Regulation of Iron Metabolism by *Pyrococcus furiosus*

Yixuan Zhu^{1,2}, Sunil Kumar^{2,3}, Angeli L. Menon², Robert A. Scott^{1,2} and

Michael W. W. Adams^{2*}

Departments of ¹Chemistry and ²Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA

Present Addresses: ³Department of Chemistry, School of Basic Sciences, Jaipur National University, Jaipur 302025, RJ, India

Supplementary Material

Tables S1-S3

Figure S1-S7

ORF	Description	COM1c2 log ₂ ± SD	COM1c2 Fold change	$\Delta DTXR \\ log_2 \pm SD$	∆DTXR Fold Change	
PF0685	conserved hypothetical protein	1.2 ± 0.1	2.2	1.2 ± 0.4	2.3	
PF0686	hypothetical protein	0.6 ± 0.2	1.5	0.9 ± 0.4	1.9	
PF0687	Transcription factor B-2	1.0 ± 0.2	2.0	1.1 ± 0.4	2.2	
PF0692	Prismane	1.1 ± 0.1	2.1	1.7 ± 0.3	3.2	
PF0694	flavoprotein	0.4 ± 0.4	1.3	0.9 ± 0.8	1.8	
PF0695	hypothetical protein	1.0 ± 0.2	2.0	1.8 ± 0.6	3.5	
PF0696	carbohydrate-binding protein	0.5 ± 0.2	1.4	0.6 ± 0.9	1.5	
[†] PF0723	Ftr1 iron permease	1.6 ± 0.2	3.1	0.8 ± 0.3	1.7	
PF0728	hypothetical protein	1.1 ± 0.4	2.1	1.2 ± 0.4	2.3	
PF0729	multi domain protein	0.3 ± 0.7	1.2	1.1 ± 0.5	2.1	
Putative f	errous transporter					
[†] PF0857	ferrous iron transport protein B	1.0 ± 0.0	2.0	-0.1 ± 0.1	1.0	
PF0858	conserved hypothetical	0.3 ± 0.3	1.2	-0.3 ± 0.3	1.2	
Branched	amino acids biosynthesis					
PF0934	hypothetical	1.8 ± 0.3	3.6	1.0 ± 0.5	1.9	
PF0935	acetolactate synthase	2.2 ± 0.6	4.6	1.7 ± 0.4	3.3	
PF0936	ketol-acid reductoisomerase	2.5 ± 0.6	5.5	1.8 ± 0.4	3.4	
PF0937	2-isopropylmalate synthase	2.3 ± 0.5	4.9	1.7 ± 0.3	3.3	
PF0938	3-isopropyl malate dehydratase II	2.2 ± 0.5	4.7	1.7 ± 0.4	3.3	
PF0939	putative 3-isopropylmalate dehvdratase	1.9 ± 0.5	3.8	1.4 ± 0.3	2.7	
PF0940	probable isocitrate dehydrogenase	2.4 ± 0.5	5.3	1.5 ± 0.4	2.8	
PF0941	alpha-isopropylmalate synthase	2.5 ± 0.5	5.5	1.7 ± 0.2	3.3	
PF0942	dihydroxy-acid dehydratase	2.4 ± 0.5	5.2	1.5 ± 0.2	2.8	
Putative r	bhosphate transporter					
[†] PF1020	probable phosphate transport protein	1.6 ± 0.4	3.1	0.0 ± 0.5	1.0	
[†] PF1021	conserved hypothetical protein	1.4 ± 0.3	2.7	0.1 ± 0.3	1.1	

Table S1. ORFs whose expression is >2-fold up-regulated under iron-limitedconditions and their potential operon arrangement.

[†] PF1085	acetyl-CoA synthetase Q3 alpha	1.8 ± 0.2	3.5	0.6 ± 0.1	1.5
[†] PF1085.1	hypothetical	1.8 ± 0.4	3.4	0.1 ± 0.3	1.1
PF1404	proteasome, subunit beta	1.0 ± 0.4	2.0	0.8 ± 0.3	1.7
PF1405	polyadenylation specifity factor	1.4 ± 0.5	2.7	1.0 ± 0.3	2.1
PF1406	probable threonine synthase	1.0 ± 0.5	2.0	0.9 ± 0.3	1.9
PF1616	myo-inositol-1-phosphate	1.2 ± 0.2	2.3	0.8 ± 0.3	1.7
	synthetase				
Histidine b	biosynthesis				
PF1657	histidyl-tRNA synthetase	1.1 ± 0.6	2.2	0.7 ± 0.3	1.6
PF1658	ATP phosphoribosyltransferase	0.9 ± 0.6	1.8	0.5 ± 0.3	1.4
PF1659	histidinol dehydrogenase	1.0 ± 0.5	2.0	0.7 ± 0.2	1.6
PF1660	imidazoleglycerolphosphatedeh ydratase	0.8 ± 0.6	1.8	0.7 ± 0.3	1.6
PF1661	glutamine amidotransferase	0.8 ± 0.5	1.7	0.5 ± 0.3	1.4
PF1662	HisA	1.1 ± 0.4	2.1	0.5 ± 0.3	1.4
PF1663	imidazoleglycerol-phosphate synthase	0.7 ± 0.4	1.7	0.4 ± 0.2	1.4
PF1664	phosphoribosyl-AMP cyclohydrolase	1.3 ± 0.4	2.5	0.6 ± 0.2	1.5
PF1665	histidinol-phosphate aminotransferase	1.0 ± 0.4	2.0	0.4 ± 0.2	1.3
PF1666	conserved hypothetical protein	1.0 ± 0.3	2.0	0.4 ± 0.2	1.3
PF1898	conserved hypothetical protein	1.2 ± 0.3	2.3	0.8 ± 0.3	1.7
[†] PF1951	Archaeal asparagine synthetase	1.1 ± 0.2	2.1	-0.1 ± 0.2	1.1

^{*a*} The ORF description is derived from the annotation in NCBI and TIGR databases. Potential operons are indicated by bold entries within a group where the intergenic distances are less than 30 nt.

^b Description derived from NCBI database.

^c The intensity ratio (-Fe/+Fe) is expressed as a log₂ value so that the standard deviation can be given. For comparison between ORFs, the apparent change in the expression level is also indicated. ORFs are listed that are more than twofold regulated or that are potentially part of an operon with twofold-regulated ORFs but which themselves are regulated by at least twofold.

^d Calculated from the average \log_2 intensity ratio.

[†]Genes significantly differentially regulated in COM1c2 and Δ DTXR.

COM1c2 ΔDTXR COM1c2 **DTXR ORF**^{*a*} **Description**^b Fold Fold $\log_2 \pm SD^c$ $\log_2 \pm SD^c$ Change^d Change^d **Putative peptide transporter PF0191** peptide transporter -0.8 ± 0.5 1.8 -0.6 ± 0.4 1.5 **PF0192** oligopeptide transport -1.3 ± 0.5 2.5 -1.1 ± 0.2 2.2 **PF0193** putative ABC transport -1.1 ± 0.6 2.1 -1.0 ± 0.2 2.0 **PF0194** dipeptide ABC transporter -1.2 ± 0.6 2.2 -1.1 ± 0.4 2.1 **PF0195** conserved hypothetical protein -0.7 ± 0.4 1.7 -0.8 ± 0.3 1.7 glucose-6-phosphate **PF0196** isomerase -0.4 ± 0.1 1.3 -0.3 ± 0.3 1.2 PF0341 conserved hypothetical protein -1.0 ± 0.5 2.0 -0.7 ± 0.9 1.6 [†]PF0346 aldehvde ferredoxin oxidoreductase -1.6 ± 0.4 3.0 -0.9 ± 0.3 1.8 **Putative cobalt transporter PF0528** cobalt transport protein -0.8 ± 0.3 1.7 0.2 ± 0.2 1.1 **PF0529** conserved hypothetical protein -0.5 ± 0.3 1.4 0.2 ± 0.2 1.1 **PF0530** conserved hypothetical protein -0.8 ± 0.3 1.7 0.0 ± 0.3 1.0 [†]PF0531 cobalamin biosynthesis protein -1.0 ± 0.5 2.0 0.0 ± 0.2 1.0 PF0678 conserved hypothetical -1.0 ± 0.4 2.0 -0.5 ± 0.2 1.4 PF1032 cys rich ORF -1.2 ± 0.6 2.3 -0.7 ± 0.3 1.6 PF1033 4.0 peroxiredoxin -2.1 ± 0.4 4.3 -2.0 ± 0.4 molybdopterin oxidoreductase 2.0 **PF1242** -1.2 ± 0.1 2.2 -1.0 ± 0.3 **PF1243** conserved hypothetical -1.0 ± 0.3 -0.7 ± 0.4 2.0 1.7 **PF1244** Hypothetical -1.0 ± 0.2 1.9 -0.8 ± 0.4 1.8 PF1890 conserved hypothetical protein -1.1 ± 0.1 2.1 -0.4 ± 0.3 1.4 **Putative sugar transporter** putative sugar transport **PF1936** protein -1.2 ± 0.5 2.3 -1.2 ± 0.5 2.2 putative sugar transport **PF1937** protein -1.3 ± 0.4 2.4 -1.1 ± 0.5 2.2

Table S2. ORFs whose expression is > 2-fold down-regulated under iron-limited conditions and their potential operon arrangement.

^{*a*} The ORF description is derived either from the annotation in NCBI or TIGR databases. Potential operons are indicated by bold entries within a group where the intergenic distances are less than 30 nt.

^b Description derived from NCBI database.

^c The intensity ratio (-Fe/+Fe) is expressed as a \log_2 value so that the standard deviation can be given. For comparison between ORFs, the apparent change in the expression level is also indicated. ORFs are listed that are more than twofold regulated or that are potentially part of an operon with twofold-regulated ORFs but which themselves are not regulated by at least twofold. ^d Calculated from the average \log_2 intensity ratio.

[†]Genes significantly differentially regulated in COM1c2 and Δ DTXR.

Locus ^a	Name	Annotation ^b	TK homolog ^c					
Ferrous T	ransport	ers						
PF0723*	ftr1	Iron permease FTR1 family	-					
PF0857*	feoB	ferrous iron transport protein b	TK0714/TK0957					
PF0858	feoA	hypothetical protein	TK0715/TK0958					
ABC-type Transporters								
PF0502		iron(III) dicitrate transport system permease	TK2208					
PF0503		putative iron ABC transporter	TK2209					
PF0909		ferric enterobactin transport ATP-binding protein	TK0708/TK2020					
PF0910		iron (III) ABC transporter, permease protein	TK0707/TK2019					
PF0911		iron (III) ABC transporter	TK0706/TK2018					
PF1774		iron III ABC transporter, ATP-binding protein	TK0865/TK0706/ TK2018					

 Table S3. Pyrococcus furiosus ORFs potentially involved in iron transport.

^a Adjacent genes in bold are predicted to be in the same operon.
^b Annotation based on TIGR and NCBI databases.
^c Homologs in *Thermococcus kodakarensis* found using BLAST.
*Genes significantly up-regulated in COM1c2 iron-limitation microarray.

Figure S1. Effect of iron on the growth of *P. furiosus.* Cells were grown under standard conditions on maltose except that the concentration of iron added to the medium was varied as indicated. Cultures were harvested at the end of the exponential growth phase and growth was determined by the amount of cellular protein. Typical growth curves are shown in Figure S2.

Figure S2. Characterization of the Δ FUR strain. (a) Growth of Δ FUR and COM1 in iron-sufficient and iron-limited conditions. Growth was monitored by assaying total cell protein at each time point. Results are shown for COM1 (circle), Δ FUR (triangle) in ironsufficient (closed) and iron-limited (open) conditions. (b) The effect of iron on the transcription of genes annotated as iron transporters in Δ FUR was measured using quantitative PCR. Total RNA was prepared from Δ FUR and COM1 grown in ironsufficient and iron-limited conditions. The constitutively expressed gene encoding the pyruvate ferredoxin oxidoreductase (POR) gamma subunit (PF0971) was used as internal control. Shown is the ratio of change in gene expression in response to iron limitation in COM1 (closed bar) and Δ FUR (open bar). The asterisk indicates qPCR confirmation of the deleted *fur* gene product in Δ FUR.

b

Figure S3. DtxR protein sequence comparisons. Protein sequence alignment of DtxRs (first ~60-bp in the N-terminus) in Thermococcaceae family species. Ton, *T. onnurineus*; Tk, *T. kadakarensis*; Tgam, *T. gammatolerans*; Termp, *T. barophilus*; Tsib, *T. sibiricus*; Ph, *P. horikoshii*; Pab, *P. abysii*; Pf, *P. furiosus*. Pf0851 indicates the *P. furiosus* DtxR sequence predicted by NCBI and TIGR; Pf0851+ indicates the corrected protein sequence with the extra 12 amino acids at the N-terminus. The first methionine (M) in Pf0851+ is encoded by TTG instead of ATG. Same amino acids in protein sequences are marked by asterisks, similar amino acids are marked by colons (strong similarity) and dots (family similarity). (b) Protein sequence. Metal-binding residues characterized in *B. subtilis* MntR (10) and the homologous residues in *P. furiosus* DtxR is underlined. Sequence alignment generated using ClustalW2.

a

Ton1956 Tk0107 Tgam0472 Termp0160 Tsib0121 Ph1163 Pab0714 Pf0851 Pf0851+	MEISKREEEYLETIYILHKNKGIIRVKDIAKMMRVKPPSVVDALKKLNEKGLVEYEKYDR MEVTKREEEYLETMYILHKNKGVIRVKDIAKALNVRPPSVVDALKKLAEKGLIEYEKYDR MQVSKREEEYLETMYLLYKSKGIIRVKDIAKRMNVKPPSVIDALKKLSSKGLVEYEKYDR MEISKREEEYLEAMYLLYKRKGIIRIKDIAKKLRVRPPSVVDALKKLSEKGLVEYEKYDR -MVSKREEEYLEVIYLLQKNKGVIRVKDISKRLGIRPSVVDALKKLSEKGFVEYEKYDR -MVSKREEEYLEVMYLLQKNKGVIRVKDIAKILKVKPPSVVDALKKLSKKGLVEYEKHDR -MVSKREEEYLEVMYLLQKNKGVIRVKDIARVLKVKPSVVDALKKLSKKGLIEYEKYDR 	60 60 60 60 59 59 47 59
b		
BsMntR PfDtxR	MTTPSME D YI E QIYMLIEEKGYARVSDIAEALAVHPSSVTKMVQKLDKDEYLIYEKYRGLVLTSK MPSKREE E YL E TMYILQKNKGVIRVKDIAKMMRVKPPTVVEALKKLRDKGFVKYEEHEHILLTEK *.: *:*:* :*:* ::** **.***: : *:*.:*: ::** :: ***:. ::**	GKKIGK GLEVAK * ::.*
BsMntR PfDtxR	RLVYR H ELL- E QFLRIIGVDEEKIYNDV E GI EH HLSWNSIDRIGDLVQYFEEDDARKKDLKSI KTYSK H QLLT E FFINILGIPPEIAERDA C QF EH YVSEVTVHRIREFISYIQQECPYALKQFLKKV	QKKTEH REKDQA

:	:*:**	*	*:.	*:*:	*	•*•	:**::*	::.**	:::.*:::	*	*:	**.:::*	:

BsMntR HNQ PfDtxR VAK

:

Figure S4. Electrophoretic Mobility Shift Assay results of recombinant t-DtxR and Fur with the putative promoter of *feoAB*. 100 nM promoter DNA (P_{ORF} , putative promoter region, which is the -200 to +50 bp sequence relative to the translation start site of the corresponding ORF) was incubated with truncated DtxR (t-DtxR) and Fur. Protein/Nucleic acid (P/N) ratios are listed above each lane.

Figure S5. Electrophoretic Mobility Shift Assay results of recombinant DtxR and Fur with the putative promoters of *ftr1*, *feoAB* and *pf0849*. 100 nM promoter DNA (P_{ORF} , putative promoter region, which is the -200 to +50 bp sequence relative to the translation start site of the corresponding ORF) was incubated with full-length DtxR (lane 1-5) and with heparin added from 0.2 to 2000 ng/µL as a protein-binding competitor (lane 6-10). PF0849 promoter was used as a negative control. Protein/Nucleic acid (P/N) ratios are listed above each lane.

Figure S6. Transcription of annotated iron transporters in Δ FTR1 in response to iron. The effect of iron on the transcription of genes annotated as iron transporters in Δ FTR1 was measured using quantitative PCR. Total RNA was prepared from Δ FTR1 and COM1 grown in iron-sufficient and iron-limited conditions. The constitutively expressed gene encoding the pyruvate ferredoxin oxidoreductase (POR) gamma subunit (PF0971) was used as an internal control. Shown is the ratio of change in gene expression in response to iron limitation in COM1 (closed bar) and Δ FTR1 (open bar). The asterisk indicates qPCR confirmation of the deleted *ftr1* gene product in Δ FTR1.

Figure S7. Schematic depiction of the role of DtxR in regulation of gene transcription in *P. furiosus*. DtxR represses the transcription of *ftr1* and *feoAB* in the presence of iron; it also represses the transcription of AOR and the putative cobalt transporter PF0528-PF0531 indirectly (dashed arrow) in the absence of iron.

Indirect Fe-free Repression for AOR and PF0528-PF0531