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1 Riskset Regression Calibration Parameter Estimates

This section contains further details regarding the calculation of the risk set regression
calibration estimator in equation (3) of the manuscript. The risk set regression calibration
estimate X̂(t) of X is an estimate which is recalculated at each failure time and uses data
only from individuals in the risk set R(t) for failure time t.

At a given time t, define

X̂i(t) =

{
Ê{Xi|Yi(t) = 1,Wi·, Qi·, Zi} if Ri = 1
Ê{Xi|Yi(t) = 1, Qi·, Zi} if Ri = 0

where Wi· = κ−1
∑κ

j=1Wij , Qi· = k−1
∑k

j=1Qij , and ‘∧’ denotes estimate. For individuals
with Yi(t) = 1, denote the mean and covariance for (Xi,Wi·, Qi·, Zi) as µ(t) and Σ(t).
Define Σ22(t) = Cov(Wi·, Qi·, Zi|Yi(t) = 1) and let Σ̃22(t) be the matrix Σ22 with the
first row and column deleted. Similarly define Σ12(t) = [ΣWX(t),ΣQX(t),ΣZX(t)] and
Σ̃12(t) = [ΣQX(t),ΣZX(t)]. Then one has

X̂i(t) =

µ̂X(t) + ̂̃Σ12(t) ̂̃Σ−1

22 (t)(Υi − µ̂Υi) if Ri = 1

µ̂X(t) + ̂̃Σ12(t) ̂̃Σ−1

22 (t)(Υi − µ̂Υi) if Ri = 0

where

Υi =

{
(Wi·, Qi·, Zi)′ if Ri = 1
(Qi·, Zi)′ if Ri = 0,

(1.1)
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and µΥi(t) denotes the mean of Υi at time t. For notational simplicity suppose each of X,
W , Q, and Z are scalar, then the necessary moment estimates for equation (1.1) are:

Σ̂ε =
1∑n
i=1Ri

n∑
i=1

1
k − 1

k∑
j=1

Ri(Wij −Wi·)2

Σ̂W (t) =
1∑n

i=1RiYi(t)− 1

n∑
i=1

RiYi(t){Wi· − µ̂X(t)}2

Σ̂X(t) = Σ̂W (t)− Σ̂ε

k
= Σ̂XW (t)

Σ̂QX(t) =
1∑n

i=1RiYi(t)− 1

n∑
i=1

RiYi(t){Qi· − µ̂Q(t)}{Wi· − µ̂X(t)} = Σ̂QW (t)

Σ̂ZX(t) =
1∑n

i=1RiYi(t)− 1

n∑
i=1

RiYi(t){Zi − µ̂Z(t)}{Wi· − µ̂X(t)} = Σ̂ZW (t)

Σ̂Q(t) =
1∑n

i=1 Yi(t)− 1

n∑
i=1

Yi(t){Qi· − µ̂Q(t)}2

Σ̂Z(t) =
1∑n

i=1 Yi(t)− 1

n∑
i=1

Yi(t){Zi − µ̂Z(t)}2

Σ̂QZ(t) =
1∑n

i=1 Yi(t)− 1

n∑
i=1

Yi(t){Qi· − µ̂Q(t)}{Zi − µ̂Z(t)},

where µ̂X(t) =
1∑n

i=1RiYi(t)

n∑
i=1

RiYi(t)Wi· = µ̂W (t)

µ̂Q(t) =
1∑n

i=1 Yi(t)

n∑
i=1

Yi(t)Qi·

µ̂Z(t) =
1∑n

i=1 Yi(t)

n∑
i=1

Yi(t)Zi

Note that only subjects in the reliability subset contribute to the estimates of µX(t), ΣX(t),
ΣW (t), ΣZX(t), and ΣQX(t). The ordinary regression calibration estimate can be found by
replacing Yi(t) by 1 in all of the moment estimators used for X̂i(t). This produces a com-
mon estimate X̂i for all t. For categorical Z, one can condition on Z to provide linear
approximations of E(X|W,Q,Z = z) and E(X|Q,Z = z) for each level of Z. For speed of
computation of the resulting RRC estimator of β, one may wish to approximate the RRC
estimator of X̂ by not recalibrating at every failure time, but say according to a chosen
scheme of equally spaced failure times in the range of observed failure times. This approach
may be particularly useful for a large number of failure times.
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2 Regularity Assumptions

We assume the general error model of Section 2.1 in the manuscript, along with its stated
assumptions of independence and iid random variables, and that the random variables in the
error and survival moment have finite first and second moments. We also assume the Cox
model described in Section 2 of the manuscript holds. Sufficient conditions for asymptotic
normal distributions for the regression parameter estimators, and for the validity of the
corresponding bootstrap variance estimators, are as follows.

2.1 Regression Calibration Estimator

A. (Ni, Yi, Xi,Zi, Ri, γi, ki, κi, εi1, . . . , εiki
, ξi1, . . . , ξiκi) are iid random vectors for i = 1, . . . , n.

B1. P (k > 1) > 0 and P (κ > 1) > 0.

B2. P (R = 1) > 0 and P (V = v) > 0, for all v ∈ {v|V = v}, where V is the vector of
categorical components of Z.

C. Since the partial likelihood score equation is concave, with imposed regularity condi-
tions on the nuisance parameters (condition G), a unique solution to the regression
calibration equation will exist, namely β?. For θ0 = (β?,φ0), where φ0 is the true
nuisance parameter vector, ∃ a compact neighborhood N (θ0) around θ0 = (β?,φ0),
such that:

E sup
θ∈N (θ0),t∈[0,M ]

|X̂(t; φ̂)|2 eβ bX(t; bφ) <∞.

D. There exists a finite constant M > 0 such that P(U ≥M) > 0, where U = T ∧ C.

E.
∫M

0 λ0(u)du <∞, for 0 < M <∞.

F. The derivative of the estimating equation Un(θ) w.r.t. θ exists and is continuous
and bounded for θ ∈ N (θ0), a compact neighborhood of θ0. Furthermore, ∂

∂θUn(θ)
converges to its limit uniformly in N (θ0) and this limit A ≡ limn→∞

∂
∂θUn(θ) is

nonsingular at θ0; where θ0 is defined as in condition C.

G. The error model in Section 2.1 of the manuscript holds and for the error nuisance pa-
rameter vector φ0, there exists vector valued function Ψ(φ) = Ψ(W,Q,Z,R, k, κ,φ)
such that

E{Ψ(φ0)} = 0
E{Ψ(φ0)Ψt(φ0)} < ∞

√
n(φ̂− φ0) =

1√
n

n∑
i=1

Ψi(φ0) + op(1),

that is,
√
n(φ̂ − φ0) is asymptotically equivalent to a sum of iid components and

hence, asymptotically normal.
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Assumptions A and C−E are similar to those made for the ordinary Cox model (Andersen
and Gill, 1982; Tsiatis, 1981). Assumptions B1 - B2 list conditions for the numbers of
replicates for the main and biomarker instruments. Note assumption B1 is made for the
regression calibration estimator proposed in equation (3) of the manuscript, also described
above in Section 1; however, a regression calibration estimator is possible without replicates
of either Q or W . As noted by Neuhouser et al. (2008), since E[X|Q,Z] = E[W |Q,Z], one
can simply regress W on (Q,Z) to obtain an appropriate X̂ for regression calibration.
P (V = v) > 0 is important for regularity of stratum specific estimates. Assumption F en-
sures uniform convergence of the estimating equation and thus, since the estimating equation
for β is a complicated function of the nuisance parameters, that certain combinations of
these parameters are avoided. In particular, there needs to be nonzero correlation between
Q and X, and the covariance matrix for (X,W,Q,Z) needs to be nonsingular. Assumption
G ensures there exists an asymptotically consistent and normal estimator, φ̂, for φ0, as√
n(φ̂ − φ0) can be written as i.i.d. components asymptotically. Moment estimators are

one possible choice for Ψ. Wang et al. (1997) provides a more general class of
√
n-consistent

estimators satisfying these conditions.

2.2 Conditional Score

The regularity conditions for the conditional score equation are the same as conditions A−G
in Section 2.1, except that condition C, specific to terms in the estimating equation for θ,
is replaced by C ′.

C ′. ∃N (θ0), a compact neighborhood around the true value of the parameter θ0 = (β0,φ0)
such that: E{supθ∈N (θ0),t∈[0,M ] ζ

2(θ, t)E2
0(θ, t)} <∞.

Assumption C ′ implies that the coefficient of X in the measurement error model, δ1 + δ3Z,
is bounded away from zero almost everywhere in N (θ0). This is a reasonable requirement
for Q, as δ1 + δ3Z = 0 implies that Q does not depend on the true covariate X. Note
the conditional score estimating equation (equation (5) of the manuscript) was developed
assuming a discrete, scaler variable Z in the general measurement error model equation (1).
This method can be extended to a more general vector Z, so long as the scale bias in the
general measurement model (defined by δ3) is only dependent on the components of Z that
are discrete.

2.3 Nonparametric Corrected Score

The regularity conditions for the nonparametric score equation are the same as conditions
A−G in Section 2.1, except that condition C, specific to terms in the estimating equation
for θ, is replaced by C ′′.

C ′′. ∃N (θ0), a compact neighborhood around the true value of the parameter θ0 = (β0, δ0)
such that:

E[supθ∈N (θ0) X̃
2
z (δ)exp{2βX̃z(δ)}] <∞, for all z ∈ Z.

Assumption C ′′, like assumption C ′ above, implies that δ1 +δ3Z is bounded away from zero
almost everywhere in N (θ0). Note the nonparametric corrected score estimating equation

4



(equation (6) of the manuscript) was developed assuming a discrete, scaler variable Z in
the general measurement error model equation (1). This method can be extended to a more
general vector Z, so long as the scale bias in the general measurement model (defined by
δ3) is only dependent on the components of Z that are discrete.

3 Derivation of conditional intensity

This section includes a heuristic argument for the derivation of the conditional intensity
used in the conditional score equation presented in Section 2.3 of the manuscript. This
argument follows similarly to one provided by Tsiatis and Davidian (2001) in their de-
velopment of a conditional score estimator for the proportional hazards setting where the
covariate of interest is observed with classical measurement error, i.e. with independent
mean zero random error.

First consider an individual not in the biomarker subset. Because error and random
effect terms for Qij are assumed to be normally distributed, one can condition on the
observed Qi· = 1

k

∑k
j=1Qij in place of Qi1, Qi2, . . . , Qik. Assuming the general measurement

error model, one has Qi·|(Xi, Zi) ∼ N(δ0 + δ1Xi + δ2Zi + δ3XiZi,Σei), where Σei = Σγi +
Σξ/k. At time u, the conditional density for {dNi(u), Qi·} given individual i is at risk and
the time-independent covariates Xi and Zi is:

p(dNi(u),Qi·|Yi(u) = 1, Xi, Zi)
= p(dNi(u)|Qi·, Yi(u) = 1, Xi, Zi)× p(Qi·|Yi(u) = 1, Xi, Zi)

= {λ0(u)du exp(β1Xi + β2Zi)}dNi(u){1− λ0(u)du exp(β1Xi + β2Zi)}1−dNi(u)

× (2πΣei)
− 1

2 exp{− 1
2Σei

(Qi· − δ0 − δ1Xi − δ2Zi − δ3XiZi)2}

= {λ0(u)du exp(β1Xi + β2Zi)}dNi(u)(2πΣei)
− 1

2

× exp{− 1
2Σei

(Qi· − δ0 − δ1Xi − δ2Zi − δ3XiZi)2}+ op(du)

= {λ0(u)du exp(β2Zi)}dNi(u)(2πΣei)
− 1

2

× exp[− 1
2Σei

{(Qi· − δ0 − δ2Zi)2 + (δ1 + δ3Zi)2X2
i }]

× exp
[
Xi

Σei

{β1ΣeidNi(u) + (δ1 + δ3Zi)(Qi· − δ0 − δ2Zi)}
]

+ op(du)

The sufficient statistic for Xi can be defined as:

ζi = β1ΣeidNi(u) + (δ1 + δ3Zi)(Qi· − δ0 − δ2Zi).

Making a change of variables Qi· 7→ ζi, one has:

Qi· = (δ1 + δ3Zi)−1{ζi − β1ΣeidNi(u)}+ (δ0 + δ2Zi)
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Then

P(dNi(u), ζi|Yi(u) = 1, Xi, Zi) = {λ0(u)du exp(β2Zi)}dNi(u)(2πΣei)
− 1

2 (δ1 + δ3Zi)−1

× exp
[
− 1

2Σei

{
(δ1 + δ3Zi)−1(ζi − β1ΣeidN(u))

}2 + (δ1 + δ3Zi)2X2
i

]
× exp

(
Xiζi
Σei

)
+ op(du)

= {λ0(u) du exp(β2Zi)}dNi(u)(2πΣei)
− 1

2 (δ1 + δ3Zi)−1

× exp

{
−(δ1 + δ3Zi)−2 ζ

2
i − 2β1ΣeidNi(u)ζi + β2

1Σ2
ei
dNi(u)

2Σei

}

× exp
(
−(δ1 + δ3Zi)2X2

i

2Σei

+
Xiζi
Σei

)
+ op(du)

= {λ0(u) du exp(β2Zi)}dNi(u)K(Xi, Zi, ζi)

exp
[
(δ1 + δ3Zi)−2

{
β1dNi(u)ζi −

Σeiβ
2
1

2
dNi(u)

}]
+ op(du)

The conditional probability P(dNi(u) = 1|ζi = c,Xi, Zi, Yi(u) = 1) is

P(dNi(u) = 1, ζi = c|Xi, Zi, Yi(u) = 1)
P(dNi(u) = 0, ζi = c|Xi, Zi, Yi(u) = 1) + P(dNi(u) = 1, ζi = c|Xi, Zi, Yi(u) = 1)

.

The terms without dNi(u), denoted by K(Xi, Zi, c), will cancel from the numerator and
denominator. Up to order du the numerator is

λ0(u)du exp(β2Zi)K(Xi, Zi, c)exp
{
β1(δ1 + δ3Zi)−2c− Σeiβ

2
1

2
(δ1 + δ3Zi)−2

}
.

Up to order 1 the denominator is

P(dNi(u) = 0, ζi = c|Xi, Zi, Yi(u) = 1) = K(Xi, Zi, c).

Thus one has

P(dNi(u) = 1|ζi = c,Xi, Zi, Yi(u) = 1)
= λ0(u) du exp(β2Zi)

×
K(Xi, Zi, c)exp

{
β1(δ1 + δ3Zi)−2c− Σeiβ

2
1

2 (δ1 + δ3Zi)−2
}

K(Xi, Zi, c)
+ op(du)

= λ0(u)du exp
{
β1(δ1 + δ3Zi)−2c− Σeiβ

2
1

2
(δ1 + δ3Zi)−2 + β2Zi

}
+ op(du).

From (3), one has the conditional intensity process

lim
du→0

du−1P{dNi(u) = 1|ζi, Xi, Zi, Yi(u)}

= λ0(u) exp

β1ζi −
β2
1Σei
2

(δ1 + δ3Zi)2
+ β2Zi

Yi(u).
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A similar procedure is followed for the reference subset. In this case the sufficient statistic
is

ζi = β1ΣeiΣεdNi(u) + Σε{(δ1 + δ3Zi)(Qi· − δ0 − δ2Zi)}+ ΣeiWi·

P (dNi(u)|ζi, Yi(u), Xi, Zi) will be derived from P(dNi(u), Qi·,Wi·|Yi(u), Xi, Zi). Rewrite

Wi· =
1

Σei

{ζi − β1ΣeiΣεdNi(u)− Σε(δ1 + δ3Zi)(Qi· − δ0 − δ2Zi)}

Then P(dNi(u), ζi, Qi|Yi(u), Xi, Zi)

= {λ0(u)du exp(β2Zi)}dNi(u) (2πΣε)−
1
2 (2πΣei)

− 1
2

1
Σei

exp
(
Xiζi

ΣεΣei

)
× exp

[
− 1

2Σei

{Q̃2
i· + (δ1 + δ3Zi)2X2

i } −
1

2Σε
X2
i

]
× exp

[
− 1

2Σε

1
Σ2
ei

{ζ̃i − Σε(δ1 + δ3Zi)Q̃i·}2
]

+ op(du),

where ζ̃i = ζi − β1ΣeiΣεdNi(u) and Q̃i· = Qi· − δ0 − δ2Zi.

One can now complete the square for Qi· and integrate out Qi·. Then

P(dNi(u),ζi|Yi(u) = 1, Xi, Zi)

= {λ0(u)du exp(β2Zi)}dNi(u)(2πΣε)−
1
2 (2πΣei)

− 1
2

1
Σε
a(Zi)

× exp
{
Xiζi

ΣεΣei

− 1
2Σε

X2
i −

(δ1 + δ3Zi)2

2Σei

X2
i

}
× exp

[
−{ζi − β1ΣeiΣεdNi(u)}2

2ΣεΣ2
ei

+
{ζi − β1ΣeiΣεdNi(u)}2(δ1 + δ3Zi)2

2Σ2
ei
{Σei + Σε(δ1 + δ3Zi)2}

]
+ op(du)

= exp
[
− {ζi − β1ΣeiΣεdNi(u)}2

2ΣeiΣε{Σei + Σε(δ1 + δ3Zi)2}

]
K̃(Xi, Zi, ζi) + op(du)

≡ g(ζi, dNi(u), Zi)K̃(Xi, Zi, ζi) + op(du)

P(dNi(u) = 1|ζi = c, Zi = v, Yi(u) = 1)

=
g(c, 1, v) + op(du)
g(c, 0, v) + g(c, 1, v)

=
g(c, 1, v) + op(du)
g(c, 0, v) + op(1)

=
g(c, 1, v)
g(c, 0, v)

+ op(du)

= λ0(u)du exp(β2Zi)

× exp
[
− (c− β1ΣeiΣε)2

2ΣeiΣε{Σei + Σε(δ1 + δ3Zi)2}
+

c2

2ΣeiΣε{Σei + Σε(δ1 + δ3Zi)2}

]
+ op(du)

= λ0(u)du exp
{

β1c− β2
1ΣeiΣε/2

Σei + Σε(δ1 + δ3Zi)2
+ β2Zi

}
+ op(du)
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The conditional intensity process is thus

lim
du→0

du−1P(dNi(u) = 1|ζi, Xi, Zi, Yi(u) = 1)

= λ0(u) exp
{

β1ζi − β2
1ΣeiΣε/2

Σei + Σε(δ1 + δ3Zi)2
+ β2Zi

}
Yi(u).

4 Conditional and Corrected Score Nuisance Parameter Es-
timation

The conditional score and corrected score models require a plug-in estimate for δ = (δ0, δ1, δ2, δ3)
from equation (1) in the main text. This estimate can be found by solving the following
system of linear equations for δ.

EQ = δ0 + δ1µX + δ2µZ + δ3µXZ

Cov(W,Q) = δ1Var(X) + δ2Cov(X,Z) + δ3Cov(X,XZ)
Cov(Z,Q) = δ1Cov(X,Z) + δ2Var(Z) + δ3Cov(Z,XZ)

Cov(WZ,Q) = δ1Cov(X,XZ) + δ2Cov(Z,XZ) + δ3Var(XZ).

Thus,

δ̂ =


1 µ̂X µ̂Z µ̂XZ
0 Σ̂X Σ̂XZ Σ̂X,XZ

0 Σ̂XZ Σ̂Z Σ̂Z,XZ

0 Σ̂X,XZ Σ̂Z,XZ Σ̂XZ


−1 

µ̂Q
Σ̂WQ

Σ̂ZQ

Σ̂WZ,Q


The moment parameters on the right hand side of the above equation can be estimated
from the data using the usual moment estimators. The conditional score estimator also
requires estimates for the measurement error variances from equations (1) and (2), i.e.
Var(ε), Var(γ|Z = z) = aexp(bz), and Var(ξ). An estimate for Σε is provided in Section 1
above. The parameters (a, b) can be estimated by creating a system of equations from the
following relationship: Var(Q|Z = z) = Var(δ0 + δ1X + δ2Z + δ3XZ + γ + ξ|Z = z).
For example, for binary Z one has:

a = Var(Q|Z = 0)− δ2
1Var(X|Z = 0)−Var(ξ) and

aeb = Var(Q|Z = 1)− (δ1 + δ3)2Var(X|Z = 1)−Var(ξ).

Parameter estimates for a and b are thus found by plugging in the estimates for δ̂ from
above, Σ̂ξ = n−1

∑n
i=1(κ − 1)−1

∑κ
j=1(Qij − Qi·)2, and the other moments are the usual

moment estimators conditioned on the appropriate level of Z.
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5 Cumulative Baseline Hazard Estimation

5.1 Consistency

The consistency of the proposed estimator Λ̂ in equation (7) can be seen from the following
argument. We use the Huang and Wang (2000) representation of the Breslow estimator as
a functional of two empirical process, Ê{∆I(U ≤ ·)} and Ê{exp(bX)I(U ≥ ·)}, where Ê
denotes the sample mean. Thus, the Breslow estimator for the Cox model with covariate
X can be rewritten as

Λ̂0(t; β̂) =
∫ t

0

dN(u)∑n
i=1 Yj(u)exp(β̂Xj)

=
∫ t

0

dÊ{∆I(U ≤ u)}
Ê{exp(β̂X)I(U ≥ u)}

.

Under the Cox model with parameter β, this estimator is consistent for

Λ0(t;β) =
∫ t

0

dE{∆I(U ≤ u)}
E{exp(βX)I(U ≥ u)}

.

Recall the random variable derived from the error model,

X̃i(δ) =
Qi· − δ0 − δ2Zi
δ1 + δ3Zi

,

where Qi· is the average of ki replicates of Qij . At the true nuisance parameter value
δ0 = (δ00, δ10, δ20, δ30), X̃i(δ0) is composed of Xi plus an error term that depends on the
value of Zi. That is

X̃i(δ0) = Xi +
γi + ξi·

δ10 + δ30Zi
= Xi + νi,

For simplicity, assume there are ki = 2 replicates of Q for all members of the cohort and
κi = 2 replicates of W for all members of the biomarker subset. Recall Ri is the biomarker
subset membership indicator for subject i. Here, we again borrow notation from Huang
and Wang (2000) and denote the two independent replicates of W as W (1) and W (2). We
stratify on values of Z, because the error in X̃i depends on values of Zi. At δ0 and Zi = z,
the proposed estimator for the cumulative baseline hazard function (7) can be written as

Λ̂NPz0 (t; b; δ0) =

(Ê [I(Z = z)Rexp{b(W (1) −W (2))/2}])−1

× Ê
(
I(Z = z)Rexp[b{X̃(δ0)− (W (1) +W (2))/2}]

)∫ t

0

dÊ{I(Z = z)∆I(U ≤ u)}
Ê{I(Z = z)exp{bX̃(δ0)}I(U ≥ u)}

.

(5.1)

Assuming the error terms εij in W are symmetric and independent of all other random
variables in the error and survival model, and assuming the biomarker subset is a random
subset of the cohort, the first term on the r.h.s. is consistent for [E{exp(bε/2)}]−2. Using the
same assumptions, and that ν given a fixed Z is independent of the other random variables,
the second term on the r.h.s. of (5.1) has the limit E{I(Z = z)exp(bν)}[E{exp(bε/2)}]2.
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Similarly, the third term on the r.h.s of (5.1) is consistent for∫ t

0

dE{I(Z = z)∆I(U ≤ u)}
E{I(Z = z)exp(bX + bν)I(U ≥ u)}

=

1
E{I(Z = z)exp(bν)}

∫ t

0

dE{I(Z = z)∆I(U ≤ u)}
E{I(Z = z)exp(bX)I(U ≥ u)}

.

Thus Λ̂NPz0 (t; b; δ0) is consistent for

Λz0(t; b) =
∫ t

0

dE{I(Z = z)∆I(U ≤ u)}
E{I(Z = z)exp(bX)I(U ≥ u)}

.

It follows, that for consistent estimators of β̂ and δ̂0, with some imposed regularity, one
has Λ̂NPz0 (t; β̂; δ̂0) will be consistent for the stratum specific Λ0z(t;β). For the RC and RRC
estimators, this also leads to the convenient overall estimator of Λ0,

Λ̂0(t) =
∑
z∈{Z}

∫ t

0
exp(−β̂2z)nz(u)n(u)−1Λ̂NPz0 (du; β̂1, δ̂),

where nz(u) and n(u) denote the risk set size in stratum Z = z and the overall risk set size,
respectively, at time u.

5.2 Asymptotic Normality of Λ̂NP
z0 (t; β̂; δ̂0)

In Appendix C of Huang and Wang (2000), the authors sketch out a proof for asymptotic
normality for a similar estimate of Λ0(t;β). Their estimator, like ours, involves the Breslow
estimator functional applied to an error prone random variable, multiplied by a correction
factor. The crux of the proof, which can be applied here, relies on regularity conditions
which ensure the uniform convergence of the empirical processes in the estimating equation
for β and the estimator for Λ0z(t) (5.1). The estimating equation for β and the estimator
for Λz0(t) are continuous and differentiable functionals of empirical processes. With the
imposed regularity, the functional delta method can then be applied to show the asymptotic
normality of Λ̂NPz0 (t; β̂; δ̂0).
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6 Distributions for the data in the WHI example

Figure 1 shows the distributions for log-energy consumption data from the food frequency
questionnaire in the main WHI cohort and the biomarker measure in the WHI Nutritional
Biomarker Subset, from the example (Section 5) of the manuscript, along with the corre-
sponding normal density curve with the same mean and standard deviation.
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Figure 1: The logarithm of the self-reported (Q) and biomarker (W) measures for energy
intake, along with the fitted normal density curves.
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