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1 Computational algorithm for fitting hierarchical model

For the hierarchical model described in the main text, our primary interest is making inference on the
parameter set Θ = (π0,η,λ). Here, we give details of an algorithm for inferring Θ, via maximum
likelihood estimation based on the EM algorithm.

1.1 Notations

Throughout this section, we adopt the following additional notations. For gene k, we use a latent binary
indicator zk to denote if there is any eQTL in its cis-region for any tissue type, in particular,

Pr(zk = 1) = 1− π0; (1)

We use a latent random indicator mk-vector sk to denote the true eQTL SNP conditional on zk = 1 and
let skp denote the p-th entry of sk. The “one cis eQTL per gene” assumption restricts sk can have at
most one entry equaling 1 (with the remaining entries being 0). By this definition,

Pr(sk = 0|zk = 0) = 1, (2)

and we also make the simplifying assumption that

Pr(skp = 1|zk = 1) =
1

mk
. (3)

Furthermore, for gene k and SNP p, we index all configurations and use a (2S − 1)-dimension latent
indicator vector ckp to denote the actual configuration for the gene–SNP pair. In case the SNP is not an
eQTL,

Pr(ckp = 0|skp = 0) = 1. (4)
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Otherwise, we assume the jth configuration is active with prior probability

Pr(ckpj = 1|skp = 1) = ηj . (5)

Joining the column vectors ckp for all mk SNPs, we obtain a latent (2S − 1) ×mk random matrix Ck.
Finally, we use the latent L-vector wkp indicate the actual prior effect size for active tissue types for the
pair of gene k and SNP p. The m-th entry of the indicator is denoted by wkpm, for which we assume
prior probability

Pr(wkp = 0|skp = 0) = 1, (6)

and
Pr(wkpm = 1|skp = 1) = λm. (7)

Joining the column vectors wkp for all mk SNPs, we obtain a latent L×mk random matrix Wk

1.2 Maximum Likelihood Inference based on EM algorithm

In the maximum likelihood framework, we treat latent variables zk, sk, ck and wk, k = 1, . . . , G as missing
data and apply the EM algorithm.

For a total number of G genes, let z = (z1, . . . , zG),S = (s1, . . . , sG),C = (C1, . . . , CG) and
W = (W1, . . . WG) denote the complete collection of latent variables. Let Y = (Y 1, . . . Y G) and
G = (G1, . . . , GG) denote the complete set of observed data. Based on the hierarchical model described
in previous section, we can write out the complete data log-likelihood as follows,

log p(Y ,z,S,C,W |G,Θ) =∑
k

(1− zk) log π0 +
∑

k

zk log(1− π0)

+
∑
k,p

zkskp log
1

mk
+

∑
k,p,j

zkskpckpj log ηj +
∑

k,p,m

zkskpwkpm log λm

+
∑

k,p,j,m

zkskpckpjwkpm · BFkpjm +
∑

k

log p0
k.

(8)

In (8), p0
k denotes the likelihood of the null model for gene k, i.e.,

p0
k := p(Y k|zk = 0) (9)

and

BFkpjm =
P (Y k|zk = 1, skp = 1, ckpj = 1, wkpm = 1,Gk,Θ)

p0
k

(10)

is the Bayes Factor (pre-)computed for a fully specified alternative model.
The EM algorithm searches for maximum likelihood estimate of Θ, by iteratively performing an

expectation (E) step and a maximization (M) step.
In the E-step, for the t-th iteration, we evaluate the expectation of complete data log-likelihood (8)

conditional on current estimate of parameter Θ(t), G and Y . The computation is straightforward, for
example,

E(zk|Y k,Gk,Θ(t)) = Pr(zk = 1|Y k,Gk,Θ(t))

=
Pr(zk = 1|Θ(t)) · p(Y k|zk = 1,Gk,Θ(t))

p(Y k|Gk,Θ(t))

=
(1− π

(t)
0 )BF(t)

k

π
(t)
0 + (1− π

(t)
0 )BF(t)

k

,

(11)
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similarly,

E(zkskp|Y k,Gk,Θ(t)) =
(1− π

(t)
0 ) 1

mk
BF(t)

kp

π
(t)
0 + (1− π

(t)
0 )BF(t)

k

, (12)

E(zkskpckpjwkpm|Y ,G,Θ(t)) =
(1− π

(t)
0 ) 1

mk
η
(t)
j λ

(t)
m BFkpjm

π
(t)
0 + (1− π

(t)
0 )BF(t)

k

, (13)

where

BF(t)
k =

p(Y k|zk = 1,Gk,Θ(t))
p0

k

=
∑

p,j,m

1
mk

η
(t)
j λ(t)

m BFkpjm,
(14)

and

BF(t)
kp =

p(Y k|zk = 1, skp = 1,Gk,Θ)
p0

k

=
∑
j,m

η
(t)
j λ(t)

m BFkpjm,
(15)

In the M-step, we find a new set of estimates, Θ(n+1), by maximizing the conditional expectation
E

(
log p(Y ,z,S,C,W |G,Θ)|Y ,G,Θ(t)

)
. In this case, the simultaneous maximization can be performed

analytically. In particular,

π
(t+1)
0 =

1
g

g∑
k=1

π
(t)
0

π
(t)
0 + (1− π

(t)
0 )BF(t)

k

, (16)

η
(t+1)
j =

∑
k,p,m

γ
(t)
kp λ(t)

m BFkpjm

π
(t)
0 +(1−π

(t)
0 )BF

(t)
k

· η(t)
j∑

j′

( ∑
k,p,m

γ
(t)
kp λ

(t)
m BFkpj′m

π
(t)
0 +(1−π

(t)
0 )BF

(t)
k

· η(t)
j′

) , (17)

and

λ(t+1)
m =

∑
k,p,j

γ
(t)
kp η

(t)
j BFkpjm

π
(t)
0 +(1−π

(t)
0 )BF

(t)
k

· λ(t)
m∑

m′

( ∑
k,p,j

γ
(t)
kp η

(t)
j BFkpjm′

π
(t)
0 +(1−π

(t)
0 )BF

(t)
k

· λ(t)
m′

) . (18)

Typically, we initiate the EM algorithm by setting Θ(0) to some random values and running iterations
until some pre-defined convergence threshold is met (In practice, we monitor the increase of the the
log-likelihood function between successive iterations, and stop the iterations as the increment becomes
sufficiently small.).

We construct profile likelihood confidence intervals for estimated parameters. For example, a (1−α)%
profile likelihood confidence set for π0 is built as

{π0 : log p(Y |π0, η̂, λ̂,G) > log p(Y |π̂0, η̂, λ̂,G)− 1
2
Z2

(1−α)}, (19)

where π̂0, η̂, λ̂ are MLEs obtained from the EM algorithm.
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2 Supplements for the simulations

2.1 Simulate eQTL data via the proportion of variance explained

For a given gene-SNP pair at a time, we simulate data in S tissues according to a particular configuration.
In a given tissue s ∈ {1, . . . , S} for which the SNP is an eQTL (βs 6= 0), let’s define the proportion of
variance in phenotype explained by the genotype:

PV Es(βs, σs) =
V (Xβs)

V (Xβs) + σ2
s

When working with standardized effect sizes bs = βs/σs:

PV Es =
V (Xbs)

V (Xbs) + 1

As stated elsewhere ( [1]), we approximate the expectation of the PVE via a ratio of expectations, noted
h:

h =
E[V (Xbs)]

E[V (Xbs)] + 1

We assume that the genotypes are drawn from a Binomial distribution with parameters 2 and f ,
the minor allele frequency, so that E[V (X)] = 2f(1 − f). Moreover, as we assume bs|b̄ ∼ N(b̄, φ2) and
b̄ ∼ N(0, ω2), the marginal effect size is bs ∼ N(0, φ2 +ω2). We can hence approximate b2

s by its variance.
Therefore:

h =
(φ2 + ω2)× 2f(1− f)

(φ2 + ω2)× 2f(1− f) + 1

By fixing h (e.g. 20%) as well as the minor allele frequency (e.g. 30%), we obtain:

φ2 + ω2 =
h

(1− h)× 2f(1− f)

Now if we fix the heterogeneity in effect sizes (e.g. φ2/(φ2 + ω2) = 20%), we can deduce φ2 and then ω2.
We can hence draw b̄ and then each bs|b̄.

Once we have them, it is straightforward to simulate the phenotype of the ith individual in the sth

tissue:
yis = bsσsgi +N (0, σ2

s)

with σs being fixed at 1 for instance.

2.2 Implement the ANOVA/LR model in R

For each gene-SNP pair, the expression levels from all N individuals in all S tissues are recorded into a
vector y of length N × S. The genotypes are appropriately repeated S times into a vector xg, and the
tissue indicators are appropriately recorded into a vector xs. We can then use the ANOVA/LR model to
test if there is an effect of the genotype with the following commands:

m1 <- lm(y ~ xs)
m2 <- lm(y ~ xs * xg)
pval <- anova(m1, m2)[[6]][2]
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2.3 Calculate the empirical FDR from simulated eQTL data

For a simulated data set of G gene-SNP pairs, let zg be the test statistic of a given pair with g = 1, . . . , G.
For the tissue-by-tissue method, we take as test statistic the minimum p-value across tissues. For the
Bayesian method, the test statistic is the Bayes Factor. For the ANOVA/LR, the test statistic is the p-
value from the F test comparing the null model (tissue indicator only) with the unconstrained alternative
(tissue indicator, genotype and their interaction).

All gene-SNP pairs can be classified as in the following table ( [2]):

Called eQTL Not called Total
True null F G0 - F G0

True eQTL T G1 - T G1

Total S G - S G

As we simulate data, we know which pairs are true eQTLs. By fixing the empirical false discovery
rate (FDRe) at 5%, we can find the corresponding cutoff c on the test statistics, and from there calculate
the true positive rate (TPR) at this cutoff:

TPR(c) = T (c)/G1 with c such that FDRe(c) = F (c)/S(c) = 0.05.
The following algorithm describes how to iteratively find the cutoff c corresponding to the 5% empirical

FDR:

Data: test statistics z1, . . . , zG

if p-values then
sort in increasing order: z(1) ≤ . . . ≤ z(G)

else if Bayes Factors then
sort in decreasing order: z(1) ≥ . . . ≥ z(G)

foreach gene-SNP pair g ← 1 to G do
c← z(g)

s←number of called eQTLs at this cutoff c
f ←number of false positives among them
fdr ← f/s
if fdr ≥ 5% then

t←number of true positives among the called eQTLs
tpr ← t/s
exit

Between different methods, the empirical FDRs will always be 5% (or slightly higher) but the TPRs
and FPRs will be different, which allows us to compare the performance of the methods.

3 Supplements for the analysis of the Dimas et al. data set

3.1 Choice of the grid for the average effect size

The grid noted A in the Methods section of the main text corresponds to an expected (average) effect
size, but even one grid point would allow for a range of actual effect sizes (normally distributed, with the
specified variance); thus even large values of A allow for some effects that are very close to 0. Multiple
grid points are helpful to allow for a longer-tailed distribution of effects than a single normal. The most
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important thing is that the grid of A values is broad enough to covers the range of effect sizes detectable
in the data — results are relatively insensitive to the inclusion of a few grid points that are bigger or
smaller than can be detected, particularly in the hierarchical model where grid weights are estimated
from the data — so maybe best to err on the side of a grid spanning too large a range. The grid we
used reflects this, and was chosen to span (more than) the full range of effect sizes we think are plausibly
detectable; as a result it would probably be unnecessary to add more smaller values even in larger studies.

To illustrate, we simulated PVE values using our grid (with equal weight on each grid point), for
a SNP with frequency 20% (see R code below). The median simulated PVE was 0.017. The 5th and
95th percentiles were [8.7 × 10−5, 0.54], which we view as spanning a range of impossible-to-detect to
unrealistically large effects (see also supplementary figure S2). This range means that, for a SNP at
frequency 0.2, equal weight on this grid implies that 90% of eQTLS will explain between 8.7× 10−5 and
0.54 of the total variance in expression.

set.seed(100)
nb.eqtls <- 10000
sdbeta <- sample(c(0.1,0.2,0.4,0.8,1.6), nb.eqtls, replace=TRUE)
beta <- rnorm(nb.eqtls, sd=sdbeta)
f <- 0.2
vg <- beta^2 * 2*f*(1-f)
pve <- vg / (1+vg)
quantile(pve, probs=c(0.01,0.05,0.1,0.5,0.95))
hist(pve, xlim=c(0,0.2), breaks=1000)

3.2 Hierarchical model fed with Bayes Factors from residuals

First we computed the Bayes Factors for each combination of grid values and configurations, one gene-
SNP pair at a time. Second, for each gene, we regressed out the effect of its best SNP, and we recomputed
the Bayes Factors for the remaining SNPs using the residuals as phenotypes. Third, we launched the
hierarchical model with only the Bayes Factors obtained from the residuals.

If the “at most one eQTL per gene” assumption is reasonable for this data set, we would expect the
estimated π0 to be very high (meaning that the vast majority of genes have no eQTL), the lowest grid
value to have the highest probability (meaning that the effect sizes are very small), and the credible
intervals for the configurations to be very large (corresponding to high uncertainty).

This is indeed what we observe:
π0: 0.963 [0.946, 1.000]

Grid value (φ2, ω2) Posterior mean 95% credible interval
(0.01, 0.01) 0.930 [0.543, 1.000]
(0.01, 0.04) 0.070 [0.000, 0.459]
(0.01, 0.16) 0.000 [0.000, 0.107]
(0.01, 0.64) 0.000 [0.000, 0.036]
(0.01, 2.56) 0.000 [0.000, 0.019]
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Configuration Posterior mean 95% credible interval
100 0.316 [0.000, 1.000]
010 0.330 [0.000, 1.000]
001 0.027 [0.000, 0.535]
110 0.250 [0.000, 1.000]
101 0.020 [0.000, 0.442]
011 0.029 [0.000, 0.535]
111 0.028 [0.000, 0.400]

3.3 Configuration proportions from all genes without removing expression
PCs

Similarly to what was done in the first analysis of this data set ( [3]), we also analyzed the data set
comprising all 12,046 genes, i.e. without pre-selecting genes robustly expressed in all three tissues, and
without removing expression PCs. Here are the configuration proportions estimated by the EM algorithm:

Configuration Hierarchical model
F-L-T 0.793 [0.722, 0.878]
L-T 0.071 [0.030, 0.129]
F-L 0.000 [0.000, 0.015]
F-T 0.000 [0.000, 0.015]
F 0.052 [0.000, 0.109]
L 0.058 [0.016, 0.115]
T 0.025 [0.000, 0.068]

They are thus qualitatively similar to those obtained on the subset of genes robustly expressed in all
three tissues and after having removed PCs (table 1 of the main text).

3.4 Running times

After our preprocessing, the data set from Dimas et al. totalizes 5012 genes and 418,477 SNPs. Focusing
on the cis region ± 1 Mb around the transcription start site of each gene yields 1,436,869 gene-SNP pairs
to test for association.

The first step of our approach is to compute the Bayes Factors for all configurations and grid values.
As each gene-SNP pair can be analyzed in parallel, we splitted the genes in 101 batches (i.e. ≈ 50 genes
per batch). Our first program, eqtlbma, spent a total of 36 minutes to calculate all Bayes Factors. The
second step then uses all Bayes Factors when fitting the hierarchical model via an EM algorithm. On
this data set, our second program, hm, ran in 2 hours.

The eqtlbma program can also perform permutations per gene. Each job ran in less than 8 hours
when BFBMA is the test statistic, and in less than 6 hours when BFBMAlite is the test statistic. In this case
(3 tissues), BFBMA is averaged over 7 configurations whereas BFBMAlite is averaged over 4 configurations.
This small difference between the number of configurations over which each test statistic is averaged over
explains why the running time is only 25% less with BFBMAlite compare to BFBMA, but the gain will
increase with the number of tissues.

Both programs are written in C++. The eqtlbma measures running times using the CLOCKS_PER_SEC
macro from the C library. For the hm program, we measured running time as the duration between the
time at which the execution started and at which it ended.
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