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Section S1. Location of neurons born after hatch-

ing

In Fig. S-1 we show the spatial configuration of neu-
rons before and after hatching. Notice that the majority
of the neurons born before hatching are concentrated in
the head and in the tail region, while most of the neu-
rons appearing after hatching are instead placed in the
body to form the ventral cord. This explains the relative
higher distance from newly added neurons to existing
ones observed after hatching.

Section S2. Additional one-parameter models

We present here three additional growth models which
have been tested during this study, namely the Simple
Spatial Growth (SSG), Spatial Growth with Elongation
(SGE) and Power-law Economical Growth (PEG). We
also discuss their ability to reproduce the developmen-
tal growth of the C. elegans neuronal network, and we
will compare them with the other five models described
in the main text, i.e. Barabási-Albert (BA), Binomial
Accelerated Growth (BAG), Hidden-variable Accelerated
Growth (HAG), Economical Spatial Growth (ESG) and
Economical Spatio-Temporal Growth (ESTG). Notice
that all the models considered in this study have only
one free parameter. Nevertheless some of these models,
and in particular the ESTG, are exceptionally accurate
at reproducing the structure and development of the C.
elegans neuronal network.

Simple Spatial Growth (SSG). This model makes the
assumption that upon arrival a new node i is placed in
the same position at which it appears in the adult worm.
Then, node i creates an edge to each of the already ex-
isting nodes j with probability:

ΠSP
i→j = e−

dadij
δ (S-1)

where dadij is the distance between node i and node j in
the adult worm and δ is a parameter tuning the typ-
ical edge length. Since the connection probability de-
creases exponentially with the distance between nodes in
the adult worm, the resulting networks exhibit very few
medium- and high-distance links, which are instead rela-
tively frequent in the real C. elegans neuronal networks.
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Figure S-1. Position of neurons born after hatching. The large majority of neurons born after hatching are located
throughout the worm’s body, while most of the neurons born before hatching are concentrated in the head and in the tail. The
x-axis represents the distance in millimeters from the base of the head. Positive values indicate points in the worm’s head,
while negative values correspond to the body and the tail.

Spatial Growth with Elongation (SGE). This model
uses information about the length of the worm at dif-
ferent stages. The node i arriving in the network at time
t is placed in the position it occupies in the neural net-
work at that time, and the probability for i to connect
to an existing node j is defined as:

ΠSPE
i→j = e−

dij(t)

δ (S-2)

where dij(t) is the distance between node i and node
j at time t and δ is a parameter. Notice that dij(t)
is a function of time, so that the probability to create
an edge between a newly arrived node i and an existing
node j depends on the time at which node i arrives in the
network and on the relative positions of i and j at that
time. This makes possible the creation of edges between
nodes which are actually separated by a relatively large
distance in the adult worm but have been closer in space
in earlier developmental stages.
Power-law Economical Growth (PEG). This model im-

plements a trade-off between the tendency to create edges
to hubs and the relative distance of the nodes, and takes
into account the elongation of the worm during develop-
ment. Differently from the Economical Spatio-Temporal
Growth model presented in the main text, in which the
connection probability is a decreasing exponential func-
tion of distance, in this model the probability to connect
to a distant node decreases as a power-law:

ΠPEG
i→j =

hj

hmax

[

1−

(

dij(t)

Lt

)α]

(S-3)

Here, hj is the hidden degree of node j, which is set equal
to the degree of node j observed in the adult worm, while
hmax is maximum node degree in the adult neural net-
work. As for the ESTG model, dij(t) is the distance

between node i and node j in the worm at time t. Lt is
the total worm length at time t and α is the exponent of
the power-law. Notice that the attachment probability
ΠPEG approaches 0 when the distance dij(t) is compara-
ble with the length of the worm, while the hidden degree
of the destination node plays a more important role if the
two nodes are closer in space. Thanks to the preferen-
tial attachment term, based on the hidden degree of the
nodes, this model tends to preserve the degree distribu-
tion of the original network.

Section S3. Parameter tuning

In this study we considered only one-parameter ran-
domized growth models. In general, a randomized model
generates an ensemble of graphs having certain character-
istics. If the model has a tunable parameter, each value
of the parameter generates a family of graphs sharing
similar structural properties. For instance, the Binomial
Accelerated Growth (BAG) model produces networks in
which the number of edges grows quadratically with the
number of nodes, but the expected number of edges in the
final network, i.e. when the number of nodes is equal to
N = 279, depends on the actual value of the attachment
probability p.
Since a randomized one-parameter model generates a

family of graphs for each value of the parameter, its abil-
ity to reproduce the structure of a given network cannot
be assessed through a direct comparison of the original
graph with a single realization of the model. Instead,
the comparison should be performed by taking into ac-
count the expected structural properties of the ensemble
of networks generated by the model, for each value of
the parameter, averaging over a sufficiently large num-
ber of realizations. The first requirement of any suitable
model for the C. elegans neural network growth is to pro-
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duce networks having N = 279 nodes and, on average,
K = 2287 edges. This constraint has been used to find
the optimal parameter of each considered model.
We employed a two-step parameter optimization pro-

cess. In the first step we used a Monte-Carlo approach
to identify the interval in the parameter space for which
the expected total number of edges K̃ of the generated
networks was equal to 2287±5%. In this step, we consid-
ered 20 networks for each value of the parameter. In the
second step we iteratively shrunk the parameter interval
using the bisection method, in order to identify the value
for which the difference between K̃ and K = 2287 was
smaller than 1%. In this step we generated 500 networks
for each value of the parameter. The optimal parame-
ter values for each of the eight models are reported in
Table S-I.

Model Optimal parameter

BAG p = 0.0575
HAG p = 0.302
BA m0 = 8,m = 8
SSG δ = 0.01365
SGE δ = 0.00235
PEG α = 0.0232
ESG δ = 0.0858
ESTG δ = 0.0126

Table S-I. Optimal model parameters. The optimal pa-
rameter of a model guarantees the generation of networks
having the same number of edges as the C. elegans adult neu-
ral network, with an error smaller than 1%.

Section S4. Model comparison

Since our aim was to reproduce as closely as possi-
ble the developmental growth of the C. elegans neuronal
network, and in particular the abrupt transition in the
number of edges in the graph as a function of the number
of nodes, we defined a measure to quantify how closely
each model matches the curve K(N), which indicates the
number of edges in the C. elegans neuronal network when
N nodes have been born.
We denote by KM (N) the family of curves of K over

N obtained using a certain model M and setting the
value of the model parameter according to Table S-I.
We computed, for each value of N , the expected number
µ(KM (N)) of edges in the network generated by modelM
when N nodes have been added to the graph, averaging
over 500 realizations. Using this notation, µ(KM (100))
is the expected number of edges in the graphs generated
by model M when the first N = 100 nodes have been
added to the graph.
In Fig. S-2 we report the average curve µ(KM (N)) for

each of the eight considered models, together with the
original curve K(N) corresponding to the growth of the
C. elegans neural network. By visual inspection, we con-
clude that the model which best fits the developmental
growth of the original network and the phase transition
at hatching is the Economical Spatio-Temporal Growth.

In order to quantify the discrepancy between K(N) and
KM (N) we computed, for each model and for each value
of N , the difference ξ(N):

ξ(N) = |K(N)− µ(KM (N))| (S-4)

and we considered the expected value µ[ξ(N)] and the
standard deviation σ[ξ(N)] of ξ(N). In Table S-II we re-
port the values of µ[ξ(N)] and σ[ξ(N)] for the eight mod-
els considered. In general, smaller values of µ[ξ(N)] and
σ[ξ(N)] indicate a closer match of the original growth
curve. In agreement with the conclusions drawn af-
ter visual inspection of Fig S-2, which suggested that
ESTG was the model which most closely reproduced the
growth curve, the smallest values of µ[ξ(N)] and σ[ξ(N)]
are indeed obtained by the Economical Spatio-Temporal
Growth model. The networks generated by all the other
models fail to follow the original growth curve by a large
extent, and they consequently exhibit larger values of
µ[ξ(N)] and σ[ξ(N)].

Model µ[ξ(N)] σ[ξ(N)]
BAG 154.2 123.7
HAG 154.2 123.7
BA 216.7 150.7
SSG 205.2 167.1
SGE 89.5 73.7
PEG 209.4 168.4
ESG 215.6 172.9
ESTG 37.3 31.6

Table S-II. Quality of growth fit.Average and standard
deviation of the point-to-point difference between the ob-
served growth curve K(N) and the average curve correspond-
ing to each of the eight considered models. The model pa-
rameters are set according to Table S-I. The smaller the
value of µ[ξ(N)], the more closely a model can reproduce the
growth of the C. elegans neural network. The Barabasi-Albert
model (BA) exhibits the highest average point-to-point dis-
tance, while the Economical Spatio-Temporal Growth model
(ESTG) largely outperforms all the other models.

Section S5. Node degree, edge length and node

efficiency

Here we compare the structure of the networks pro-
duced by each of the eight models described in this study
with that observed in the adult C. elegans neural net-
work, by using three classical network metrics. The first
metric is the degree distribution. Given an undirected
graph G(V,E) associated with the symmetric adjacency
matrix A = {aij}, the degree of a node i is defined as
the number of edges incident on i, and is denoted by
ki =

∑

j aij . The degree distribution P (k) of the graph
indicates, for each value of k, the probability of finding
a node whose degree is equal to k. The second metric is
the distribution of connection distances. Given two di-
rectly connected nodes i and j of a spatially-embedded
network, we define the distance of the edge (i, j) as the
Euclidean distance dij separating node i and node j. The
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Model DKL (P (k), PM (k)) DKL (P (d), PM (d)) DKL (P (Ei), PM (Ei))
BAG 0.875 0.346 0.966
HAG 0.301 0.290 0.545
BA 0.309 0.176 0.226
SSG 0.710 0.884 0.611
SGE 0.428 0.269 1.447
PEG 0.149 0.322 0.214
ESG 0.708 0.685 0.361
ESTG 0.143 0.099 0.223

Table S-III. Kullback-Leibler divergence. The symmetrized Kullback-Leibler divergence between the degree, edge length
and node efficiency distributions of the adult C. elegans neural network and the corresponding average distributions of the
networks generated through each of the eight models. Smaller values of symmetrized divergence indicate higher similarity
between the two distributions. The best and second-best values are highlighted in green and yellow, respectively, while the
worst and second-worst are marked in red and orange, respectively. BAG and SSG exhibit the worst values of divergence.
Interestingly, besides being the best model at fitting the developmental growth of the C. elegans neural network (as shown
in Fig. S-2 and in Table S-II) ESTG performs more consistently than any of the other models in reproducing the structural
properties of the adult worm’s nervous system.

associated distance distribution P (d) is the probability of
finding an edge whose distance is exactly equal to d. The
third metric is node efficiency. Given an undirected and
unweighted graph G, the efficiency of a node is defined
as:

Ei =
1

N − 1

N
∑

j=1

j 6=i

1

λij

(S-5)

where λij is the distance between node i and node j,
measured as the number of edges in the shortest path
connecting i to j. The node efficiency of i measures how
easy it is to reach any other node in the graph by start-
ing from i and traveling across shortest paths. In general,
the smaller the distance between i and j, the higher the
contribution of j to the efficiency of node i. If the graph
is not connected and node i and j belong to two different
connected components then there exists no path connect-
ing them. In this case, the distance λij is conventionally
set to ∞, and the contribution of node j to the efficiency
of i is equal to 1/∞ ≡ 0.
In Fig. S-3, S-4 and S-5 we show, respectively, the av-

erage degree distribution, length distribution and node
efficiency distribution of the networks generated by each
of the eight models, together with those observed in the
adult C. elegans neural network (reported in each panel
in shaded grey). By visual inspection, we notice that
ESTG seems to be the model which most closely repro-
duces all these distributions.
In order to quantify the difference between the distri-

butions of degree, length and node efficiency of synthetic
graphs with those of the C. elegans neural network we
used the Kullback-Leibler divergence. Given two proba-
bility distributions P = {pi} and Q = {qi}, the Kullback-
Leibler divergence of Q from P is defined as:

DKL(P ||Q) =
∑

i

pi log
pi
qi

(S-6)

The Kullback-Leibler divergence measures the informa-
tion lost when Q is used as an approximation of P , and is
non-symmetric, i.e. DKL(P ||Q) 6= DKL(Q||P ). Since we
are interested in measuring the similarity between two
distributions, and not the relative information lost when
using one of them as a predictor of the other, we opted
for the symmetrized Kullback-Leibler divergence, which
is defined as follows:

DKL(P,Q) =
DKL(P ||Q) +DKL(Q||P )

2
(S-7)

In general, the smaller the value of DKL(P,Q), the
more similar the two distributions P and Q. If we denote
by P (c) the distribution of the generic quantity c in the C.
elegans neural network and by PM (c) the distribution of
the same quantity c in networks generated through model
M , the symmetrized Kullback-Leibler divergence be-
tween P (c) and PM (c) is denoted as DKL (P (c), PM (c)).
In Table S-III we report, for each model, the val-
ues of the symmetrized Kullback-Leibler divergence be-
tween the degree, edge length and node efficiency dis-
tributions of the adult C. elegans neural network and
the networks generated by each of the eight models,
which are respectively denoted by DKL (P (k), PM (k)),
DKL (P (d), PM (d)) and DKL (P (Ei), PM (Ei)). The best
and the second-best value of DKL(P,Q) for each metric
are highlighted in green and yellow, respectively. Notice
that the smallest values of the symmetrized Kullback-
Leibler divergence are consistently obtained by the ESTG
model, with the only exception being node efficiency for
which PEG outperforms ESTG by a small amount.
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Figure S-2. Growth curves. The average total number of edges KM (N) as a function of N for each of the eight models. The
original growth curve of the C. elegans neural network is reported for reference in each panel, as a solid black line. The SSG,
SGE, ESG and ESTG models exhibit a transition from a quadratic to a linear increasing regime, but only ETSG is able to
closely match the growth curve observed in the original graph.
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Figure S-3. Degree distributions. The average degree distribution of the networks generated by each of the eight models.
The degree distribution of the adult C. elegans neural networks is reported in each panel in shaded gray, for comparison. Only
the models based on hidden-variables, i.e. HAG, PEG and ETSG, are able to reproduce the degree distribution of the worm
more closely. In the BA, SSG and ESG models low-degree nodes are over-represented, while in the BAG and SGE models
low-degree nodes are substantially under-represented.
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Figure S-4. Edge length distributions. The average distribution of edge length in the networks generated by each of the
eight models, compared with the distribution of edge length observed in the adult C. elegans network (reported in shaded gray).
BAG, HAG, BA and PEG produce networks with substantially longer links, while SSG, SGE and ESG exhibit a substantially
larger percentage of short links (notice the different scale of the y-axis in the SSG panel). The only model which closely matches
the distribution of edge length is ESTG.
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Figure S-5. Node efficiency distribution. The distribution of node efficiency of networks generated with each of the
eight models, compared with that observed in the adult C. elegans (shaded gray). Both BAG and HAG produce binomial
distributions of edge efficiency; for SSG, SGE and ESG models the distribution of efficiency is skewed towards smaller values
while BA is able to capture the peak around Ei = 0.47. PEG and ESTG reproduce the original distribution in a more balanced
way, even if nodes with efficiency around 0.5 are substantially over-represented while the peak around 0.47 is missing.


