min 0, , ,F R F R     ,         (S26) 

 
where we introduce an additional variational parameter  , which describes rotational fluctuations in the 
same way as  describes twisting and stretching. Specifically, 
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the < >, averaging of energies E (Eint, E , or E,) is defined as 
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min≡min(R) and min≡min(R) are the values of the variational parameters  and  at which F(,R,0) 
is minimal; and the “integration” constant C ensures that F(minmin,R→∞,0)→ The value of 
0 is determined by minimization of F(minmin,R,0). Note that Eq. S29 defines the effective 
energy E, for - <  < . Unlike Eqs. S16-S24, here -/2 is not equivalent to 3/2; and the 
integration in Eq. S28 has to be performed from - to  and not from 0 to 2.  

After calculating the integrals, we arrive at 
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            (S31) 
 



 
Minimization with respect to   yields 
 
   .            (S32) 
 
This is a general property of the model, which follows directly from Eqs. S25-S29 and can be derived 
without calculating the integrals. After substituting Eq. S32 into S31 and neglecting the terms 
proportional to exp(- 2), because the whole approximation is accurate only at  ~ 1 or larger, we find 
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Minimization of this free energy leads to the following equations for min and 0:  
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and 
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While Eq. S34 has to be solved numerically, Eq. S35 may be solved analytically by omitting a 

negligibly small contribution of the terms with n≥3. We then find that the free energy is minimal at either 
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The first solution exists at any R. The second one exists only at R smaller than a critical value, at which 
the right hand side of Eq. S37 is equal to 1. In the latter range of R, the optimal value of  can be found 
by comparing the free energies calculated for both of these solutions.  

Together, Eqs. S26 and S33-S37 define the interaction free energy at small to moderate rotational 
fluctuations, i.e. at γmin = 2min ~ 1 or larger. Because the amplitude of the fluctuations increases and min 
decreases with increasing R, this approximation cannot be used at large R. We are interested primarily in 
small R, at which this approximation is expected to work. Nevertheless, this limitation prevents us from 
determining C, in Eq. S33 by requiring  , min min 0, , 0, 0F R       , because Eq. S34 loses 

nonzero solutions for min at R>R* (Fig. S1).  
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Figure S1. Variational parameter min for interaction between two 50 bp B-DNA double helices 
calculated from Eqs. S34-S37 at 7 Å Debye screening length,  =0.8, f1=0.1, f2=0.9. At R > R*, Eqs. 
S34-S37 have no nonzero solutions for min, indicating that our approximation cannot be used in this 
range of R. At smaller R, Eqs. S34-S37 have up to four nonzero solutions. The bold line shows the 
values of min that produce the lowest free energy upon substitution into Eq. S33.  

  

 

To determine C, , we construct the following interpolation. We assume that F(R) is described by 
Eqs. S26, S33-S37 with nonzero min all the way up to R = R*. We use  
 

     * 0
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

     ,        (S38) 

 
which is the expected asymptotic behavior at very large R, at which rotational fluctuations completely 
wipe out the contribution of -dependent interactions. We determine C,  by assuming the continuity of 
F(R) at R=R*, yielding 

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 

 ,    (S39) 

 

where *
min  and *

0  are the solutions of Eqs. S34-S37 at R=R* calculated numerically.  

Because we interpolate across the region of intermediate rotational fluctuations, in which the 
contribution of -dependent interactions should be ~ 1 kBT, we expect ~1 kBT accuracy of this 
approximation. Comparison with the more accurate, direct integration over thermal rotations described in 
the preceding section confirms that this is indeed the case (Fig. S2). Such accuracy is sufficient for the 
purpose of the present study. In other words, the simplified variational approximation for thermal 
rotations works sufficiently well to justify its utilization for calculating the interaction free energy in 
hexagonal, columnar aggregates, in which case we do not have the option of direct, numerical integration 
over the rotations. 
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Figure S2. Comparison of the variational approximation, Eqs. S33-S39, with the partition function 
calculation , Eqs. S16-S24, for thermal rotations. The calculations were performed for 50 bp B-DNA double 
helices at 7 Å Debye screening length, f1=0.1, f2=0.9, and  = 0.8 (A) or  = 0.7 (B).  
 
IV. Hexagonal, columnar aggregates 
 
IV.a. Electrostatic energy 
 
The electrostatic energy of a hexagonal, columnar aggregate may be approximated as (6) 
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     (S40) 

 

Here N is the number of the molecules in the aggregate; 0
in  are the concentrations of different ions 

(labeled by index i) in the electrolyte solution outside the aggregate; qi are the charge numbers for these 
ions (e.g., qi=2 for a 2+ ion and qi=-1 for a 1- ion); e is the elementary charge; s is the average 
electrostatic potential at the surface of the Wigner-Seitz cell around each molecule relative to the 
electrolyte solution outside the aggregate; index  labels six nearest neighbors of each molecule ; R is 
the interaxial distance between the nearest neighbors; (z) is the helical phase of molecule  at the axial 

coordinate z;  nu R  and  im

nu R  are defined by Eqs. S2-S5, in which n is still defined by Eq. 3 but with 

the following renormalized value of 
 

0 24 exp i s
B i i

i B

q e
l n q

k T

 
  
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  .        (S41) 

 
The value of s in turn depends on  , as given by the following equation (1, 6) 
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 ,      (S42) 
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where 3 2sR R  .  

The first term in Eq. S40 accounts for the electrostatic energy associated with the average net charge 
of the molecules (fixed charges plus bound counterions), which is not pairwise additive. The second term 
accounts for the energy associated with helical patterning of discrete charges, which can be calculated by 
pairwise summation of the corresponding helical harmonics for all nearest neighbor molecules. 
Renormalization of  takes into account the Donnan equilibrium, which drives counterions into the 
interior of the aggregate from the bulk, effectively increasing the ionic strength inside the aggregate 
relative to its value outside. Thus, the effective value of  increases with the increase of the aggregate 
density. For derivation of Eqs. S40-S42 and detailed discussion of the corresponding approximations, see 
(1, 6). 
 
IV.b. Free energy 
 
To calculate the aggregate free energy, we utilize an approximation that is similar to the one discussed in 
the preceding section, except for one important distinction. The average difference between the helical 
phases of two nearest neighbor molecules depends also on orientation of other molecules in the aggregate, 
necessitating a slightly different approach to calculation of the average helical phases and fluctuations in 
them. Specifically, as in the preceding sections (c.f. Eqs. S10,S25), we represent the helical phase of each 
molecule as 
 

     0 0z z z                ,        (S43) 

 
where 0

  and  are the average value and thermal fluctuations of  , respectively, and  z  and 

 z  have exactly the same meaning as in Eq. S10.  We approximate the aggregate free energy with 

 

   0

, min min, , ,hex
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where 
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where the meaning of the variational parameters  and  as well as the integration constant ,

hexC   remains 

the same as in the preceding section. Note that Eq. S47 presumes all thermal rotations and helical pitch 
fluctuations to be independent of each other.  

Calculation of the integrals and minimization with respect to  and  may be performed as described 
in the preceding section. Minimization with respect to 0

  may be performed as described in (1, 5, 7). As 

described in the latter studies, the optimal average azimuthal orientations 0

1 , 0

2 , and 0

3  of any 

three nearest neighbor molecules that form the elementary triangular cell of the hexagonal lattice are 
related to each other as 
 

0 0 0 0

1 2 3 1 p            ,    0 0

3 2 2 p      .      (S49) 

 
The  free energy is then given by 
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where 
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and min and p can be found as the roots of 
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that minimize Fhex(R).  

As in the preceding section, solutions of Eq. S53 that minimize the free energy may be found by 
neglecting n≥3 terms in the sum, yielding  
 

0p              (S54) 
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or 
 

   
 

1 min min

2 min

21 3
cos 1 1 exp coth

4 4 4p h h
p p

u R L L

u R l l

 


                 




 .    (S55) 

 
at R smaller than the critical value, at which the right hand side of Eq. S55 is equal to 1. p=0 is optimal 
at R larger than the latter critical value. The optimal p at smaller R can be found by comparing the free 
energies for p=0 and p given by Eq. S55. Other roots of Eq. S53, e.g. cos(p) ≈ -1/2, describe 
solutions with larger free energies.  

As in the previous section, the integration constant Chex may be found by interpolating between the 
free energy at small R, which is given by Eqs. S50-S55 and the limiting form of the free energy at large R, 
yielding 
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where *

hexR  is the maximum value of R, at which Eqs. S52,S53 have nonzero solutions for min, 

 *

min min *

hexR  , and  *

*

hex

p p R   .  

Eqs. S50-S56 define the approximation for the aggregate free energy used for the calculations in the 
main text. Another, more complicated statistical mechanical approach to calculating aggregate free energy 
was described in (8). 
 
V. Azimuthal alignment of molecules in pairs and aggregates 
 
The azimuthal alignment of molecules and their rotational fluctuations in pairs and aggregates are 
illustrated in Fig. S3, using the example of 50 bp B-DNA. The color map in Fig S3A shows the 
probability density for the difference in azimuthal orientation of two parallel molecules, , which is 
defined by 
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The yellow line shows the most probable  (min), for which F(R) is minimal at the given R. The 
magenta line shows the optimal alignment 0(R) calculated within the variational model. Fig S3B 
shows root mean square deviations from min and 0 calculated by direct integration and within the 
variational model, respectively. Note that p()=p(-

In the case of two parallel molecules, the variational model slightly overestimates fluctuations in , 
but otherwise provides a reasonably accurate description of the alignment. At small R, ±0 represents 
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the most probable alignment ± min. With increasing R, min decreases until it becomes zero at a 
critical value of R. Near this critical point, the probabilities of all  between  -min and min are 
approximately equal, which is why the variational model predicts a sharp transition of the optimal average 
alignment to 0=0 before min becomes zero. Beyond the critical R, 0=min=0.  

In hexagonal, columnar aggregates, simultaneous optimization of all pairwise alignments at small R is 
impossible (7). The most energetically favorable alignment of the molecules in such aggregates is 
illustrated in the diagram under Fig 3C. Another feature of the alignment is the suppression of 
fluctuations in the alignment by interactions of each molecule with multiple nearest neighbors (vs. just 
one neighbor in a pair). 
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Figure S3. Azimuthal alignment of 50 bp B-DNA molecules in pairs (A, B) and aggregates (C, D) at  = 0.8, 
f1=0.1, f2=0.9, and 7 Å Debye screening length. A. The rainbow color map represents the probability density 
for (R) at fixed R calculated from Eq. S57, in which the violet color depicts the least and red color the 
most probable states; the yellow line shows the most probable  at a given R, for which F  is minimal; the 
magenta line shows optimal 0 for the variational model. B. Root mean square fluctuations of  within 
the model defined by Eqs. S16-S24 (dashed line) and root mean square  within the variational model 
defined by Eqs. S25-S39 (solid line). C, D Alignment (C) and azimuthal fluctuations of molecules (D) in 
hexagonal, columnar aggregates calculated within the variational model. Diagrams under the panel C 
illustrate optimal azimuthal orientations within each triangle of nearest neighbors above and below critical R, 
at which p becomes zero.  
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