Table S1. Primers used in this study
1

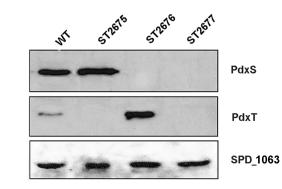
Primer ^a	Oligo sequence $(5' \text{ to } 3')^b$	Purpose ^c
Mutagenes		
Pr1097	gaga <u>tctaga</u> accgtttgatttttaatggataatg	Janus cassette For
Pr1098	gaga <u>ctcgag</u> cctttccttatgcttttggac	Janus cassette Rev
Pr1836	gagagtcgacaccgtttgatttttaatggataatg	Janus cassette For
Pr1837	gaga <u>ccatgg</u> cctttccttatgcttttggac	Janus cassette Rev
Pr2841	actacatcacaatggctgcc	<i>pdxT</i> upstream For
Pr2842	aaa <u>tetaga</u> cegatttteatetattttee	pdxT upstream Rev
Pr2843	aaa <u>ctcgag</u> ttgagattgaatttctcaac	<i>pdxT</i> downstream For
Pr2844	accaggttttgctctatgtc	<i>pdxT</i> downstream Rev
Pr2845	gaagcetttgaacgtettgg	<i>pdxS</i> upstream For
Pr2846	aaatctagacaccacccttgagcatctg	<i>pdxS</i> upstream Rev
Pr2847	aaactcgagtattaatgaaaatgaaatcc	<i>pdxS</i> downstream For
Pr2848	tggcctatggttcgacccac	<i>pdxS</i> downstream Rev
Pr2919	gcggatgatcttgcaagagggcaat	<i>pdxR</i> upstream For
Pr2920	cgcggtcgacacggatagaaggcaggcgactac	<i>pdxR</i> upstream Rev
Pr2921	cgcg <u>ccatgg</u> cacagtcaactgggcttgga	<i>pdxR</i> downstream For
Pr2922	aacacttgacaagtaacttggatat	<i>pdxR</i> downstream Rev
Compleme	ntation	
Pr2967	tttt <u>gtcgac</u> aactacatcacaatggctgc	<i>pdxS</i> promoter and ORF For
Pr2838	cggggatccgttctgcaaaggccccttgc	pdxS promoter and ORF Rev
Pr2968	tttt <u>gtcgac</u> ataaaggccagccatcaagg	<i>pdxR</i> promoter and ORF For
Pr2969	cgc <u>ggatcc</u> gcagagttggatgtcattcc	<i>pdxR</i> promoter and ORF Rev
Overexpre	ssion	
Pr2862	cgcg <u>gctagc</u> atgactgaaaatcgttatga	<i>pdxS</i> ORF For
Pr2863	cgcgggatccttgcaaggccaatattcc	<i>pdxS</i> ORF Rev
Pr2864	cgcg <u>catatg</u> aaaatcggaatattggc	<i>pdxT</i> ORF For
Pr2865	cgcg <u>ggatcc</u> aatacatcgctattgttta	<i>pdxT</i> ORF Rev
Pr2917	cgcg <u>ccatgg</u> agaaacaaagcaagtacaaagag	<i>pdxR</i> ORF For
Pr2918	cgcg <u>aagctt</u> ttccaattctgcttttaaatagtttaaaaca	<i>pdxR</i> ORF Rev
Heterogene	eous expression in <i>E. coli</i> mutant	
JY161	cgcaatattaaaagttaaccettcgacce	<i>E. coli crp</i> promoter For
JY170	cgggctagcggtacctctagacatgcgcggttatcctctg	<i>E. coli crp</i> promoter Rev
Pr2835	cgg <u>gaattc</u> atgaaaatcggaatattggc	<i>pdxT</i> ORF For
Pr2854	cgggctagcaagttgagaaattcaatctc	<i>pdxT</i> ORF Rev
Pr2855	cggtctagaatgactgaaaatcgttatg	<i>pdxS</i> ORF For
Pr2838	cggggatccgttctgcaaaggccccttgc	<i>pdxS</i> ORF Rev
Northern b	lot	
Pr2926	cttagccattactggaatactaac	<i>pdxS</i> probe
Pr2782	actttccactctcacactcg	16S rRNA probe

^bThe restriction site is underlined if presents in an oligo.

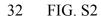
^cTwo pairs of primers flanking the Janus cassette were used for combination of different restriction sites. For, forward primer; Rev, reverse primer.

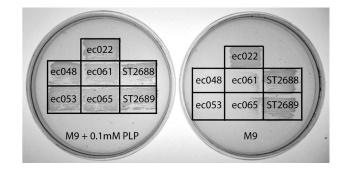
6 FIGURE LEGENDS

Figure S1. Western blot analyses to verify the deletion of pdxT and pdxS. WT (D39) and its derivatives, including $\Delta pdxT$ (ST2675), $\Delta pdxS$ (ST2676) and $\Delta pdxST$ (ST2677), were initially grown in complete CDM and then incubated for 4 h in depleted CDM. The protein samples were analyzed with the indicated antibodies (right side). Blotting with antibody against SPD_1063 was served as a loading control.


Figure S2. Growth of bacterial strains on M9 plates in the presence or absence of 0.1 mM PLP. ec022 is the *E. coli* WT strain. ec048 and ec053 are *E. coli* $\Delta pdxA$ and $\Delta pdxJ$, respectively. ST2688 and ST2689 express pneumococcal pdxS in $\Delta pdxA$ and $\Delta pdxJ$, respectively. Strains ec061 and ec065 contain the control vector in $\Delta pdxA$ and $\Delta pdxJ$, respectively. Images of plates were taken after incubation for 18 h at 37 °C

17 Figure S3. (A) Putative GntR family proteins in S. pneumoniae. All these proteins have a 18 wHTH motif as a signature of GntR family proteins. Three proteins have an UbiC transcription 19 regulator-associated (UTRA) domain. SPD 1225 has an AAT domain. (B) Verification of 20 deletion and complementation of pdxS and pdxR, respectively, using PCR. Internal primers of 21 *pdxR* and *pdxS* were used for PCR. Bacterial DNA samples isolated from the indicated strains, 22 including WT (D39), ST2726 ($\Delta pdxR$), ST2786 ($\Delta pdxR/pdxR$ +), ST2787 ($\Delta pdxR/vector$ control), 23 ST2676 ($\Delta pdxS$), ST2784 ($\Delta pdxS/pdxS$ +) and ST2785 ($\Delta pdxS/vector$ control), were used as 24 templates.


Figure S4. Growth curve of ST2676 (A) and ST2726 (B) in complete CDM. The bacterial strains tested include WT (D39), ST2676 ($\Delta pdxS$), ST2784 ($\Delta pdxS/pdxS$ +) and ST2785 ($\Delta pdxS/vector$ control), ST2726 ($\Delta pdxR$), ST2786 ($\Delta pdxR/pdxR$ +), ST2787 ($\Delta pdxR/vector$


- 28 control). The bacterial growth was monitored hourly at OD_{620} . Data shown are the means of
- 29 three repeat experiments. Error bars denote SEM.

30 FIG. S1

