
SI1. OPs and Structural Characterization of Macromolecular Systems 

A simple case of the 

RS ,

Φk  relationship suggests how it captures rigid rotation. Take 

, 100,010,001kU k = to be X0, Y0 and Z0 respectively. Then neglecting the residuals, Eq. (II.4) 

becomes 0 0 0
100X 010Y 001Zi i i iX X Y ZΦ Φ Φ= + + , and similar for iY and iZ  (where , ,i i iX Y Z  are the 

three Cartesian components of SR
v

 vector and kαΦ is the αth component of 

Φk ). The relationship 

can be written in the tensorial form

RS =


Φ

RS ,0 . It is seen that for a special case (i.e., where the 

tensor 

Φ  is a rotation matrix), 


Φk constitute a length preserving rotation about the assembly CM 

if 

RS for the Sth subsystem is measured relative to this CM. More generally, for the above three 

basis functions, the 

RS ,

Φk  relationship corresponds to a mixed rotation, extension/compression. 

In fact the OPs defined here constitute a strain tensor thereby accounting for elastic 

deformations. 

Transformations captured via these OPs are further understood below in terms a set of 

fundamental global and local deformations [30]. Consider the example of a tapering deformation 

(Fig. SI1). Take , 100,110,101kU k = to be X0, X0Y0 and X0Z0 respectively. Again, neglecting 

residuals, Eq. (II.4) becomes 0 0 0 0 0
100X 110X 101Xi i i i i iX X X Y X ZΦ Φ Φ= + + , and similarly for iY and iZ . 

This relationship can be written in the tensorial form  
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When 100 100y 110 110z, , , 0x xΦ Φ Φ Φ =  and 100 110y 101z 101y 101, , , , 0x xΦ Φ Φ Φ Φ ≠ , J is the Jacobian matrix for 

tapering along the X-axis [30]. Thus, these OPs capture structures that are tapered with respect to 

the reference configuration. Similar matrices can be constructed using other combinations of OPs 

to explain the twisting and bending transitions of Fig. SI1. Thus, the space warping variables 

characterize overall structure of an assembly. For relatively simple structural transitions, such as 

those of Fig. SI1, deformations of the assembly are defined via changing OPs for long periods of 

time with respect to a fixed reference configuration of subsystem CMs. However, to capture 

more complex structural transitions as described in Sect. V, the OPs as well as the reference 

configuration are allowed to evolve in time; the reference configuration though changes slower 

than the OPs. Thus, within a time window when change in the Uk is negligible, but the OPs vary 

considerably, the above physical interpretation of the OPs hold, i.e., even after introducing 

dynamical reference configurations.  

 

 



	
  

Fig. SI1 Normalized amplitude versus OP index k. Space warping OPs with specified indices 
deform a T=7 capsid into conical, capsular, and twisted capsular forms. Cartesian components of 
only 33 OPs are chosen for this analysis, as they are sufficient to enable these transformations. 

 

 

 

 

 

 

 

 

 

 

 

 



SI2. Ensemble Generation and Thermal Averaging 

While several coarse-grained modeling approaches account for large-scale processes, important 

all-atom features of an assembly can be lost [7-14]. However, processes like the interaction of an 

antibody with a viral capsid can depend sensitively on atomic structure. To capture such details, 

in DMS, an ensemble of all-atom configurations consistent with the instantaneous OPs 

description is constructed. First, the state of scaled variables implying subsystem position (e.g., 

CM), shape and orientation are obtained such that they are consistent with the overall assembly 

architecture as provided by the set of global OPs (II.4). Then, an ensemble of all-atom 

configurations consistent with the subsystem CMs is generated. However, given only the 

location of subsystem CMs, this ensemble may contain many physically irrelevant structures that 

contribute little to the Boltzmann distribution. To address such issues, the number of 

intermediate scale variables is increased to include ones that account for the shape and 

orientation of subsystems, rather than just those that describe the position of their CM. With this, 

we introduce a set of variable ϕk
S , where ϕ0

S ≡

RS implies subsystem CMs and those with 

{100,010,001}k =  characterizes overall subsystem extension-contraction-rotation. In analogy to 

(II.11), these variables are used to construct 

Φk via  

                                             

Φk =

1
µk

M SUk
S ϕ S( ) ϕkS

S=1

N sys

∑ .                                                        (S2.1) 

Now, consider an extended set S
exϕ of subsystem-centered variables that include ϕk

S

 for k  

in the list of scaled variables that compose 

Φk  (S2.1), plus additional variables 


ϕkres
S  for kres  not 

in the list of OP indices. As in (II.4), we write the position of atom j in subsystem S as 



                                      rj
S = OP ϕk

SUkj
S + res ϕkres

S Ukj ,res
S

kres
∑

k
∑

 
,                                                   (S2.2)  

where Ukj
S =Uk (

rj
S )  and Ukj ,res

S =Ukres (
rj
S ) . This equation maps S

exϕ  onto the all-atom 

configuration variables Sr  . The mapping is one-to-one when the total number of ϕk
S

 and 

ϕkres
S

equals the number of atoms in the subsystem S, nS. With this, (S2.2) provides a way to generate 

an ensemble of atomic configurations consistent with a given value of 

ϕk
S  (and hence global OPs 


Φk ). For a set of fixed 


Φk , these configurations are achieved by randomly varying ϕkres

S . For 

example, consider the evolution of 

Φk  constructed from ϕk

S  with {000,100,010,001}k = ;

S =1,...,N sys . Ensembles of atomistic configurations consistent with the overall assembly 

structure defined via the values of Φ , and subassembly architecture provided by the lower-order 

Sϕ  are generated via changing those ϕk
S  for which {000,100,010,001}k ≠ . By definition, such 

subsystem-centered variables evolve on a much shorter timescale relative to that of the global 

OPs [29]. Consequently, the system visits states for which the overall structure is conserved, yet 

the detailed atomistic configuration varies dramatically. This procedure accounts for small-scale 

incoherent displacement of each atom in addition to coherent deformations generated by the 

hierarchical OPs. Short MD runs are performed starting with configurations from this ensemble 

to arrive at an enriched ensemble that is consistent with a given set of global (Φ ) and subsystem-

centered variables. 

 The ensemble of all-atom structures using above procedure is employed to compute 

factors (thermal average forces 

fk  and diffusion factors 


Dkk ' ) that mediate the 


Ψk  Langevin 

dynamics. The thermal average forces are derived in a manner similar to that derived in 



Appendix C of Ref. [29]. This implies, 

fk
Φ = −

∂F
∂

Φk

=

fk
m , where 


fk
m = Uk

S Fk
S

S
∑  is the global 

OP force, 

Fk
S = Θi

SUki
S Fi

S

i=1

N

∑  is the subsystem-centered OP force and 

Fi
S  is the force on the i-th 

atom in subsystem S. Similarly, 

fi
R = −

∂F
∂

RS (i )

= M S Θi
S Fi

S

mii=1

N

∑ . The 

fk  are efficiently computed 

via an ensemble/Monte Carlo integration method enabled by the nature of our OPs.  The atomic 

forces 

Fi
S  computed for each member of an OP-constrained ensemble of atomic configurations 

are used to calculate the subsystem-centered OP forces 

Fk
S , and ultimately the hierarchical OP 

forces 

fk
m . Monte Carlo integration averaging of 


fk
m  and 


Fj
S

 over the ensemble is carried out to 

obtain the thermal average force 

fk
Φ  and 


fi
R . Short MD runs (~1 ps) are performed on 

configurations from this ensemble to calculate the OP velocity correlation functions. An 

ensemble average over multiple such correlations is needed to construct the

Dkk '  (III.19-21). 

However, using only the early part of a single MD correlation function (wherein the most statics 

are accumulated) was found to suffice. 

	
   As in Eq. (II.4) we write the position of atom j in subsystem S as  

                                              rj
S = OP ϕk

SUkj
S +

k
∑ 

σ j
S ,                                                                 (S2.3)       

where σ j
S denotes the residual displacement of atom j resulting from a finite truncation of the k  

sum. Together (S2.1) and (S2.3) imply,  

                                               σ j
S = res ϕkres

S Ukj ,res
S

kres
∑ .                                                                  (S2.4) 



Multiplying (S2.4) by ' ,
S
k j resU , summing over all j, and using the orthogonality conditions we get  

                                             ϕkres
S =

mj
SUkj ,res

S

j=1

nS

∑ 
σ j
S

mj
S{Ukj ,res

S }2
i=1

nS

∑
.                                                                 (S2.5)  

Evolution of the all-atom ensemble may reflect in a systematic growth in the magnitude of 

residuals ( σ j
S ) and is observed in the cases we have studied earlier [29]. Major increase in 

residuals over time indicates the emergence of new intra-subsystem modes that are not captured 

by the initial set of OPs. Appearance of these modes, in turn, affects inter-subsystem or overall 

assembly dynamics. To account for such modes, OPs, ϕkres
S , that were not included in the initial 

set of subsystem variables are constructed form the growing residuals via (S2.5), and added to 

the existing Sϕ for the Sth subsystem. If the additional OPs are chosen properly then the residuals 

computed after using them will be negligible. Then the augmented Sϕ  is used to reconstruct a 

more extensive set of 

Φk  (S2.1). Thus, (S2.5) provides a way to discover the number of OPs that 

is both necessary and sufficient to describe the slow behavior of the system.  

 

	
  

 

 

 



 

	
  

(a) 

 

(b) 

Fig. SI2 Normalized velocity autocorrelation functions (VACFs) showing (a) for the assembly 
the subsystem CM VACF decays much faster than that for a typical OP; however, the greater 
velocity marginally makes up for the loss in correlation so that diffusion coefficient of the CM is 
comparable to that of the lower-order ones. (b) Like in (a), for the free RNA, the CM VACF 
decays much faster than that for a typical OP. Since the correlation times associated with local 
motion is lesser than those for more global ones, the associated diffusion coefficients are lesser.   

	
  	
  



	
  

SI3. Diffusion Coefficient Comparison  

The magnitude of diffusion coefficients depends on the velocity of the associated coarse-grained 

variables (e.g., OPs or CMs) and relaxation time of their correlation functions (III.19-22). Also, 

it is shown earlier that higher-order OPs describe more local motion than lower-order ones [19, 

29-30]. Since the correlation times associated with local motions are lesser than those for more 

global ones, the associated diffusion coefficients are lesser (Fig. SI2). Consequently, for the 

RNA expansion, diffusion coefficients characterizing higher-order variables, which imply local 

motions, are less than those for lower-order ones that probe global motions. However, for the 

assembly problem, the difference in velocity between the higher and lower-order OPs (global 

and local modes) is much higher than that for the RNA. This reflects that protein monomers are 

strongly yet non-covalently interacting and therefore move more freely than the covalently 

bonded RNA pentamers.  Even though the decay time for higher-order OP correlation is small, 

the greater velocity marginally accounts for the loss in correlation (Fig. SI2).  Hence, diffusion 

coefficients of the higher-order OPs are comparable to those of the lower-order ones. 

Furthermore, since OPs with higher k probe smaller regions in space, the behavior of higher-

order OPs is strongly correlated to intermediate scale variables such as subsystem CMs. This 

suggests that the behavior of higher-order 

Dkk

ΦΦ  should be similar to those of 

Dii
RR , as is the case 

for both examples (Figs. 4(d) and SI3).  

 

 

 



 

 

 

(a) (b) 

 

(c) 

Fig. SI3 Normalized diffusion matrices 

Dk !k

ΦΦ , 

Dij
RR  and 


Dik

ΦR  with 1 2 3 6k k k+ + ≤  (implying 33 

OPs) and S =1,...,12  showing 

Dkk

ΦΦ >> 

Dii
RR> 


Dik

ΦR  for the expansion of free RNA aqueous 
solution. 

	
  

	
  



	
  

Fig. SI4 Number of inter-nucleic hydrogen bonds  (MD: black, multiscale: red) gradually 
increases with time indicating the viral RNA gains more secondary structure as the monomers 
assemble around it. Also shown is the average number of hydrogen bonds present in the RNA in 
its capsid bound state (black dotted) as observed from previous simulations [9, 30]. Thus, the 
final RNA structure after 10ns (Fig. 9 (inset)) would require the involvement of ~20% more 
hydrogen bonds during subsequent assembly steps to resurrect its experimentally observed 
encapsidated state (Fig. 2(c)).  
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