Figure S1. Isolation and purity validation of type A spermatogonia (SG-A), pachytene spermatocytes (pacSC), round spermatids (rST), and elongated spermatids (eST). (A) Phase contrast photos of isolated. Scale bar: 10 μm. (B, C) The purity of the four types of cells were validated by the unique expression patterns of proteins (B) and mRNAs (C) of two panels of germ cell marker genes detected by Western blots (B) and RT-PCRs (C). Names of the genes and the references (PMIDs) about their expression in the male germ cells are as the following: Plzf, promyelocytic leukemia zinc finger, 15156142, 15156143; Ret, ret proto-oncogene, 16237148; Soggy1, also named Dkk11, dickkopf-like 1, 19596310; Sycp1, synaptonemal complex protein 1, 22761579, 15944401; Crem, cAMP responsive element modulator, 19910458, 20920259; Sohlh1, spermatogenesis and oogenesis specific basic helix-loop-helix 1, 22056784; Usp26, ubiquitin specific peptidase 26, 19305411; Miwi, piwi-like homolog 1, 12062093; Prm2, protamine 2, 11326282; Gapdhs, glyceraldehyde-3-phosphate dehydrogenase, spermatogenic, 15546993.

Figure S2. Scatter plots of protein data from two biologically independent iTRAQ experiments. Ratios of iTRAQ signals from one experiment were plotted against rations from the second experiment for pacSC (115/114), rST (116/114), and eST (117/114) with SG-A as reference (114). The 2008 quantitated proteins in the two iTRAQ experiments were plotted. The best-fit lines of the three cell types were shown. Note that the three scatter plots fit to the line y = x with R-square values (R²) being 0.82, 0.89, and 0.89, respectively, indicating that our proteomic approach was highly reproducible.

Figure S3. Determination of cut-off values for protein level change based on the distribution of the 114/115 ratio of the same protein sample. (A) The experiment design shown by a flowchart. (B) Histogram of the distribution of protein change values, *i.e.*, the 115/114 ratios.

Figure. S4. Distributions of ratio_{mp} at the pacSC/SG-A (A) and rST/pacSC (B) transitions as well as the null distribution. The null distribution is constructed by using mRNA and protein expression values of two biological replicates of pacSC and rST (1784 genes x 2 cell types to give 3568 entries). As the percentages of genes with ratio_mp <= 0.5 and ratio_mp >= 2 are 3% and 4%,

respectively, we regard that the false positive rates of these two groups of genes in the real distributions are all less than 5%.

Figure S5. Schematic representation of the spliceosome pathways of the mouse. Proteins involved in these pathways that were identified from our quantitative proteomic analysis were colored. Red for Cluster 1 proteins, and yellow for Cluster 2 proteins. Green labeled other proteins that were not identified by us but were recognized by the KEGG database.

Figure S6. Box plots of the protein and mRNA expression levels of five representative gene sets. Detailed information for these sets can be found in Fig. 2C.

Table S1. Sources and dilutions of the antibodies used for immunostainings.

Antibody	Company	Dilution
α-LDHC	ProSci	1:1000
α-CLGN	PROTEINTECH	1:1000
a-SOD1	PROTEINTECH	1:1000
α-FTH1	Cell Signaling	1:1000
α-PLZF	Merck-Calbiochem	1:1000
α -RET	Santa Cruz	1:1000
a-SYCP1	Novus Biologicals	1:1000
α-CREM	Santa Cruz	1:1000
α -SOGGY1	Santa Cruz	1:1000
α-ACTB	Santa Cruz	1:3000

Table S2. Oligonucleotide primers used for RT-PCR analysis.

Genes	For sense transcripts		For antisense transcripts	
	Forward	Reverse	Forward	Reverse

	TGACAACGCGCTCTGGC	TGCCTCAGTTTGATG		
Sohlh1	G	GCC		
Gapdhs	TAGGGTGGTAGCAGTG	GATGAAATATGTGCC		
	AATGA	GAAGC		
Miwi		AGGCCACTGCTGTCA		
	ATGATCGTGGGCATC	ТА		
Prm2	ATGGTTCGCTACCGAAT	TGATGGTGCCTCCTA		
	GA	CATTTC		
4 (D	CAGCCTTCCTTCTTGGG	TGGCATAGAGGTCTT		
ActB	TAT	TACGG		
	AATGTAACGAAGGGAG	AGGCTTTGCCTTCTTA		
Usp26	AAGTG	TCGAG		
* "	TGCCCTTGTTGACGCTG	TCCACTGGGTTAGTG	GTCGAAGGTGGCGAG	GCCAGGGAACTGATGG
Ldhc	ATA	ACGATA	TTTAT	TATG
Adam5	ACTTACTGGCATTTGAG	CGTCATTAGGCAAAC	GCTGTGGGGTTGGGTT	GCCCTTACTTGTGATGA
	GAG	TTCTC	GTTTT	TTT
Spa17	GAAGGGCTGACACGGG	TGTTCCTTGAATGCGT	CGGAAGAGGGACTGG	CAACCACGCATTCAAG
	AGATT	GGTTG	ATTTT	GAAC
T. 11	TGTTCCTCAAGTGCTGC	CCTGCTGGTTGTGAT	AGGAATCCTTGAGAC	AACACTCCGTCCAGTTT
Tcp11	TTTG	GGGT	AGCACC	GAGC
Cl	AGTCTAAAGCCAAGCA	CACCTCCACAATCAA	CCAAAAGAAAGATAG	ACTGAAGTCATTGCGG
Cign	CCACG	TACCATCT	AAAGAAG	AAGA
D 11.2	GAGCACCCGTGGAAGC	CAATAACAAGAGGCA	CTGCGATCCCAACAA	AGGGTGGAAGTGGAAG
Dnajb3	AGAAG	CCGACAT	TAACAAG	AAGATG
FI-14	GCAGAAGGATGGAGCC	CAGGCAACAAAGGTC	TCAGGGAAGTAGGAG	AAAAGTGACAAACTAA
Fn14	AACTA	TCAGTAG	GTGGTA	ATGGGTGG
Ch2	TCCAATGAGCATCCTCC	TAGCCAGCGAATAAC	CTCATGGGTTCCTGTA	GAGCAAGATGTGTCTC
GK2	CAAAT	AGCACC	AGCAAG	AACTGC
Pcdl2	ATAGCTGCATTGAACAC	CTTGAGATTTATCCCT	GGTTTTCTTCCAAGTC	GTGAATAGCTGCATTG
	TACCA	CCACA	ACTCTG	AACACT
Fabp9	TCTTAGGCACCTGGAAA	GGCTTTATTAAACAT	CTAGCCACCTATTTCC	CCAAGCGTTAGTATTA
	CTGA	GCGACTT	CTCA	GTTTCA
Eth 1	CGCCAGAACTACCACCA	AGAGCCACATCATCT		
Fth1	GGAC	CGGTCA	-	-
Sod1	CGTCCGTCGGCTTCTCG	GTCACATTGCCCAGG		
	TCTT	TCTCCA	-	-
Fth1	TCTCTATAAGACGGTAC	qiagen miScript Universal		
piRNA1	GGTCGAAGT	Primer	-	-
Fth1	GGTGTAGTAGAGCCAGT	qiagen miScript Universal	_	_
piRNA2	TTTATTG	Primer		

Sod1	GTGGCAGGAAAGGTCG	qiagen miScript Universal
piRNA1	TCAGT	Primer
Sod1	CGGGTTCAGTAGAACA	qiagen miScript Universal
piRNA2	AAGAGT	Primer

Table S3. Proteins and related peptides identified from the iTRAQ analysis.

Table S4. A list of proteins identified in mouse male germ cells. These proteins were filtered out from the list of proteins in Table S3 by using criteria described in the text.

Table S5. Enriched functional annotation terms of the five clusters of proteins identified from four types of germ cells by using the iTRAQ analysis. The annotations were based on the KEGG and DAVID (Cellular Component, Biological Process) databases

Table S6. Top five enriched GO terms, percentages of PRMRs and antisense transcripts associated with genes of 15 (sub-) sets defined in Fig. 2C.

Table S7. The association of the five clusters of proteins identified from iTRAQ analysis with the (sub-) sets of genes using different regulatory mechanisms. Each cell defined by the intersection of a cluster and a set was split into two sub-cells, with the top one indicating the subsets of genes and the bottom one indicating the numbers of proteins/genes in each subset.

Figure_S1

pacSC

А

SG-A

rST

First iTRAQ experiment ratio (log₂)

(c) Kanehisa Laboratories

