**Table S1**. Oligonucleotides used in this study

| CC132  | GACGTAACTCGTTACCGTGAGT                                                                                                               |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|
| CC133  | TTTGACGCCGTGACAGTCACCGTAT                                                                                                            |
| CC175  | atatggatccGCGATTAAAGAAGCGAGCGGAGACCTC                                                                                                |
| CC546  | ATTTATATCATATGTACGAGTTTAAAGATTATTATCAGAATACTG                                                                                        |
| CC768  | GCGCTGATAGACGGAAAACTG                                                                                                                |
| CC770  | GACTGCTAGTTCTTTGCCGTTTGC                                                                                                             |
| CC772  | CTTGTTACTAGTTAAGCAACAACCAAGTTCATAGC                                                                                                  |
| CC773  | CTTGTTGGATCCCTTGAAAATTCCTTGCCGTC                                                                                                     |
| CC1010 | GGTTTTAGTCCACTCTCAACTCCTGATC                                                                                                         |
| CC1090 | CCACGAAAAGTCTTCCTCAATCTCCGTATACTATTTG                                                                                                |
| CC1091 | GGAGGGACTGGCTAATGCTGCGTAAATTAAG                                                                                                      |
| CC1092 | ccgaagtatttttttcactttattaatttgttcgtatgtat                                                                                            |
| CC1093 | CGAAAATTTTAAAGTATTGGAGTTATGAGCGGT at gaata catac gaacaa at taataa ag tgaa aa aa aa aa tacttcgg aa a |
| CC1094 | ctatttaaataacagattaaaaaaattataaCATTATGGAGGTTTAAAAAAAGAGGCACTCCCTAAG                                                                  |
| CC1095 |                                                                                                                                      |
| CC1096 | GGATTCAAGAGCGGAGCGATTGCCACAACC                                                                                                       |
| CC1114 | CAATTCCGGTGATATTCTCATTTTAGCcatACCGCTCATAACTCCAATACTTTAAAATTTTCG                                                                      |
| CC1115 | CGAAAATTTTAAAGTATTGGAGTTATGAGCGGTatgGCTAAAATGAGAATATCACCGGAATTG                                                                      |
| CC1116 | TAAAATATTATATTTTACTGGATGAATTGTTTtagCATTATGGAGGTTTAAAAAAAGAGGCACTCCCTAAG                                                              |
| CC1117 | CTTAGGGAGTGCCTCTTTTTTAAACCTCCATAATGetaAAACAATTCATCCAGTAAAATATAATATTTTA                                                               |
| HP279  | GCATCGGCATAACCACCACGC                                                                                                                |

2 Non-hybridising sequences are shown in lower case letters

1 **Table S2.** Fold-changes in sporulation and competence related transcripts in RNase J1 or RNase

| Gene              | RNase J1↓ | RNase Y↓ | <b>Profile J1/Y</b> |
|-------------------|-----------|----------|---------------------|
| Sporulation genes |           |          |                     |
| spo0A             | 2.9       | 2.4      | UU                  |
| spo0B             | 2.3       | 1.1      | U-                  |
| spo0E             | 6.3       | 1.4      | U-                  |
| spoIID            | 4.5       | 3.7      | UU                  |
| spoIIE            | 5.0       | 2.3      | UU                  |
| spoIIIAE          | 1.0       | 2.1      | -U                  |
| spoIIIC           | 5.1       | 3.7      | UU                  |
| spoIIIE           | 2.4       | 2.1      | UU                  |
| spoIIP            | 2.9       | 1.9      | U-                  |
| spoIIR            | 1.2       | 2.0      | -U                  |
| spoIISA           | 2.0       | 8.6      | UU                  |
| spoIISB           | 5.1       | 8.5      | UU                  |
| spoIVFA           | 2.2       | 2.5      | UU                  |
| spoIVFB           | 3.0       | 3.2      | UU                  |
| spoVAEA           | 1.3       | 2.4      | -U                  |
| spoVAF            | 1.3       | 2.4      | -U                  |
| spoVB             | 1.1       | 2.2      | -U                  |
| spoVE             | 3.1       | 1.0      | U-                  |
| spoVFA            | 1.3       | 2.1      | -U                  |
| spoVG             | 0.2       | 0.3      | DD                  |
| spoVID            | 1.0       | 2.3      | -U                  |
| spoVM             | 2.2       | 1.0      | U-                  |
| spoVR             | 1.7       | 3.3      | -U                  |
| Competence genes  |           |          |                     |
| comEB             | 2.3       | 2.8      | UU                  |
| comEC             | 1.4       | 2.1      | -U                  |
| comER             | 1.2       | 3.2      | -U                  |
| comK              | 2.6       | 1.0      | U-                  |
| comN              | 0.5       | 0.5      | -D                  |
| comQ              | 0.4       | 0.7      | D-                  |
| comS              | 0.4       | 0.6      | D-                  |
| comZ              | 1.5       | 2.1      | -U                  |

2 Y depletion strains compared to wild-type in (Durand et al., 2012a).

3 (U) up-regulated, (D) is down-regulated, (-) unchanged.

5

<sup>4</sup> 

1 **Table S3.** Fold-changes in cell envelope biosynthesis related transcripts in RNase J1 or RNase Y

| Name                     | RNase J1↓  | RNase Y↓ | Profile J1/Y |
|--------------------------|------------|----------|--------------|
| Biosynthesis of peptido  | oglycan    |          |              |
| gcaD                     | 1.1        | 0.4      | -D           |
| glmS                     | 2.2        | 0.7      | U-           |
| murAA                    | 2.4        | 3.0      | UU           |
| murB                     | 2.5        | 4.9      | UU           |
| murG                     | 2.5        | 5.8      | UU           |
| racE                     | 2.3        | 1.3      | U-           |
| spoVB                    | 1.1        | 2.2      | -U           |
| spoVE                    | 3.1        | 1.0      | U-           |
| vabM                     | 2.7        | 3.9      | UU           |
| vkuD (ldt)               | 4.2        | 8.6      | UU           |
| vtgP                     | 2.1        | 3.7      | UU           |
| yycJ (walJ)              | 3.4        | 2.4      | UU           |
| Biosynthesis of lipoteic | choic acid |          |              |
| dgkA                     | 1.9        | 2.1      | -U           |
| ltaSA                    | 1.0        | 3.6      | -U           |
| vagS                     | 3.0        | 1.7      | U-           |
| yvgJ                     | 1.5        | 2.1      | -U           |
| Biosynthesis of teichoid | c acid     |          |              |
| dltA                     | 2 3        | 3.1      | <b>U</b> II  |
| dltR                     | 2 3        | 27       |              |
| dltC                     | 2.5        | 2.7      |              |
| dltD                     | 2.4        | 2.8      |              |
| dltF                     | 3.1        | 2.8      |              |
| ogaR                     | 1 1        | 0.4      | -n           |
| mna A                    | 2.0        | 0.9      | -D<br>I ]_   |
| norA (otaC)              | 2.0        | 17       | U-<br>11-    |
| tagA                     | 1 9        | 27       | _U           |
| tagR                     | 1.2        | 2.7      | _U           |
| tagO                     | 1.2        | 2.9      | -U           |
| Biosynthesis of teichur  | onic acid  |          |              |
| tuaA                     | 1.0        | 4.5      | -U           |
| tuaA                     | 1.1        | 6.0      | -Ū           |
| tuaB                     | 1.6        | 5.5      | -U           |
| tuaC                     | 1 4        | 4 3      | -U           |
| tuaD                     | 1 4        | 3.9      | -U           |
| tuaE                     | 1 2        | 3.1      | -U           |
| tuaF                     | 1.2        | 2.6      | -U           |
| tuaG                     | 1.2        | 2.0      | -0<br>-11    |
| tuaH                     | 1.5        | 2.0      | -0           |

2 depletion strains compared to wild-type in (Durand et al., 2012a).

| Penicillin binding proteins                                |     |     |    |  |  |  |  |
|------------------------------------------------------------|-----|-----|----|--|--|--|--|
| dacB                                                       | 2.4 | 2.2 | UU |  |  |  |  |
| dacC                                                       | 0.5 | 0.6 | D- |  |  |  |  |
| pbpA                                                       | 1.0 | 2.1 | -U |  |  |  |  |
| pbpC                                                       | 0.7 | 0.2 | -D |  |  |  |  |
| pbpE                                                       | 0.4 | 0.5 | D- |  |  |  |  |
| pbpG                                                       | 1.6 | 3.8 | -U |  |  |  |  |
| pbpH                                                       | 3.0 | 1.0 | U- |  |  |  |  |
| pbpI                                                       | 1.4 | 4.5 | -U |  |  |  |  |
| pbpX                                                       | 1.4 | 2.4 | -U |  |  |  |  |
| ponA                                                       | 1.5 | 2.4 | -U |  |  |  |  |
| Export of anionic polymers and attachment to peptidoglycan |     |     |    |  |  |  |  |
| lytR (tagU)                                                | 3.1 | 0.5 | U- |  |  |  |  |
| tagG                                                       | 0.8 | 4.0 | -U |  |  |  |  |
| tagH                                                       | 1.1 | 3.7 | -U |  |  |  |  |
| yvhJ (tagV)                                                | 3.0 | 1.3 | U- |  |  |  |  |
| ywtF (tag T)                                               | 2.4 | 4.7 | UU |  |  |  |  |

1 (U) up-regulated, (D) is down-regulated, (-) unchanged.



**Figure S1.** Deletion mutants of RNase Y and J1 are viable in four commonly used *B.* subtilis genetic backgrounds. Luria Bertani (LB) plates showing growth of (A)  $\Delta rny$  and (B)  $\Delta rnjA$  mutants in strains 168 trpC2, W168 trp<sup>+</sup>, JH642 trpC2 pheA1 and PY79  $\Delta SP\beta$ .



**Figure S2.** Growth curves of RNase mutant strains in liquid medium. Cells were grown in 2xYT medium in Erlenmeyer flasks with orbital shaking at 200 rpm and an air/liquid ratio of 10.



**Figure S3.** Effect of temperature on RNase mutants. Cells were streaked out on LB plates and incubated at the temperatures indicated for the times shown.



**Figure S4.** Confirmation of double mutants by PCR. Deletions were verified by colony PCR using the following oligonucleotide pairs: *rnjA* (CC1090/1096); *rny* (CC768/770); *pnp* (CC132/133); *rnjB* (CC175/1010); *rppH* (HP279/CC546). For *rppH* and *rnjB*, the lower oligonucleotide hybridizes to the antibiotic resistance cassette and therefore only yields a product in the mutant strain. A DNA marker (M) is shown in the middle of the gel. Expected sizes were as follows: *rnjA* (WT/mutant: 2.57 vs 1.66 bp), *rny* (WT/mutant: 2.54 vs 1.73 bp), *pnp* (WT/mutant: 2.59 vs 2.8 kb), *rnjB* (WT/mutant: no product vs 996 bp); *rppH* (WT/mutant: no product vs 1.30 kb).