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1. Calculating Binding-Site Gain and Loss Rates from IUPAC
Sequences
For each transcription factor (TF) sequence motif, provided in
InternationalUnionofPureandAppliedChemistry (IUPAC)code,
we calculated their spontaneous gain and loss rates. Standard
IUPAC nucleotide code describes ambiguous sites in a sequence
motif, where a single IUPAC character may represent more than
1nt.Thegainrate iscalculatedas follows:Givenabasepairmutation
in the sequence, what is the probability that the sequence deviates
fromthe IUPACsequenceatone site and that themutationmutates
it to a sequence that matches its motif? LetM be the IUPAC code
for a TF motif of length N and let M½i�, for 1≤ i≤N, denote the
character at position i in the sequence M. We assume a simple
model where all nucleotides and mutations between nucleotides
are equally likely. We define a score function that returns the
number of ambiguous nucleotides for each IUPAC character:

cðxÞ=
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1; x∈ fA;C;T;Gg
2; x∈ fM;R;W ; S;Y ;Kg
3; x∈ fB;D;H;Vg
4; x∈ fN; :g:

Provided the score of an IUPAC character x, the probability that
one site matches it is cðxÞ=4 and the probability that the site does
not match is 1− cðxÞ=4. The probability that the sequence deviates
from the sequence at only the first site (in the equation, M½1�) is
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Then, providedweknowamutationoccurs at thefirst site, the prob-
ability that itmutates to a nucleotide thatmatches the IUPAC char-
acter is cðxÞ=3. So, the probability that the sequence deviates at
only one site and that that site mutates to a matching nucleotide is
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The loss rate is calculated as follows: Given a base pair mu-
tation within a binding site, the probability that the base pair
mutation dissolves agreement with the TF motif is

lossðMÞ= 1
N
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Because we know the mutation occurs in the binding site, all base
pairs match their corresponding IUPAC character. The probabil-
ity that the mutation occurs at site i is 1/N, and the probability
that the mutation causes the nucleotide to not match the IUPAC
sequence character x is ð4− cðxÞÞ=3.
Because both lossð·Þ and gainð·Þ are probabilities conditional

on a base pair mutation, multiplying by the base pair mutation
rate u gives the individual loss and gain rates for each TF motif
M: ulossðMÞ and ugainðMÞ.
2. Alternate Simulation Scenarios
This study leveraged carefully parameterized simulations to un-
derstand neutral patterns that may arise in theEscherichia coli cis-

regulatory network over evolutionary timescales. Although all pa-
rameters in the main study derive from empirical values of the
E. coli genome and regulome, a critical question remains as to the
effect—whether weak or strong—that deviations in these param-
eters may have on the results. Because the empirical parameters, like
binding-site size, may present small or biased samples, it is important
to understand the strength of the results provided noise in the pa-
rameterization. Specifically, we measure the effect of promoter het-
erogeneity, initialization condition, binding-site length, and
population size on the results of the study.
In the following sections, we describe the other simulations we

ran and discuss their results. Figs. S5–S10 provide an all-against-
all comparison of the different experiments, split out by system,
subgraph, and operon level.
Across all these experiments, we found that the results from the

main study not only are robust to perturbations in the parameter
values or starting conditions but also modify the results in a sys-
tematic fashion. For instance, decreasing the binding-site length
increases the number of edges at equilibrium, which elevates the
clustering coefficient, and does not significantly affect the results in
the subgraphoroperon level. In fact,wefind that “small” changes in
the parameters still yield results wherein feed-forward loops (FFLs)
and other previously identified “adaptive” properties are not sta-
tistically significant from the null model. Only when we use ho-
mogeneous values for promoter lengths and mutation rates or use
random walks instead of population genetic simulations do we
notice drastically different results. Thus, the use of actual dis-
tributions to parameterize the null model—despite the minor dif-
ferences in which these empirical distributions are derived from
sequence-level data—is a significant and unique contribution to the
identification of neutral patterns in the E. coli regulatory network.

Empirical Parameterization. As described in the main text, we
parameterized the evolutionary simulations with empirical
distributions of

� promoter length: inferred from coding regions on the E. coli
genome;

� binding-site IUPAC sequences: downloaded from RegulonDB
(1);

� average binding-site length: the average length of binding-site
IUPAC sequences; and

� population size: estimated in previous studies.

These empirical distributions were retrieved from RegulonDB,
which is kept up-to-date with the latest findings on the E. coli
regulatory network. The population size for E. coli is a rough es-
timate for bacterial populations. For each operon, the results of the
main study including the parameters used—promoter length and
PWM—are provided in the table of operon results (Dataset S1).

Homogeneous Promoter Lengths and Mutation Rates. In this ex-
periment, we investigated the significance of using actual
distributions ofpromoter lengthsandbinding-sitegainand loss rates
derived from PWMs by comparing them to evolutionary simulations
parameterized with average values only. To test the effect of using
a homogeneous promoter length, used in previous studies like ref. 2,
we parameterized each operon with the same promoter length,
set to the average of the actual distribution in E. coli. In a similar
manner, we replaced the heterogeneous distribution of binding-
site gain and loss rates—derived from their respective IUPAC
sequences—with the average gain and loss rate. All other parameters
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were left unchanged, including the average binding-site length
(20 bp) and population size (109).
Underthismodel,allof theresultsof themainstudyareeffectively

annulled. On the system level, the homogenous null model expects
5,232 interactions (z-score = −71.4) and an average clustering co-
efficient of 0.552 (z-score = −14.6), and the in-degree and out-
degree distributions were significantly different. The distributions
of promoter length and in-degree differed by 97%. Among many
other differences in the subgraph distribution, the bifan and feed-
forward loop subgraphs had z-scores 10 times and 3 times larger
than the nonhomogeneous model. A bifan is a directed graph on
four nodes, two of which are designated target genes and each of
the other two is designated as a regulator of both target genes. At
the operon level, the majority of operons fell significantly outside
neutral expectations.

Alternate Initial Condition. In the main study we seeded the simu-
lations with a random initial network, such that all TF operons
are autoregulatory and any non-TF–encoding operon is regu-
lated by a randomTF. Such a configuration guarantees a minimally
viable network such that the loss of any binding site would render
the network nonviable. Further, this initial condition has no
“interesting”motifs besides a single input module, because no TFs
can regulate another TF, so we do not bias the subgraph results
with the initial randomnetwork.However, there are othermethods
for generating such random networks. To test the effect of the
initial conditions on the results of the main study, we defined an
alternative random initial network strategy such that both non-TF–
and TF-encoding operons are regulated by a randomly chosen TF.
Under this strategy, we do not forceTFs to be autoregulatory, but all
operons still have only one incoming regulatory interaction. So,
although there may be linear pathways and feedback loops in this
initial randomnetwork, few other subgraphs, like FFLor bifan, exist
in the network. In fact, this bias is present in the results: The second
most common subgraph, a three-node linear pathway, ismuchmore
common in the alternate initial condition than in the main study;
however, z-scores for all other motifs are nearly identical.
Under this experiment, the results of the main study were not

only repeated and validated, but also the values themselves were
closely matched. Therefore, the topology of the initial condition,
evidenced by the agreement of the results from these two different
approaches, does not have a significant effect on the results of the
main study.

Shorter Binding-Site Length. Although the average binding-site
length is calculated from actual E. coli IUPAC sequences, the
length of these sequences spans a broad distribution. Conse-
quently, the average used in the main study (20 bp; Fig. S1) may
be a poor approximation of the ground truth. Although the
specific gain and loss rates of each binding motif are calculated
from their IUPAC sequence, we simulate all binding sites as the
same length, for computational purposes. Thus, by performing
the same simulations with a shorter binding-site length (7 bp), we
may examine the extent to which (i) the average binding site and
(ii) the use of a homogeneous binding-site length may influence
the simulations. In regard to the latter, the effect of using het-
erogeneous binding-site lengths could be extrapolated from the
effect that changing the length from 20 bp to 7 bp has on the
overall resulting networks.
Decreasingthebinding-site lengthreducesthelossrateofbinding

sites overall, because smaller binding sites present a smaller target
for point mutations. Consequently, using a 7-bp binding site
increases the average number of edges in equilibrium to 1,127
(z-score = −3.77) from 1,039 (results from Empirical Parameteri-
zation) and the average clustering coefficient to 0.231 (z-score =
−0.7) from 0.162. Despite these slightly elevated numbers, de-
creasing the binding site corroborated the results of themain study

overall, especially including the subgraph- and operon-level re-
sults. Thus, the binding-site length plays a “minor” role in the re-
sults of the main study, and so we may expect that enhancing the
simulator to support heterogeneous binding-site length would also
result in minor changes to the overall results.

Smaller Population Size. Although the population size used in the
main study is widely accepted as a reasonable effective population
size forbacteriaover theevolutionary timescaleunder investigation
in this study, the role that theeffectivepopulation sizehas in thenull
model isof significant interest to this study.To investigate theroleof
populationsizeonthenullmodel,weperformedsimulationswithan
effective population size of 106. Altering the population size affects
themechanics of genetic drift: Reducing the population size in fact
makes genetic drift a more powerful evolutionary force (all else
staying equal).
Thesmallerpopulationsize resulted insubstantially(around300)

more edges in equilibrium, which in turn increased the clustering
coefficient and degree distributions. Smaller populations allowed
for more binding-site gains to occur in long promoter regions, in-
creasing the number of regulatory edges in the network. However,
even under the smaller population size, FFLs occurred with a
z-score of 1.3, too low to reject the null model.

Random Walk.Although an evolutionary perspective is at the core
of our study, a question arises as to whether full-blown population
genetic simulations are required to reproduce the results. In fact,
previous work that leveraged a neutral evolutionary approach to
replicate clustering patterns in eukaryotic enhancers opted for
random walks vs. population genetic simulations (3). Because
random walks are much simpler from a computational and mod-
eling perspective, they are indeed the preferred choice if they ac-
curately represent the evolutionary dynamics of the study.
We simulated network evolution, using randomwalks instead of

a population genetic lifecycle. Each random walk is initialized
identically to the main study and each step in the random walk
corresponds to a binding-site mutation (gain or loss). If the mu-
tation results in a nonviable network, the step is rejected and a new
mutation is sampled. This is the same process used in ref. 3, where
they found “no appreciable difference” between the results of
population genetic simulations and those of random walks. We
measured the number of steps until an equilibrium in number of
edges is reached (similar to the population genetic approach) and
let that determine the number of steps in each walk.
Under random walks, the number of edges in equilibrium nearly

doubles to 1,918 (z-score = −49) and the clustering coefficient also
increases to 0.73 (z-score = −9). Like the smaller population size,
there is a strong linear correlation between the length of a promoter
and its in-degree; in both themain study and the realE. coli network
this relationship is not so distinct. The degree distributions of the
random walk networks are skewed to higher degrees. At the sub-
graph level, the subgraph distributions are indeed different from
those produced by population genetic simulations (even under
smaller population sizes), but FFLs, bifans, and single-input mod-
ules (SIMs) still occur at levels similar to the actual E. coli network,
although still not at equivalent values to the other simulations.
These results show that random walks, where nonviable muta-

tions can be resampled, do not accurately represent the random
walk performed by a population guided under genetic drift. In-
tuitively, the more accessible areas will continue to be explored by
a large population whereas inaccessible areas (high nonviability or
against the “mutation bias”) will not be explored. In this case,
because there is a loss bias for binding sites, continuing to gain sites
(and edges in the network) operates against the mutation bias
present in the E. coli genome. Hence, population genetic simu-
lations give us a different answer than random walks.
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Fig. S1. Histograms of the binding-site length for the E. coli IUPAC sequences in this study are measured in total length (Left) and consensus length (Right).
Total length is the length of the TF motif, including ambiguous sites. Consensus length is the number of nonambiguous sites. The average for each distribution
is indicated with a vertical bar. The average binding-site length is 20 bp.

Fig. S2. Relevant distributions for genomic- and network-level properties of the E. coli regulatory network. (Upper) Information on distributions related to
promoter length; (Lower) plots of binding-site gain and loss rates for each operon against their out-degree. Upper Left compares the distributions of promoter
lengths of operons that encode a TF and that do not encode a TF (“non-TF”). The number of operons represented in each distribution is listed in parentheses,
with all operons in the regulatory network accounted for. Although TF-encoding operons have an elevated average and median promoter length, it is not
significant (Mann–Whitney nonparametric test, P value = 0.18). (Upper Right) Each operon is plotted with its in-degree and promoter length; we report the
Pearson correlation coefficient and significance above the plot. (Lower) The out-degree of TF-encoding operons is plotted against their spontaneous gain rate
(Left) and loss rate (Right), as computed from their position weight matrices.
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Fig. S3. Distributions of promoter length for operons that participate in single-input modules (SIM), feed-forward loops (FFL), and bifans are presented as
boxplots per node. The left axis provides the node label, which corresponds to the node in the subgraph diagram (e.g., 0 or 1), along with the number of distinct
operons represented in that distribution. The difference between the average promoter length in the node distribution and the average promoter length in the
network is listed on the right axis. Distributions with significant uplift, assessed using a nonparametric Wilcoxon’s rank-sums test, are indicated with a gray
background behind the boxplot. The P values for these distributions are FFL0=4× 10−11, FFL1= 5× 10−4, Bi� fan0= 9× 10−10, and Bi� fan1= 8× 10−11.

Fig. S4. The z-scores for low-frequency four-node subgraphs are ranked according to frequency in the E. coli network. The left axis provides the scale for the
z-score (bars) and the right axis measures the frequency (dashed line) of each subgraph. For each subgraph, the z-scores for our model (black) and the edge-
switching model (gray) are graphed side-by-side.
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Empirical Parameterization Homogeneous Promoters & Rates

Alternate Initial Condition Shorter BS Length

Smaller Population Size Random Walk

Fig. S5. Distribution of the number of edges at equilibrium under the alternate simulation scenarios.

Empirical Parameterization Homogeneous Promoters & Rates

Alternate Initial Condition Shorter BS Length

Smaller Population Size Random Walk

Fig. S6. Degree distributions—comparing actual to random—for the alternate simulation scenarios.
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Empirical Parameterization Homogeneous Promoters & Rates

Alternate Initial Condition Shorter BS Length

Smaller Population Size Random Walk

Fig. S7. Distribution of clustering coefficients under the alternate simulation scenarios.

Empirical Parameterization Homogeneous Promoters & Rates

Alternate Initial Condition Shorter BS Length

Smaller Population Size Random Walk

Fig. S8. Joint distribution of in-degree and promoter length—comparing actual to random—under the alternate simulation scenarios.
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Fig. S9. The z-scores for three-node subgraphs under the alternate simulation scenarios, sorted by the frequency in the E. coli network.
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Empirical Parameterization
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Fig. S10. The z-scores for the most common four-node subgraphs under the alternate simulation scenarios, sorted by the frequency in the E. coli network.

Other Supporting Information Files

Dataset S1 (XLS)
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