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Materials and Methods: 

Gold films and the molecular spacer layers with attached colloidal nanoparticles (NPs) 
were prepared and characterized in the following manner: 30 nm gold films were 
deposited by an electron beam evaporator (CHA Industries) at 2 Å/s onto clean room 
cleaned Nexterion Glass B slides (Schott North America, Inc.) using a 5 nm chromium 
adhesion layer (deposited at 1 Å/s).  Poly-electrolyte (PE) spacer layers of up to 27 nm 
thickness were prepared by layer-by-layer (LBL) deposition (18) of poly (allylamine) 
hydrochloride (PAH, Mw = 70 kDa, Aldrich) and polystyrene sulfonate (PSS, Mw = 70 
kDa, Aldrich).  For each deposition step, the gold-coated glass slides were immersed in 
0.003 moles-of-monomer/L (monomol/L) PE and 1 M NaCl for 30 min, rinsed 
thoroughly with a gentle stream of ultra-pure water (18 MΩ, used throughout), and 
immersed in fresh ultra-pure water for one minute, after which the substrates were either 
immersed in 1 M NaCl for 30 s before repeating the same steps for deposition of the 
oppositely charged PE or dried with a stream of high-purity nitrogen for analysis.  All 
LBL depositions were initiated and terminated with the cationic PAH layer to facilitate 
both the attachment of the first PE layer to the gold film through amine-gold interactions 
(20) and the electrostatic immobilization of gold nanoparticles to the PE spacer layer. 

To create spacer layers with controllable thicknesses from just a few angstroms to 
a few nanometers, self-assembled monolayers (SAMs) of amine-terminated alkanethiols 
on gold films were fabricated using using chain lengths of n = 2, 3, 6, 8, 11, and 16 where 
n equals the number of carbon atoms along the alkane portion of the molecule. Amine 
thiols of n = 2, 3, 6, and 11 were purchased from Sigma-Aldrich (product numbers 
30070, 739294, 733679, and 674397 respectively), and amine thiols of n = 8 and 16 were 
purchased from Dojindo (product numbers A424 and A458 respectively).  All thiols were 
used as received. The SAMs were fabricated by incubating a gold slide that was either 
fresh from the metal evaporator or had been stored in 200 proof ethanol since gold 
deposition in a clean glass vial containing a 1-5 mM thiol solution in 200 proof ethanol 
for 18 hours, after which the vials were briefly sonicated and copiously rinsed with 
ethanol a total of 4 times. Finally, the gold-coated glass slides containing the SAMs were 
removed from ethanol and were dried with a stream of high-purity nitrogen. 

60 nm gold NPs (BBI) were electrostatically immobilized on the top surfaces of 
each molecular spacer layer by incubating a volume of un-diluted colloid stock solution 
on the molecular spacer layer for 30 minutes, followed by rinsing with ultra-pure water 
and drying with a stream of high purity nitrogen. Resultant NP surface coverages ranged 
from 1-3 scatterers/ µm2, which ensured that there was minimal NP-NP coupling.  

Film-coupled NP gap distances are assumed to be set by the molecular spacer 
thickness. We assume here that the loosely bound citrate molecules that serve as 
stabilizers for the gold colloid are displaced by the amine groups (21) present on our 
molecular spacer layers due to amine-gold interactions (20).  PE spacer layer thicknesses 
were measured using a J.A. Woolam Co., Inc., M-88 spectroscopic ellipsometer and 
WVASE32 software (version 3.460).  Spectroscopic scans (277.5 – 763 nm) of each 
spacer layer were performed in three distinct regions (free of immobilized NPs) at 65°, 
70°, and 75° relative to the normal of the surface of the slide.  Ellipsometry data was 
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analyzed using a 2-layer model (22) composed of a bulk gold layer underneath an organic 
layer, which was used to represent the molecular layer.  The thickness of each spacer 
layer was fitted using the Cauchy expression for a normal dispersion provided by the 
WVASE32 software, where parameters “Thickness” and “A” of the model were fitted 
(all other variables were left at the default values) such that the mean standard error of the 
fit was minimized.  For each spacer layer, the nominal thickness was determined to be the 
average of the three thickness measurements taken per spacer layer. Note that the optical 
constants of each bare gold film were determined immediately prior to LBL depositions 
by taking spectroscopic scans of the bare gold films at 65°, 70°, and 75° and fitting n and 
k to the known values of bulk gold, which were provided by the WVASE32 software, to 
account for any shifts in the optical constants due to the thicknesses of our gold films.  
These fitted optical constants for each gold slide were saved and used later, respectively, 
when fitting for thickness of the molecular layers deposited onto the gold slides. 

Ellipsometry was also used to characterize the thinner amine thiol spacer layers 
using the same procedure described above except for the fact that only “Thickness” (and 
not “A”) was fitted in the Cauchy model.  We found that fitting A produced unrealistic 
thickness and A values and assumed this was due to the lack of contrast between the 
extremely thin molecular layers and the gold film.  Even so, we were unable to obtain 
fitted thickness values for our thinnest C2 amine thiol layers using ellipsometry.  
Furthermore, we found that extrapolation of the ellipsometry thickness data produced 
unreasonably thin values for the C2 layers.  This is supported by the findings of Bain et 
al. (19) who made similar characterizations of series of alkane thiol and carboxy-
terminated alkane thiol SAMs and show how ellipsometry of thin molecular layers can 
produce systematically low thickness values. To come up with useable thickness values 
for the amine thiol SAMs, we used a 3D chemical modeling program (Chem3D Pro 7.0) 
to generate the theoretical lengths of each amine thiol attached to a gold atom via a 
thiolate bond.  The molecular lengths were measured from the gold atom (representing 
the gold film surface) to the most distant hydrogen atom of the terminal amine group as if 
the molecule was standing straight up on the gold surface.  We then calculated the chain 
lengths of the molecules as if they were tilted by 30° relative to the normal of the surface 
since it is commonly accepted that SAM formation of thiols on gold surfaces results in 
thiol molecules assuming some degree of tilt (19).  These tilted length values were used 
in our final plots of NP resonant scattering data versus NP-film separation distance (Fig. 
4D). Our measured ellipsometric thickness data produced slopes and intercepts ranging 
from 1.6 – 2.0 Å/carbon and -6.0 – -0.9 Å when all values of n are included.  However, 
when the C16 points are removed from the regression, the slopes and intercepts were 1.1 
– 1.4 Å/carbon and -2.5 – 4.4 Å.  These slope values are more similar to the theoretical 
values.  It should be expected that the slope of such a range of n might not be constant in 
reality since longer chain lengths of thiols tend to form more ordered and well-packed 
SAMs.  Our ellispometric data seems similar to the case of Ref. (19), where the 
ellipsometric thickness versus thiol chain length data produced somewhat reasonable 
slope values, compared to theoretical data, but unrealistic y-intercepts. 

Plasmon resonances of gold film-coupled NPs were characterized by scattering 
spectra, reflectivity spectra, and color images.  Scattering spectra and images were taken 
using a customized Nikon dark-field microscope with a 100x DF 0.9 NA objective.  
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Slides containing the gold films with spacer layers and immobilized NPs were index-
matched with oil to the top surface of a hemi-cylindrical lens, which we use in place of a 
prism. Samples were illuminated from above, in dark-field mode, using un-polarized 
white light from a 75 W Xenon lamp (Oriel).  For color images, the microscope light path 
was directed to a Nikon d90 color camera. Scattering spectra were acquired using a 1mm 
image plane pinhole aperture to reduce the field of view to ~10µm diameter, containing 
small numbers of NPs, which enables the user to remove unwanted scattering from 
contaminants (typically dust) in the spectroscopy path.  This field of view was directed 
through a spectrometer (Acton SpectraPro 2300i) and onto a detector (Photometrics 
CoolSnap HQ). All scattering spectra were background corrected (by subtracting the 
spectrum from an apertured region of the substrate containing no NPs) and normalized 
(by dividing the spectrum from a white scattering standard (Labsphere)) to correct for the 
wavelength response of the imaging system. To measure the reflectance properties of the 
samples, white light from a 75 W Xenon source (Oriel) coupled through a 1 mm diameter 
multimode optical fiber, collimating lens and p-polarizer is directed to the sample surface 
at a 70° angle of incidence. The beam diameter at the surface of the sample is 
approximately 3 mm. The reflected light is collected through a second identical lens fiber 
assembly and directed to the spectrometer where the spectrum is normalized by the 
reflectance spectrum of the bare gold film. Plasmon resonance peak positions are 
calculated by taking the centroid of the resonances observed in either the scattering or the 
reflectivity curves.  
 

Supplementary Text: 
Hydrodynamic model 

The electromagnetic nonlocal response of metal can be described by a hydrodynamic 
model (11). The electron fluid density, n(r, t), and the current density, J = env, satisfy the 
Euler’s equation: 

 men
∂v
∂t

+ v ⋅∇( )v⎡
⎣⎢

⎤
⎦⎥
+ γ menv = enE+ env ×B−∇p , (S1) 

along with the continuity equation: 

  ∇⋅J = −e n , (S2) 

where me   is the free electron mass, γ is the electron collision rate, v is the electron 
velocity field and p is the electron pressure which for a three-dimensional gas, may be 
expressed as: 

 p(r,t) = p0
n r,t( )
n0

⎡

⎣
⎢

⎤

⎦
⎥

5 3

, (S3) 

with p0 ∝ n0EF, (EF is the Fermi energy and n0 is the equilibrium charge density). 
Combining Eqs. (S1), (S2) and (S3), and neglecting higher order terms, one finds that the 
free electron current J satisfies the following equation: 
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 −β 2∇ ∇⋅J( ) + ∂2

∂t 2
J + γ ∂

∂t
J = n0e

2

me

∂
∂t
E , (S4) 

with β ∝ EF me . This equation describes the electromagnetic response of a metal and 
must be solved along with Maxwell’s equations. In the framework of harmonic 
propagation, we get then the following system of two coupled equations: 

 ∇×∇×E− k0
2E = iωµ0J , (S5) 

 β 2∇ ∇⋅J( ) + ω 2 + iγω( )J = iωω p
2ε0E , (S6) 

with ω p =
n0e

2

ε0me

. 

The presence of spatial derivatives in the description of the current vector requires 
the specifications of new boundary conditions—additional boundary conditions 
(ABCs)—to   solve the electromagnetic problem given by the Eqs. (S5) and (S6). In the 
frame of a hydrodynamic description, the number of ABCs depends on the given 
equilibrium charge density profile at the metal boundaries. In writing Eq. (S4) we 
implicitly assumed the equilibrium electron density to have a step function profile that 
vanishes outside the metal. In this case, only one ABC is required to supplement Eqs. 
(S5) and (S6) to obtain a unique solution (23). However, the choice of the ABC required 
at the metal interface is a delicate problem that remains an unsettled topic in the 
literature. In our calculations we assume a all-nonlocal metal permittivity. In this case, we 
can unambiguously impose the continuity of the normal component of the electric field, 
which corresponds to the condition: 

 n̂ ⋅ J − Jd( ) = 0  (S7) 
at the boundary, with Jd  denoting the displacement currents flowing through the 
dielectric. The ABC of Eq. (S7) reduces to n̂ ⋅J = 0  for a metal-vacuum interface. 

 
Analytical calculations: film-coupled nanowire 
In order to provide additional physical insight on the film-coupled nanoparticle system, 
as well as an independent confirmation of our numerical treatment of nonlocal effects, we 
present an analytical description of the system based on transformation optics (TO) (8). 
We focus our attention on the two-dimensional analogue of the experimental structure, a 
metal nanowire on top of a flat metal substrate. The local TO description of this system 
maps the original structure into a flat metal-air-metal geometry (24). This is possible 
through the conformal transformation: 

 z ' = ln g
z
+1⎛

⎝⎜
⎞
⎠⎟ , (S8) 

where z ' = x '+ iy '  and z = x + iy  are transformed and original spatial coordinates, 
respectively. The constant g = 4R ρ(1+ ρ)  gives the transformation length scale, where 
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ρ = δ / 2R  is the ratio between the gap size and the nanowire diameter. The thickness of 
the air slab between the metal regions in the transformed frame is given by 
a = 2asinh ρ( ) . Figure S1 shows a schematic representation of the original and 

transformed structures as well as a definition of the different geometric parameters. 
Equation (S8) does not only act on the geometry of the plasmonic device, but also on the 
external excitation. It maps the original incident field into a periodic array of dipole 
sources placed at the surface of one of the transformed metal surfaces. Importantly, the 
periodic character of the transformed source converts the continuum spectrum of parallel 
wave-vectors into a discrete set of Bloch wave orders.  

Whereas the material properties are preserved under the transformation within the 
local approximation, the metal permittivity becomes sensitive to Eq. (S8) once spatial 
dispersion is taken into account (8). The transverse component of the metal permittivity, 
εT (ω ) , described by a local Drude-like expression, is not affected by the conformal 
mapping. On the other hand, the longitudinal component, εL (k,ω ) , given by Eq. (2), is 
modified through the wave-vector stretching associated to Equation (S8) and weighted by 
| dz ' dz | . The nonlocal parameter β  acquires a spatial dependence, having: 

 β ' = β '(z ') = 2β
g
cosh z '−1 , (S9) 

in the transformed frame. Equation (S9) translates into the spatial variation of the 
Thomas-Fermi screening length, λ 'TF (z ') ≈ β '(z ') ω p . This effect is illustrated in Fig. S1, 
where the shaded areas represent the decay length of the longitudinal plasmons (surface 
charge thicknesses) excited in the structure.  
 

 

 

Fig. S1: Left panel renders the two-dimensional system under study: 
the interaction of light with a metal nanowire of radius R separated 
by a gap  from a flat metal substrate. The right panel shows the 
geometry obtained from the original under the transformation given 
by Eq. (S8). The shaded areas in both panels represent the Thomas-
Fermi screening length (decay length of the longitudinal plasmons 
excited in the system). 
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We restrict our analysis to the low frequency (large wavelength) gap plasmonic mode, 
and study the dependence of the mode wavelength on the nanowire-substrate distance. 
The parallel wave-vector for this mode is given by the lowest order Bloch wave, which 
corresponds to a single electric field oscillation along the -direction within unit cell of 
the transformed structure. This greatly simplifies the analytical treatment of the spatial 
dependence of the nonlocal parameter given by Eq. (S9). 

Taking advantage of the fact that the length scale in which  varies is much 
smaller than the inverse of the parallel wave-vector for the longest wavelength plasmonic 
mode, we can replace Eq. (S9) by its average along the -direction. Using this 
approximate treatment, the resonance condition for the longest wavelength plasmonic 
mode can be calculated, yielding: 

 ρ + ρ +1( )4 = Re εT (ω )−1
εT (ω )

q0−1
q0+1 +1

εT (ω )−1
εT (ω )

qa−1
qa+1 +1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (S10) 

where: 

 q0 = 1+ ωP
2 −ω 2

β '(0)
2 = 1+ 2R

β
⎛
⎝⎜

⎞
⎠⎟

2
ρ(ρ +1)
(1− 2 /π )2

ωP
2 −ω 2( ) , 

(S11) 

 

 qa = 1+ ωP
2 −ω 2

β '(a)
2 = 1+ 2R

β
⎛
⎝⎜

⎞
⎠⎟

2
ρ(ρ +1)

(2ρ +1− 2 /π )2
ωP
2 −ω 2( ) , 

(S12) 

 
are the -component of the longitudinal plasmons wave-vector in x ' ≤ 0 (transformed 
substrate) and x ' ≥ a  (transformed nanowire) metallic regions. 
Figure S2 shows a comparison of analytical results given by Eq. (S10) with numerical 
simulations obtained by directly solving the system of Eqs. (S5) and (S6) with COMSOL 
Multiphysics. The resonant wavelength is computed for a cylinder of radius R=10 nm 
placed over an infinitely extend metal substrate at various gap distances δ . In the 
numerical model, the resonances are driven by a p-polarized plane wave incoming at 75° 
from normal. The system resonances are evaluated by integrating the total power 
dissipation density over the cross-section of the cylinder. Let us stress that Eq. (S10) fails 
to describe accurately the resonant position in two limits. On the one hand, the 
approximate treatment of the spatially dependent nonlocal parameter in Eq. (S9) is not 
valid for gap sizes much smaller than the Thomas-Fermi wavelength (δ < β /ω p ≈ 0.1  
nm in all the cases considered in Fig. S2). On the other hand, as mentioned above, Eq. 
(S10) does not take into account the contribution of higher energy gap modes to the 
optical response of the structure. These overlap with the fundamental resonance when the 
gap size becomes comparable to the nanowire diameter (δ >1nm in Fig. S2). Finally, 
analytical results agree with numerical simulations in the region where the assumption 
made are valid, giving us an independent confirmation of our results. Though the 
numerical implementation of nonlocality for a full three-dimensional system remains 
unchanged from its 2D analogy, the same direct calculation would require in this case 
extremely large computational resources. In the next section we introduce a quasi-two-
dimensional modeling method that allows a sensible reduction of the computational load.  
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Simulations: 2.5D model 
Numerical investigations of near-fields and scattering properties of the film-coupled NP 
system were performed solving the system of Eqs. (S5) and (S6) in COMSOL 
Multiphysics. In order to sensibly decrease the computational load we have developed a 
quasi-two-dimensional modeling method for vector fields, which will be referred as 2.5D 
modeling. In the 2.5D formulation, all fields are decomposed in term of azimuthal mode 
number m. This can be done by decomposing the fields into the Fourier series:

 
 

 Eρ ,z,φ ρ, z,φ( ) = Eρ ,z,φ
(m ) ρ, z( )eimφ

m
∑ . (S13) 

If the geometry is ϕ-independent, i.e. it is rotationally symmetric, each cylindrical 
harmonic propagates independently, and the full vector equations can be solved on the 
two-dimensional cross-section of the simulation domain for each m.  
In order to solve properly the electromagnetic problem, it is then necessary to modify the 
built-in Comsol master equation, as well as the built-in boundary condition equation. The 
new equations can be easily obtained substituting the expression (S13) (and similar 
expressions for J) in the Eq. (S5) in cylindrical coordinates. After eliminating the ϕ-
dependence, the equations depend on the azimuthal number m, and have to be solved for 
each cylindrical harmonic present in the incident field. Fortunately, parity condition 
relating positive and negative azimuthal number exists, which further reduces the 
computational load by a factor of two. In general, parity condition depends on the 
particular field component considered. Total 3D fields can be obtained by revolution 
around z-axis by reintroducing the ϕ-dependent factor, eimφ . 
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Fig. S2: Comparison of analytical with numerical results. The 
resonant wavelength is plotted as a function of the gap distance δ  
for a cylinder of radius R=10 nm placed over an infinitely extend 
metal substrate. Analytical calculations (solid line) and numerical 
simulations (circles) were performed for different values of the 
nonlocal parameter β . The curve obtained using the local 
approximation is shown in black.  
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All excitations can be decomposed as follow. Consider a plane wave polarized 
such that the magnetic field is transverse to the z-axis (TMz polarization), i.e. Hz = 0 and 
 E = E0 x̂cosθ + ẑsinθ( )e− ik0xsinθeik0zcosθ . (S14) 
Taking advantage from the periodicity with respect to ϕ of the part depending on x = 
ρcosϕ it is possible to expand the z-component of E as Fourier series: 

 Ez = E0 sinθe
ik0zcosθ i−mJm k0ρ sinθ( )eimφ

m
∑ . (S15) 

Using Maxwell’s equations it is possible to derive all remaining field components: 

 Eφ = i
cosθ

k0ρ sinθ
E0e

ik0zcosθ mi−m+1Jm k0ρ sinθ( )eimφ
m
∑ , (S16) 

 Eρ = iE0 cosθe
ik0zcosθ i−m ′Jm k0ρ sinθ( )eimφ

m
∑ , (S17) 

As already mentioned, it is necessary to calculate the fields only on a cross-section of the 
three-dimensional geometry. The simulated domain then reduces to a disc of radius 2 µm. 
The excitation is a plane wave p-polarized and incident at an angle θ = 75°  from the 
normal to the film. 

In order to collect the field scattered from the nanoparticle, we used a generalized 
scattered-field formulation, in which the background field is specified using an analytical 
formula for the structure in absence of the nanoparticle. For the background field, we 
used Fresnel formulas for a layered system consisting of a semi-infinite layer of air 
(refractive index n = 1), a flat layer for the polymer, 30 nm thick layer of metal, and a 
semi-infinite layer of glass (n = 1.47 ). For each layer, the background field is then a 
superposition of two plane waves, which are decomposed into cylindrical harmonics by 
means of Eqs. (S13). The resonant wavelength is obtained in correspondence of the 
maximum in the scattering cross-section. This is obtained by integrating the scattered 
power flow over a range of spherical angles corresponding to the experimental numerical 
aperture NA = 0.9 (NA = nair sinθmax). 

In the local approximation, we used for gold, wavelength-dependent permittivity 
interpolating Johnson & Christy data (25). In order to get nonlocal data independently on 
the particular choice of Drude parameters in Eq. (S6), we proceeded as follow. Equation 
(S6) may be rewritten as: 

 
β 2

ω p
2 ∇ ∇⋅J( ) + ω 2 + iγω

ω p
2 J = iωε0E . (S18) 

Recognizing that εD ω( ) = 1− ω p
2

ω 2 + iγω
, we can write: 

 
β 2

ω p
2 ∇ ∇⋅J( )− 1

εD ω( )−1J = iωε0E . (S19) 

It is still possible then, to use an arbitrary frequency-dependent dielectric function, ε(ω), 
to describe gold properties within the nonlocal model. As in the local approximation we 
used a dielectric function obtained by interpolating Johnson & Christy data (25).  
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