BMJ Open

Does contact with a podiatrist prevent the occurrence of a lower extremity amputation in people with diabetes? A systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002331
Article Type:	Research
Date Submitted by the Author:	10-Nov-2012
Complete List of Authors:	Buckley, Claire; UCC, Perry, Ivan; University College Cork, Department of Epidemiology and Public Health Bradley, Colin; University College Cork, Dept of General Practice Kearney, Patricia; University College Cork, Department of Epidemiology and Public Health
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	Health services research, Evidence based practice
Keywords:	Diabetic foot < DIABETES & ENDOCRINOLOGY, VASCULAR SURGERY, Organisation of health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

DOES CONTACT WITH A PODIATRIST PREVENT THE OCCURRENCE OF A LOWER EXTREMITY AMPUTATION IN PEOPLE WITH DIABETES? A SYSTEMATIC REVIEW AND META-ANALYSIS

Short title

Contact with podiatry and lower extremity amputation in people with diabetes

CM BUCKLEY (CMB)^{1,2}, IJ PERRY (IJP)², CP BRADLEY (CPB)¹, PM KEARNEY (PMK)²

1. Dept of General Practice, UCC, Western Gateway Building, Cork, Ireland

2. Dept of Epidemiology and Public Health, UCC, Western Gateway Building, Cork, Ireland,

Corresponding author

Claire Buckley, Department of General Practice, Room 2.57, Western Gateway Building, University College Cork, Ireland Tel No: 00353 86 6020313, Fax No: 00353 21 4205469, Email: Claire.buckley@ucc.ie

Keywords

Podiatry, Amputation, Diabetes Mellitus, Systematic Review, Meta-analysis

Word Count

Abstract: 300 words

Main text: 2,683 words (excluding title page, abstract, references, figures, tables and appendices)

ABSTRACT

Objective

To determine the effect of contact with a podiatrist on the occurrence of lower extremity amputation in people with diabetes.

Design & data sources

We conducted a systematic review of available literature on the effect of contact with a podiatrist on the risk of lower extremity amputation in people with diabetes. Eligible studies, published in the English language, were identified through searches of PUBMED, CINAHL, EMBASE, and Cochrane databases. The key terms, 'podiatry', 'amputation' and 'diabetes', were searched as MeSH (Medical Subject Heading) terms. Reference lists of selected papers were hand-searched for additional eligible articles. No date restrictions were imposed.

Study Selection

Published randomised and analytical observational studies of the effect of contact with a podiatrist on the risk of LEA in people with diabetes were included. Cross-sectional studies, review articles, chart reviews and case series were excluded. Two reviewers independently assessed titles, abstracts, and full articles to identify eligible studies and extracted data related to study design, characteristics of participants, interventions and outcomes, control for potential confounding factors and risk estimates.

Analysis

Meta-analysis was performed separately for randomised and non-randomised studies. Relative risks with 95% confidence intervals were estimated with fixed and random effects models as appropriate.

Results

Six studies met the inclusion criteria and five provided data included in meta-analysis. The identified studies were heterogenous in design and included people with diabetes at both low and high risk of amputation. Contact with a podiatrist did not significantly affect the RR of LEA in a meta-analysis of available data from RCTs; (1.4, 95% CI 0.2-9.8, 2 RCTs) or from cohort studies; (0.7, 95% CI 0.4-1.3, 3 Cohort studies with 4 substudies in one cohort).

Conclusions

There is very limited data available on the effect of contact with a podiatrist on the risk of LEA in people with diabetes.

ARTICLE SUMMARY

Article Focus

- People with diabetes are at increased risk of LEA (Lower Extremity Amputation). As the prevalence of diabetes escalates worldwide, it is anticipated that there will be an increase in the number of LEAs.
- It is assumed that contact with a podiatrist prevents the occurrence of a LEA.
- This systematic review aims to determine from available literature the documented effect of contact with a podiatrist on the occurrence of a LEA in people with diabetes.

Key Messages

- Very limited data is available and the authors conclude that there is insufficient evidence to determine whether contact with a podiatrist has an effect on the risk of LEA in people with diabetes.
- Some existing studies suggest that contact with a podiatrist has a positive effect on shorter term outcomes including patient knowledge of foot care and ulcer recurrence.
- Further research on the long-term outcome of LEA is warranted.

Strengths and Limitations

- This is the first systematic review which investigates if contact with a podiatrist prevents the occurrence of a LEA in people with diabetes.
- Failure to demonstrate an effect on this long-term outcome is most likely due to limitations of available studies.
- Limitations include that studies in this systematic review looked at different sample populations ranging from patients with low baseline risk to patients with active disease. Also, included RCTs were underpowered to detect a significant difference for the outcome of LEA.

INTRODUCTION

 A worldwide diabetes epidemic is unfolding[1]. Diabetes is associated with a significantly increased risk of LEA (Lower Extremity Amputation). LEA rates vary between populations with estimates ranging from 46 to 9,600 per 10⁵ people with diabetes [2]. A number of factors influence the occurrence of a LEA in people with diabetes; including hypertension, obesity and hyperglycaemia [3 4]. In the foot, previous ulceration, infection and ischaemia are proven risk factors [5]. Nearly 85% of amputations begin as foot ulcers among persons with diabetes [6]. Protective factors include control of clinical parameters and screening to identify those people at high risk and many LEAs are preventable [7] [8]. The effects of clinical and socio-demographic risk factors on the occurrence of a LEA have been well documented in people with diabetes [9] [10] [11] [12].

In 2008, a task force report by the Foot Care Interest Group of the American Diabetes Association, which included podiatrists, stated that all people with diabetes should be assigned to a foot risk category [13]. These categories were designed to direct referral to and subsequent therapy by a speciality clinician or team but did not refer specifically to the role of podiatry. Recent guidelines from Scotland outline a diabetic risk stratification and triage tool, highlighting which people need podiatry referral. According to these guidelines, all patients classified as moderate risk (i.e. at least one risk factor present), severe risk or with active disease require podiatry review [14]. Podiatry is practiced as a specialty in many countries and in many English-speaking countries, the older term of "chiropodist" may still be used. According to the National Health Service in the UK , there is no difference between a chiropodist and a podiatrist [15]. It is assumed that podiatrists prevent LEAs by treating existing disease and educating people with diabetes on proper foot care. However, the effect of patient contact with a podiatrist on the risk of LEA in people with diabetes is unproven.

Two previous Cochrane reviews by Dorresteijn et al have looked at firstly the effect of an integrated care approach and secondly the effect of patient education on the outcome of LEA in people with diabetes [16 17]. The first of these reviews found no high quality evidence evaluating an integrated care approach and insufficient evidence of benefit in preventing diabetic foot ulceration [16]. The second review, updated in 2012, concluded that there is insufficient robust evidence that limited patient education alone is effective in achieving clinically relevant reductions in ulcer and LEA incidence [17]. Individual patient contact with a podiatrist was not examined as an intervention in either review. The present systematic review of published literature examines the effect of contact with a podiatrist on risk of LEA in people with diabetes.

METHODS

The research question, inclusion and exclusion criteria and proposed methods of analysis were specified in advance and documented in a protocol (attached as supplementary file).

Search Strategy

Pubmed, CINAHL, EMBASE (Excerpta Medica), and Cochrane databases were searched to identify relevant studies published up to and including September 25th 2011. The key terms, 'podiatry', 'amputation' and 'diabetes', were searched as MeSH (Medical Subject Heading) terms. Randomised and observational studies, published in English, which reported the effect of contact with a

BMJ Open

podiatrist on risk of LEA in people with diabetes (type 1 or 2), were included. No date restrictions were imposed. Cross-sectional studies, review articles, non-systematic reviews, chart reviews and case series were excluded. A manual search of references cited in relevant articles was performed. All potentially eligible studies were independently reviewed by two authors (CMB and PMK).

Data abstraction and quality assessment:

Using a standardised data collection form, two reviewers (CMB, PMK) independently abstracted information on study design, year of study, characteristics of participants, interventions and outcomes, control for potential confounding factors and risk estimates. A modified version of a checklist developed by Downs and Black for assessing the methodological quality of both randomised and non-randomised studies of health care interventions was used to critically appraise the studies in this review [18]. Inconsistencies between reviewers were discussed and resolved through consensus.

Statistical Analysis

Review Manager Software Version 5 (Revman 5.0; the Cochrane Collaboration, Oxford, England) and STATA Version 12IC were used for statistical analysis. The RR (relative risk) with 95% CI was recorded for included studies. One study presented individual results for four various stages of disease so this study was analysed as 4 substudies. Meta-analysis was performed separately for randomised and non-randomised studies, using either the fixed or random effects model as appropriate. Statistical heterogeneity was assessed with Cochran's *Q* statistic. Cochran's *Q* is computed by summing the squared deviations of each study's estimate from the overall meta-analytic estimate, weighting each study's contribution in the same manner as in the meta-analysis. P values were obtained by comparing the statistic with a χ^2 distribution with *k*-1 degrees of freedom (where *k* is the number of studies)[19]. To assess publication bias, a funnel plot of the overall estimate and its standard error (SE) was derived.

RESULTS

Four hundred and ninety-nine titles were retrieved from searches of electronic databases. Duplicates (138) were removed and 361 titles/abstracts were reviewed. Eighteen papers were considered for review after initial screening of titles and abstracts. Three further studies were identified as potentially eligible from reference checking. After reviewing the full text articles, 6 studies met the inclusion criteria; 2 RCTS and 4 cohort studies (PRISMA flow-chart-figure 1)[20]. Studies were excluded because of study design e.g. chart review/audit; intervention e.g. contact with a multidisciplinary team instead of contact with a podiatrist; or in one case, the study was described in another article already included in this systematic review.

Table 1 describes the included studies according to study design, participants, interventions and outcomes. Quality of included studies was assessed and all studies were deemed of suitable quality for inclusion (tables 2 & 3). Risk of foot disease at baseline was assessed using the Diabetic foot risk stratification and triage system from the SIGN (Scottish Intercollegiate Guidelines Network) guidelines (Appendix 1) [14]. Results of included studies are presented in table 4.

Results from available studies were pooled together in separate meta-analyses for RCTs and observational studies. Five of these studies provided sufficient data to allow meta-analysis. For

RCTs, the fixed effects model was applied (Q=0.328, p=0.567) and for cohort studies, the random effects model is reported as there was evidence of significant heterogeneity between the cohort studies (Q = 32.698, p=0.000). Meta-analysis of the two RCTs yielded an insignificant pooled RR of 1.4 (0.2-9.8) while meta-analysis of the cohort studies also yielded an insignificant pooled RR of 0.7 (0.4-1.3) (figure 2).

Data required for inclusion in the meta-analysis was unavailable for 1 eligible study. Lavery et al compared people with diabetes on dialysis and people with diabetes with a history of a healed ulcer. During a 30-month evaluation period, only 30% of patients from both groups combined were seen for preventative care prior to ulceration. The amputation incidence density was high in both groups (dialysis group 58.7 and ulcer group 13.1 per 1,000 person-years) [21]. However, it was not possible to extract the LEA event rate in those who did or did not have contact with a podiatrist.

Visual inspection of the funnel plot produced for the included studies shows no strong evidence of publication bias (figure 3).

DISCUSSION

 In this systematic review, we conclude that there is insufficient evidence to determine whether contact with a podiatrist has an effect on LEA in people with diabetes.

Strengths and limitations of this review

This is the first systematic review that the authors are aware of that investigates if contact with a podiatrist prevents the occurrence of a lower extremity amputation in patients with diabetes. A thorough literature search examining multiple databases was undertaken and 6 studies with 2 different study designs were included. While individual study design meta-analysis was performed in an effort to pool the available data, we acknowledge that heterogeneity exists between studies included in the meta-analysis in terms of baseline diabetic foot risk and type of intervention.

Included studies looked at different sample populations ranging from patients with low baseline risk to patients with active disease. For example, Ronnemaa et al recruited patients with diabetes from the national drug imbursement register in Finland which is representative of the total population with diabetes [22]. However, Plank et al recruited patients with diabetes from a tertiary referral centre which represents a population of patients with diabetes that have developed complications requiring referral to a tertiary centre [23]. In 5 of the 6 included studies, the population at risk were patients with diabetes. However, Sowell et al examined a population mix of patients with diabetes, PVD and gangrene [24]. It was decided to include this study due to the dearth of research in this area. This difference in populations studied between the Sowell paper and the other 5 studies needs to be highlighted as a limitation in this review.

The diabetic foot risk of the participants at baseline (low-active) reflects the different treatment settings at recruitment and highlights heterogeneity amongst the studies (table 1). Cochran's *Q* statistic was used to assess heterogeneity. For RCTs, the fixed effects model was appropriate but this meta-analysis is limited as there are only 2 included studies. For cohort studies, the *Q* statistic of 32.698 (p=0.000) indicated that strong heterogeneity existed so the random effects model was applied to account for both random variability and the variability in effects among the studies. However, use of the random effects model limits the conclusions that can be drawn from the meta-

BMJ Open

Sources of potential bias should be considered in relation to the observational studies. Although information was collected on potential confounders in many of the included observational studies, the analyses were not adjusted for potential confounders and sources of bias. Clinical practices may vary per individual and per location. Guidelines have been recently developed to standardise referral of patients with diabetes to podiatry [14]. Healthcare-seeking behaviours are complex and multifactorial and ethnicity and socio-economic position can influence attendance at podiatry [26] [27]. Level of disease may also influence a patient's decision to attend the podiatrist and create a self-selection bias in the patients with diabetes that attend the podiatrist. Patients that attend healthcare services in early stages of disease may be more likely to engage in other healthy lifestyle behaviours e.g. healthy diet, not smoking and this phenomenon of 'healthy user bias' has been previously documented [28]. In their retrospective cohort study, Sowell et al reported 20 LEAs in the intervention group and 130 in the control group (noting that the population at risk in this study is patients with diabetes and/or gangrene and/or PVD) [24]. This study described the majority of included participants with the outcome of LEA. However, their analysis did not adjust for important potential confounders which limit the conclusions that can be drawn from this study.

The issues of bias and confounding are eliminated by randomisation in RCTs. However, there is a lack of RCTs in this area. The 2 available RCTs have a lack of power as few participants had the outcome of LEA. The most likely cause of the low numbers of outcomes in the included studies is length of follow-up. LEA takes years to develop, especially from the time-point when a patient is classified as low risk. In the 1st included RCT, Plank et al described 2 LEAs in the intervention group and 1 in the control group [23]. In the 2nd RCT, Ronnemaa et al noted no LEA after 1 year of follow-up and 1 LEA in the intervention group after 7 years of follow-up [22]. Neither RCT was designed to assess LEA as a primary outcome and thus, had insufficient power to detect a significant difference for the outcome of LEA.

Conclusions and Implications

Two Cochrane reviews have looked at the outcome of LEA in patients with diabetes [16 17]. These reviews concluded that there is insufficient evidence that brief educational interventions or complex interventions reduce the risk of LEA. This systematic review concludes that there is insufficient evidence that contact with a podiatrist reduces the risk of LEA in patients with diabetes. Thus, this review cannot make any recommendations about practice. To detect the true effect, adequately powered RCTs and longer follow-up studies are needed to examine the effect of contact with a podiatrist on LEA in patients with diabetes. Perhaps, podiatry programmes could be rolled out in a manner designed to answer the question of effect on outcomes such as LEA. Such studies could also assess the impact of the timing and intensity of the podiatry intervention on outcomes. Perhaps studies focusing on high-risk participants are too close in timing to the LEA event and studies of lower-risk participants would be better to detect an effect in LEA prevention.

International standards recommend a multidisciplinary team should manage the footcare of a patient with diabetes [14]. Many studies have looked at the effects of a multidisciplinary team of which podiatry serves as a member of the team and found positive effects on various outcomes [29-36]. This may be a more realistic reflection of how patients with diabetes are managed; looking at

one service in isolation could be flawed as services are seldom delivered in isolation. According to the SIGN (Scottish Intercollegiate Guidelines Network) guidelines a multidisciplinary foot team should include a podiatrist, diabetes physician, orthotist, diabetes nurse specialist, vascular surgeon, orthopaedic surgeon and radiologist [14]. A systematic review of the literature looking at the effectiveness of multidisciplinary teams which include contact with a podiatrist would be useful.

Acknowledgements

We would like to thank the authors who responded to our queries and Professor John Browne, UCC for advice on methodology.

Declaration of Competing Interests

Nothing to declare.

Funding

This project is partially funded by the HRB (Health Research Board), Ireland – Grant Reference Number: HPF/2009/79 and partially funded by the ICGP (Irish College of General Practitioners) Research and Education Foundation.

Contributor statement

Claire M Buckley (CMB) conceived and designed the study, extracted the data and wrote the paper. Ivan J Perry (IJP) revised the paper. Colin P Bradley (CPB) approved the final version to be published. Patricia M Kearney (PMK) designed the study, extracted the data and wrote the paper. CMB will act as guarantor for the paper.

Ethical Approval

None required.

Data Sharing Statement

There is no additional data available.

Abbreviations

CINAHL, Cumulative Index to Nursing and Allied Health Literature, LEA, Lower Extremity Amputation, MeSH, Medical Subject Headings, NHS, National Health Service, PVD, Peripheral Vascular Disease, RCT, Randomised Controlled Trial, SIGN, Scottish Intercollegiate Guidelines Network, UCC, University College Cork, UK, United Kingdom

REFERENCES

- 1. Lam DW, LeRoith D. The worldwide diabetes epidemic. Current Opinion in Endocrinology, Diabetes and Obesity 2012;19(2):93-96 10.1097/MED.0b013e328350583a
- 2. Moxey P, Gogalniceanu P, Hinchliffe R, et al. Lower extremity amputations—a review of global variability in incidence. Diabetic Medicine 2011;28(10):1144–53
- 3. Turner R, Holman R, Stratton I, et al. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;317(7160):703-13
- 4. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK

BMJ Open

1	
2	
3	Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352(9131):837-53 doi:
4	S0140673698070196 [pii][published Online First: Epub Date] .
5	5. Boulton AJ. Lowering the risk of neuropathy, foot ulcers and amputations. Diabet Med 1998;15
6	Suppl 4:S57-9 doi: 10.1002/(sici)1096-9136(1998120)15:4+ <s57::aid-dia741>3.0.co;2-</s57::aid-dia741>
7	d[published Online First: Epub Date] .
8	6. Apelqvist J, Larsson J. What is the most effective way to reduce incidence of amputation in the
9	diabetic foot? Diabetes/metabolism research and reviews 2000;16(S1):S75-S83
10	7. Singh N. Armstrong DG. Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA
11	2005:293(2):217-28 doi: 10.1001/jama.293.2.217[published Online First: Epub Date]].
12	8 IDE Position Statement - the Diabetic Foot Secondary Position Statement - the Diabetic Foot
13	http://www.idf.org/nosition-statement-diabetic-foot
14	9 Adler A Ergou S Lima TAS Rohinson AHN Association between glycated baemoglobin and the
15	s. Adiel A, Elquer of Lower extremity amputation in patients with diabetes mellitus—review and meta
10	analysis. Diabotalogia 2010 F2 (E) 940-40
17	allalysis. Diabetologia 2010, 33 (3).840-49
10	10. Adler Al, Boyko EJ, Anroni JH, Smith DG. Lower-extremity amputation in diabetes. The
20	independent effects of peripheral vascular disease, sensory neuropathy, and foot ulcers.
21	Diabetes Care 1999;22(7):1029
22	11. Pecoraro R, Reiber G, Burgess E. Pathways to diabetic limb amputation. Basis for prevention.
23	Diabetes Care 1990;13(5):513
24	12. Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk A. Type 2 diabetes incidence and socio-
25	economic position: a systematic review and meta-analysis. International Journal of
26	Epidemiology 2011 doi: 10.1093/ije/dyr029[published Online First: Epub Date] .
27	13. Boulton AJM, Armstrong DG, Albert SF, et al. Comprehensive Foot Examination and Risk
28	Assessment. Diabetes Care 2008;31(8):1679-85 doi: 10.2337/dc08-9021[published Online
29	First: Epub Date] .
30	14. SIGN. Management of diabetes. A national clinical guideline March 2010.
31	http://www.sign.ac.uk/pdf/sign116.pdf.
32	15. NHS. Careers in Detail. Secondary Careers in Detail.
33	http://www.nhscareers.nhs.uk/details/Default.aspx?Id=280.
34	16. Dorresteiin Johannes AN. Kriegsman Didi MW. Valk Gerlof D. Complex interventions for
35	preventing diabetic foot ulceration. Cochrane Database of Systematic Reviews 2010: (1).
36	http://www.mrw.interscience.wiley.com/cochrane/clsvsrey/articles/CD007610/frame.html
37	17 Dorresteijn Johannes AN KDM Assendelft Willem II. Valk Gerlof D. Patient education for
38	preventing diabetic foot ulceration. Cochrane Database of Systematic Reviews Undated:
39	John Wilow & Song 1td
40	http://oplipalibrary.wiloy.com/doi/10.1002/14651858.CD001488.pub4/abstract/accossed
41	
42	2012). 10. Device SU, Diadu N. The face it it of exections a charactic factor of a state of the
43	18. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the
44 15	methodological quality both of randomised and non-randomised studies of health care
45 46	interventions. Journal of Epidemiology and Community Health 1998; 52 (6):377-84 doi:
40 47	10.1136/jech.52.6.377[published Online First: Epub Date]].
48	19. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ
40	2003;327(7414):557-60 doi: 10.1136/bmj.327.7414.557[published Online First: Epub Date] .
50	20. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews
51	and meta-analyses of studies that evaluate healthcare interventions: explanation and
52	elaboration. BMJ 2009;339 doi: 10.1136/bmj.b2700[published Online First: Epub Date] .
53	21. Lavery LA, Hunt NA, LaFontaine J, Baxter CL, Ndip A, Boulton AJM. Diabetic Foot Prevention.
54	Diabetes Care 2010;33(7):1460-62 doi: 10.2337/dc10-0310[published Online First: Epub
55	Date] .
56	
57	
58	
59	
60	9

- Ronnemaa T, Hamalainen H, Toikka T, Liukkonen I. Evaluation of the impact of podiatrist care in the primary prevention of foot problems in diabetic subjects. Diabetes Care 1997;20(12):1833-7
- 23. Plank J, Haas W, Rakovac I, et al. Evaluation of the Impact of Chiropodist Care in the Secondary Prevention of Foot Ulcerations in Diabetic Subjects. Diabetes Care 2003;26(6):1691-95 doi: 10.2337/diacare.26.6.1691[published Online First: Epub Date]].
- 24. Sowell RD, Mangel WB, Kilczewski CJ, Normington JM. Effect of podiatric medical care on rates of lower-extremity amputation in a Medicare population. J Am Podiatr Med Assoc 1999;89(6):312-7
- 25. Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JPA. Critical interpretation of Cochran's Q test depends on power and prior assumptions about heterogeneity. Research Synthesis Methods 2010;1(2):149-61 doi: 10.1002/jrsm.13[published Online First: Epub Date]].
- 26. Fylkesnes K. Determinants of Health Care Utilization Visits and Referrals. Scandinavian Journal of Public Health 1993;21(1):40-50 doi: 10.1177/140349489302100107[published Online First: Epub Date]].
- 27. Adamson J, Ben-Shlomo Y, Chaturvedi N, Donovan J. Ethnicity, socio-economic position and gender—do they affect reported health—care seeking behaviour? Social Science & amp; Medicine 2003;57(5):895-904 doi: 10.1016/s0277-9536(02)00458-6[published Online First: Epub Date]].
- Jackson LA, Jackson ML, Nelson JC, Neuzil KM, Weiss NS. Evidence of bias in estimates of influenza vaccine effectiveness in seniors. International Journal of Epidemiology 2006;35(2):337-44 doi: 10.1093/ije/dyi274[published Online First: Epub Date]].
- 29. Leese GP, Schofield CJ. Amputations in diabetes: A changing scene. Practical Diabetes International 2008;25(8):297-99
- 30. El Sakka K, Fassiadis N, Gambhir RP, et al. An integrated care pathway to save the critically ischaemic diabetic foot. Int J Clin Pract 2006;60(6):667-9 doi: 10.1111/j.1368-5031.2006.00953.x[published Online First: Epub Date]].
- 31. Dargis V, Pantelejeva O, Jonushaite A, Vileikyte L, Boulton AJ. Benefits of a multidisciplinary approach in the management of recurrent diabetic foot ulceration in Lithuania: a prospective study. Diabetes Care 1999;22(9):1428-31
- 32. Van Gils CC, Wheeler LA, Mellstrom M, Brinton EA, Mason S, Wheeler CG. Amputation prevention by vascular surgery and podiatry collaboration in high-risk diabetic and nondiabetic patients. The Operation Desert Foot experience. Diabetes Care 1999;22(5):678-83
- 33. Meltzer DD, Pels S, Payne WG, et al. Decreasing amputation rates in patients with diabetes mellitus. An outcome study. Journal of the American Podiatric Medical Association 2002;92(8):425-28
- 34. Larsson J, Apelqvist J, Agardh CD, Stenstrom A. Decreasing incidence of major amputation in diabetic patients: a consequence of a multidisciplinary foot care team approach? Diabet Med 1995;12(9):770-6
- 35. Frykberg RG. Team approach toward lower extremity amputation prevention in diabetes. J Am Podiatr Med Assoc 1997;87(7):305-12
- 36. Patout CA, Birke JA, Horswell R, Williams D, Cerise FP. Effectiveness of a comprehensive diabetes lower-extremity amputation prevention program in a predominantly low-income African-American population. Diabetes Care 2000;23(9):1339-42 doi: 10.2337/diacare.23.9.1339[published Online First: Epub Date]].
- 37. Lipscombe J, Jassal SV, Bailey S, Bargman JM, Vas S, Oreopoulos DG. Chiropody may prevent amputations in diabetic patients on peritoneal dialysis. Perit Dial Int 2003;23(3):255-9
- 38. Sloan FA, Feinglos MN, Grossman DS. Receipt of Care and Reduction of Lower Extremity Amputations in a Nationally Representative Sample of U.S. Elderly. Health Services Research

2010;45(6p1):1740-62 doi: 10.1111/j.1475-6773.2010.01157.x[published Online First: Epub Date]|.

Table legends

- Table 1 Characteristics of Included Studies
- Table 2 Quality Assessment of Included RCTs
- Table 3 Quality Assessment of Included Cohort Studies
- Table 4 Results of Included Studies

Appendices legends

Appendix 1 Diabetic foot risk stratification and triage Appendix 2 Search Strategy for PUBMED (1966 – Sept 25th 2011) Appendix 3 Search Strategy for CINAHL (1981 – Sept 25th 2011) Appendix 4 Search Strategy for EMBASE (1974 – Sept 25th 2011) Appendix 5 Search Strategy for Cochrane (1993 – Sept 25th 2011) Appendix 6 Table of Excluded Studies

TABLES

Table 1 Characteristics of Included Studies

Study (Author, Country, Year)	Type of study	Participants	Interventions	Source of data used in study	Length of follow-up	Baseline risk as per diabetic foot risk stratification [14]	Outcomes
Ronnemaa,	RCT	530 patients with	Intervention: 45 minutes individual	Clinical	1 year and	Low	Primary: Patient
Finland,		diabetes	patient education	report	7 years		Knowledge about
1997[22]		randomised	Podiatric care visits as necessary	forms			foot care
		Intervention: 267	Control: Written information				Secondary:
		Control: 263					Ulcer incidence
							Amputation rate
Plank, Austria,	RCT	91 patients with	Intervention: Chiropodist visit at least	Clinical	386 days	High (healed	Primary: recurrence
2003[23]		diabetes	once a month	report	(368-424,	foot ulcers)	rate of ulcers
		randomised	Control: chiropodist treatment not	forms	25 th -75 th		Secondary:
		Intervention: 47	specifically recommended		percentile)		Amputation rate
		Control: 44					Death
Sowell, USA,	Cohort	255,256 with	Intervention: Podiatric Medical care –	Medicare	1 year	Unknown	Number of
1999[24]		diabetes or PVD or	receipt of any M0101 services	claims			Amputations
		gangrene	Comparison: Did not receive podiatry	database			
		followed over time	(M0101) services				
Lipscombe,	Cohort	132 patients with	Intervention: Assessment, education	Medical	3 years	High	Amputation
Canada, 2003		diabetes on PD	and footcare by chiropody	charts			
[37]		(Peritoneal					
		Dialysis)					

Lavery, USA,	Cohort	300 high-risk	Intervention: Podiatry services -	Claims	30 months	High (history of	Amputation rate
2010[21]		patients with	number of visits to podiatrist for	data &		foot ulcer)	Ulcer incidence
		diabetes	prevention, ulcer treatment of other	Electronic			
		150 with an ulcer	pathology	Medical			
		history		Records			
		150 on dialysis					
		followed over time					
Sloan, UK,	Cohort	189,598 patients	Intervention: Care provided by	Medicare	6 years	Stage 1:	Amputation rate
2010[38]		with diabetes	podiatrist	claims		Moderate	
		followed over time	Comparison: Care provided by 'other	database		Stage 2: High	
		Participants	health professional' –			Stage 3: Active	
		grouped into	GP/Internist/Endocrinologist/Nurse/Ph			Stage 4: Active	
		different stages (1-	ysician Assistant				
		4) of disease					
		depending on					
		severity of					
		symptoms & signs					

Table 2 Quality Assessment of Included RCTs

Study (Author,	Type of study	Base Population	Randomisation	Blinding	Confounding	Losses to follow-	Analysis
Country, Year)						up	
Ronnemaa, Finland, 1997[22]	RCT	Community based care in Finland, receiving anti- diabetic drug treatment from the national drug reimbursement register	Randomisation performed separately for men/women and patients 20 years. Method of randomisation not described	Outcome assessor blinded to baseline characteristics but no further information on blinding provided	Baseline Characteristics not described	Follow-up completed by 63% of patients in intervention group and 62% patients in control group at seven years	No intention to treat analysis undertaken
Plank, Austria, 2003[23]	RCT	All in routine outpatient care at hospital diabetic foot clinic in Austria	Subjects were assigned a patient number in ascending order and randomly allocated to the intervention or control group	Allocation concealment ensured	Similar Baseline Characteristics	All patients followed up	Intention to treat & per protocol analysis

Table 3 Quality Assessment of Included Cohort Studies

Study (Author, Country,	Type of study	Base Population	Confounding	Losses to follow-up	Analysis
Year)					
Sowell, USA, 1999[24]	Cohort	All Medicare population at	Not addressed – only	No losses to follow-up	Amputation incidence
		risk for lower extremity	looked at 1 variable –		rates with & without
		amputation in 1993-1994	acknowledged as a		exposure to podiatry
			limitation		
Lipscombe,	Cohort	Patients in Peritoneal	Data on confounding	No losses to follow-up	Descriptive Stats
Canada, 2003 [37]		Dialysis program at	variables collected		
		University Health			
		Network, between			
		January 1997 and			
		December 1999			
Lavery, USA, 2010[21]	Cohort	Patients with diabetes	Data on confounding	150 consecutive patients	Descriptive Stats
		attending Scott and White	variables collected	with at least 30 months	
		Health Plan, Texas, USA		follow-up from the time	
				of diagnosis recruited so	
				no losses to follow-up	
Sloan, UK, 2010[38]	Cohort	All individuals with a DM-	Data on confounding	No losses to follow-up	Hazard Ratios adjusted for
		related LEC diagnosis	variables collected		Medicare expenditures
		between 1994 and 2001			from care received from
					non-study health
					professionals

Table 4 Results of Included Studies

Study (Author, Country, Year)	Type of	Primary Outcome	Baseline risk as per diabetic foot risk	Relative risk of amputation
	study		stratification [14]	with contact with a
				podiatrist compared to no
				contact with a podiatrist
Ronnemaa, Finland, 1997 [22]	RCT	Diabetes-related Amputation:	Low	2.96
		One year follow-up: Intervention: 0 Control: 0		
		Seven years follow-up: Intervention: 1 Control: 0		
Plank, Austria, 2003[23]	RCT	Diabetes-related Amputation:	High (healed foot ulcers)	0.9
		One year follow-up: Intervention: 2 Control: 1		
Sowell, USA, 1999[24]	Cohort	Amputation related to diabetes/gangrene/PVD	Unknown	0.25
		One year follow-up: Intervention: 20		
		Control: 130	•	
Lipscombe,	Cohort	Diabetes-related Amputation:	High	2.1
Canada, 2003 [37]		Amputation during any of the 3 years of the		
		study: Intervention: 11 Control: 4		
Lavery, USA, 2010[21]	Cohort	Diabetes-related Amputation:	High (history of foot ulcer)	Unknown
		Actual number of amputations not outlined		
		Amputation Incidence Density:		
		58.7 in Dialysis Group per 1,000 person years		
		13.1 in Ulcer Group per 1,000 person years		
Sloan, UK, 2010[38]	Cohort	Diabetes-related Amputation:	Stage 1: Moderate	Stage 1 disease : 2.2
		Six year follow-up: actual number of	Stage 2: High	Stage 2 disease : 0.85
		amputations not outlined	Stage 3: Active	Stage 3 disease : 0.44
			Stage 4: Active	Stage 4 disease : 0.36

Figure 2 Forest plots of meta- analysis of RCTs (top) and Cohort studies (bottom) with the intervention of contact with a podiatrist on left side of plot

Figure 3 Funnel plot of included studies (RCTs and Cohort studies)

PRISMA 2009 Checklist

4 5 Section/topic 6	#	Checklist item	Reported on page #
9 Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
12 Structured summary 13 14	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
17 Rationale	3	Describe the rationale for the review in the context of what is already known.	4
1 ⁸ Objectives 19 20	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
2 METHODS			
²⁷ Protocol and registration 23 24	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	4
25 Eligibility criteria 26	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	4-5
27 28 29	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4
30 Search 31	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	19-22
32 33 34	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
35 Data collection process 36	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5
37 ₃₈ Data items 39	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5
40 Risk of bias in individual	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	5
42 43 Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	5
44 Synthesis of results 45	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	5
47 48		Page 1 of 2	

PRISMA 2009 Checklist

4 5 6	Section/topic	#	Checklist item	Reported on page #
7 8 0	Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	5
9 1(1'	Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
12	RESULTS			
14 15	Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	5 Figure 1
16 17 18	Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	13-14
19	Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	15-16
20 27 22	Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	17 Figure 2
23	Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	6
25 25 26	Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	6 Figure 3
27	Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	7
29	DISCUSSION	•		
3 32	Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	6
33 34 34	³ Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	6
36	Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	7-8
38			·	
39 40 4	P Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	8
42 43 43	<i>From:</i> Moher D, Liberati A, Tetzlaff doi:10.1371/journal.pmed1000097	J, Altm	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med	6(6): e1000097.
4	$\overline{\mathbf{D}}$		For more information, visit: <u>www.prisma-statement.org</u> .	
46	6		For peer review only - http://bmjoben?ofnj.com/site/about/guidelines.xhtml	

PROTOCOL FOR SYSTEMATIC REVIEW

DOES CONTACT WITH A PODIATRIST PREVENT THE OCCURRENCE OF A LOWER EXTREMITY AMPUTATION IN PEOPLE WITH DIABETES? A SYSTEMATIC REVIEW AND META-ANALYSIS

Authors:

Dr Claire M. Buckley Professor Ivan J. Perry Professor Colin P. Bradley Dr Patricia M. Kearney

BACKGROUND

Diabetes is associated with a significant risk of LEA (lower extremity amputation)[1]. LEA rates vary between communities, 46-9,600 per 10⁵ people with diabetes, for many reasons [2]. A number of factors influence the occurrence of a LEA in patients with diabetes; including hypertension, obesity and hyperglycaemia [3-7]. In the foot, previous ulceration, infection and ischaemia are proven risk factors [8]. Nearly 85% of amputations begin as foot ulcers among persons with diabetes [9]. Protective factors include control of clinical parameters and screening to identify those patients at high risk [10]. Many LEAs are preventable [11]. Thus, the effects of clinical and socio-demographic risk factors on the occurrence of a lower extremity amputation have been well documented in patients with diabetes in previous studies [12] [13] [14]. However, the effect of patient contact with a podiatrist on the occurrence of LEA in patients with diabetes is less well explored.

In 1998, the ADA (American Diabetes Association) published a technical review and position statement on preventive foot care in people with diabetes, highlighting the importance of foot care in people with diabetes to prevent adverse outcomes [15 16]. An updated position statement by the ADA in 2003 stated that early recognition and management of independent risk factors for ulcers and amputations can prevent or delay the onset of adverse outcomes [17]. However, these statements did not specify the role of podiatry. In 2005, the Standards of Medical Care of Diabetes issued by the ADA advised that problems involving the feet, especially ulcers and wound care, may require care by a podiatrist [18]. And in 2008, a task force report by the Foot Care Interest Group of the ADA stated that all patients with diabetes should be assigned to a foot risk category. These categories were designed to direct referral and subsequent therapy by the speciality clinician or team [19]. This report did not outline the role of podiatry does have a place in footcare of patients with diabetes. It is now being recognised across the globe that podiatry has a role in the management of the diabetic foot. Guidelines from Scotland, Europe outline a diabetic risk stratification and triage tool, highlighting which patients need podiatry referral [20] (Appendix 1).

The management of diabetes is a complex process involving many healthcare professionals, including podiatrists. Two previous Cochrane reviews by Dorrestiejn et al have looked at lower extremity amputation in patients with diabetes as an outcome [21 22]. In 2009, Dorrestiejn et al concluded that there is no high quality evidence evaluating complex interventions (complex intervention defined as an integrated care approach) and insufficient evidence of benefit in preventing diabetic foot ulceration [21]. The second Cochrane review in 2010 concluded that there is insufficient robust evidence that limited patient education alone is effective in achieving clinically relevant reductions in ulcer and amputation incidence [22]. Individual patient contact with a podiatrist was not examined as an intervention in either review. To the best of our knowledge, the effect of contact with a podiatrist on the occurrence of a LEA in patients with diabetes has not been previously examined in any systematic review.

This review will look at contact with a podiatrist as an intervention to prevent LEA in patients with diabetes. Randomised and non-randomised studies will be included.

Objectives

To conduct a systematic review of international literature to determine if contact with a podiatrist has an effect on the occurrence of LEA in patients with diabetes.

METHODS

Criteria for considering studies for review

Types of study design

Randomised and non-randomised studies that allow analysis of the effect of patient contact with a podiatrist in preventing LEAs will be included.

Types of participants

People with type 1 or type 2 diabetes mellitus in any health care setting.

Types of interventions

Studies of patients with diabetes attending a podiatrist for treatment alone or for treatment and education to prevent the occurrence of LEA will be included. Comparison groups will be those that were not in contact with podiatrists or received written instructions only.

Types of outcome measures

Primary: LEA (first or repeat)

Secondary: N/A

Table 1 Inclusion & Exclusion Criteria

Inclusion Criteria:	Exclusion Criteria:
Any time	Cross-sectional studies
English language	Review articles
Any Country	Non-systematic reviews
 Any age 	Chart reviews /Case series
 Patients with a diagnosis of diabetes – either type 1 or type 2 	

Search strategy for identification of studies

Published studies will be identified through searches of PUBMED, CINAHL, EMBASE (Excerpta Medica), and Cochrane databases. No time-limits will be implemented. Where a study is reported in more than one article, data will be extracted from the most relevant report. The key search terms will be 'podiatry', 'amputation' and 'diabetes'. (Figure 1)

Page 25 of 34

Figure 1 Venn diagram of key terms for search strategy

A comprehensive search strategy will be devised with the advice of the librarian. Key terms will be searched as MeSH (Medical Subject Heading) terms e.g. 'diabetes - MeSH term' and as free text with/without truncation as appropriate e.g. 'Diabet*(this symbol is used for identifying all words starting with Diabet, e.g. diabetes, diabetic etc.). The search will include case-control studies, cohort studies, retrospective and prospective studies, articles, clinical trials and RCTs. The strategy will be adapted as per database requirements.

In addition, hand searches will be conducted of the reference lists of all articles retrieved to identify other potentially eligible articles.

Methods - data collection and analysis

Selection of studies

Full copies of potentially eligible studies will be obtained and two review authors (CMB and PK) will decide independently on inclusion or exclusion (table 1). In the case of disagreement, consensus will be reached by discussion between four review authors (CMB, PK, CB and IJ).

Data extraction and management

Data on eligible studies will be extracted and summarised using a pre-agreed data extraction summary form. This form will include study design, baseline characteristics of participants including number of participants, age, gender, ethnicity, type of diabetes, information on exposure, outcome measure (lower extremity amputation) and other relevant data. Risk of foot disease at baseline will be assessed using the Diabetic foot risk stratification and triage system from the SIGN (Scottish Intercollegiate Guidelines Network) guidelines (Appendix 1). If the data required for the review is missing from the published article, the authors will be contacted.

Assessment of quality in included studies

A modified version of a checklist developed by Downs and Black for assessing the methodological quality of both randomised and non-randomised studies of health care interventions will be used to critically appraise the studies in this review [23].

Assessment of heterogeneity

All eligible studies will be included in the data analysis. If data are too scarce or the quality of the studies is inadequate or results are too varied to present in numerical form, the authors will perform a narrative qualitative summary. If appropriate, meta-analysis will be attempted to pool outcome data. Either a fixed or random effects model will be used depending on the heterogeneity between studies. The most suitable model will be chosen after assessing the l² statistic for heterogeneity.

Pilot Results

Preliminary searches of the electronic databases have yielded approximately 500 titles & abstracts for initial screening.

REFERENCES

- Vamos EP, Bottle A, Edmonds ME, Valabhji J, Majeed A, Millett C. Changes in the Incidence of Lower Extremity Amputations in Individuals With and Without Diabetes in England Between 2004 and 2008. Diabetes Care 2010;33(12):2592-97 doi: 10.2337/dc10-0989[published Online First: Epub Date]|.
- 2. Moxey P, Gogalniceanu P, Hinchliffe R, et al. Lower extremity amputations—a review of global variability in incidence. Diabetic Medicine 2011;**28**(10):1144–53
- 3. Turner R, Holman R, Stratton I, et al. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;**317**(7160):703-13
- 4. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352(9131):837-53 doi: S0140673698070196 [pii][published Online First: Epub Date]].
- Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;**352**(9131):854-65 doi: S0140673698070378 [pii][published Online First: Epub Date]].
- 6. DCCT. The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine 1993;**329**(14):977-86 doi: doi:10.1056/NEJM199309303291401[published Online First: Epub Date]].
- 7. EDIC. Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 1999;22(1):99-111 doi: 10.2337/diacare.22.1.99[published Online First: Epub Date]|.
- Boulton AJ. Lowering the risk of neuropathy, foot ulcers and amputations. Diabet Med 1998;15 Suppl 4:S57-9 doi: 10.1002/(sici)1096-9136(1998120)15:4+<s57::aid-dia741>3.0.co;2d[published Online First: Epub Date]].
- 9. Apelqvist J, Larsson J. What is the most effective way to reduce incidence of amputation in the diabetic foot? Diabetes/metabolism research and reviews 2000;**16**(S1):S75-S83
- 10. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA 2005;**293**(2):217-28

BMJ Open

2	
3	11. IDF. Position Statement - the Diabetic Foot. Secondary Position Statement - the Diabetic Foot.
4	http://www.idf.org/position-statement-diabetic-foot
5	12 Adler AL Boyke EL Abroni III Smith DC Lower extremity amputation in diabetes. The
6	12. Adiel Al, boyko LJ, Allioni JL, Sinici DO. Lower-extremity amputation in diabetes. The
7	independent effects of peripheral vascular disease, sensory neuropathy, and foot dicers.
8	Diabetes Care 1999; 22 (7):1029
0	13. Pecoraro R, Reiber G, Burgess E. Pathways to diabetic limb amputation. Basis for prevention.
9 10	Diabetes Care 1990; 13 (5):513
10	14. Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk A. Type 2 diabetes incidence and socio-
11	economic position: a systematic review and meta-analysis. International Journal of
12	Enidemiology 2011 doi: 10 1093/ije/dyr029[nublished Online First: Enub Date]
13	15 Mayfield L Poiber G. Sanders L. Janisse D. Pogash L. Proventive feet sare in neonle with diabetes
14	13. Mayneid J, Reiber G, Sanders E, Janisse D, Fogach E. Freventive root care in people with diabetes.
15	
16	16. ADA. Position Statement: Preventive foot care in people with diabetes Diabetes Care
17	1998; 21 :217 <mark>8 – 7</mark> 9
18	17. ADA. Preventive Foot Care in People With Diabetes. Diabetes Care 2003;26(suppl 1):s78-s79 doi:
19	10.2337/diacare.26.2007.S78[published Online First: Epub Date]].
20	18. ADA. Standards of Medical Care in Diabetes. Diabetes Care 2005: 28 (suppl 1):s4-s36 doi:
21	10 2337/diacare 28 suppl 1 S4[nublished Online First: Enub Date]]
22	19 Boulton AIM Armstrong DG Albert SE et al Comprehensive Foot Evamination and Risk
23	13. Boulton Asivi, Amistiong DO, Albert SI, et al. Comprehensive Foot Examination and Nisk
24	
25	First: Epub Date]].
26	20. SIGN. Management of diabetes. A national clinical guideline March 2010.
27	http://www.sign.ac.uk/pdf/sign116.pdf.
28	21. Dorresteijn Johannes AN, Kriegsman Didi MW, Valk Gerlof D. Complex interventions for
29	preventing diabetic foot ulceration. Cochrane Database of Systematic Reviews 2010; (1).
30	http://www.mrw.interscience.wiley.com/cochrane/clsysrey/articles/CD007610/frame.html
31	22 Dorresteijn Johannes AN, Kriegsman Didi MW, Assendelft Willem II, Valk Gerlof D, Patient
32	adjustion for proventing disbetic feet ulcoration. Cochrane Database of Systematic Poviews
33	2010: (5)
34	
35	nttp://www.mrw.interscience.wiley.com/cochrane/cisysrev/articles/CD001488/frame.ntml.
36	23. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the
37	methodological quality both of randomised and non-randomised studies of health care
38	interventions. Journal of Epidemiology and Community Health 1998; 52 (6):377-84 doi:
30	10.1136/jech.52.6.377[published Online First: Epub Date] .
40	
40	
41	
42	
т.) ЛЛ	
 15	
40	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Appendices

 Appendix 1 Diabetic foot risk stratification and triage

DIABETIC FOOT RISK STRATIFICATION AND TRIAGE

Produced by the Scottish Diabetes Group - Foot Action Group

These risk categories relate to the use of the SCI-DC foot risk stratification tool

~	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
25	
30	
36	
37	
38	
39	
<u>الا</u>	
40	
41	
42	
43	
44	
45	
40	
40	
47	
48	
49	
50	
50 E1	
51	
52	
53	
54	
55	
50	
00	
5/	
58	
59	

60

Appendix 2 Search Strategy for PUBMED (1966 – Sept 25 2011)	Appendix 2 Search Strategy for PUBMED (1966 – Sept 25 th 2	2011)
---	---	-------

- 1. Diabetes mellitus (MeSH)
- 2. Diabet*
- 3. 1 or 2
- 4. Amputation (MeSH)
- 5. Amput*
- 6. 4 or 5
- 7. Podiatry (MeSH)
- 8. Podiatr*
- 9. 7 or 8
- 10. Case-control study (MeSH)
- 11. Case-control* (free text)
- 12. Cohort studies (MeSH)
- 13. Cohort* (free text)
- 14. Retrospective Studies (MeSH)
- 15. Prospective Studies (MeSH)
- 16. Journal Article (Publication type)
- 17. Clinical Trial (Publication Type)
- 4.0 18. Randomized Controlled Trial (Publication Type)
- 19. 10 or 11 or 12 or 13 or 14 or 14 or 16 or 17 or 18
- 20. 3 and 6 and 9 and 19

BMJ Open

Appendix 3 Search Strategy for CINAHL (1981 – Sept 25th 2011)

- (MH "Diabetes Mellitus+") OR (MH "Diabetes Mellitus, Insulin-Dependent") OR (MH "Diabetes Mellitus, Non-Insulin-Dependent")
- 2. Diabet*
- 3. 1 or 2
- (MH "Amputation+") OR (MH "Above-Knee Amputation") OR (MH "Amputation Stumps") OR (MH "Amputation Care (Iowa NIC)")
- 5. Amput*
- 6. 4 or 5
- Podiatric Assessment") OR (MH "Education, Podiatry") OR (MH "Surgery, Podiatric+") OR (MH "Podiatric Care")
- 8. Podiatr*
- 9. 7 or 8
- 10. (MH "Case Control Studies+")
- 11. Case-control* (free text)
- 12. Cohort studies (MeSH)
- 13. Cohort* (free text)
- 14. (MH "Retrospective Panel Studies") OR (MH "Retrospective Design")
- 15. (MH "Prospective Studies") OR (MH "Concurrent Prospective Studies") OR (MH "Nonconcurrent Prospective Studies")
- 16. (MH "Electronic Publications+") OR (MH "Electronic Journals") OR (MH "Publication Formats+")
- 17. Article (free text)
- 18. (MH "Clinical Trials+")
- 19. (MH "Randomized Controlled Trials")
- 20. 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19
- 21. 3 and 6 and 9 and 20

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
20	
20	
21	
20	
29	
30	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59 60 Appendix 4 Search Strategy for EMBASE (1974 – Sept 25th 2011)

- 1. 'diabetes mellitus'/exp
- 2. diabet*
- 3. 1 or 2
- 4. 'amputation'/exp
- 5. amput*
- 6. 4 or 5
- 7. 'podiatry'/exp
- 8. podiatr*
- 9. 7 or 8
- 10. 'case control study'/exp (mesh/emtree)
- 11. 'case control study'/exp OR 'case control study' (case control*)
- 12. 'cohort study'/exp (mesh/emtree)
- 13. Cohort*
- 14. 'retrospective study'/exp
- 15. 'prospective study'/exp
- 16. 'article'/exp
- 17. 'clinical trial'/exp
- 18. 'randomized controlled trial'/exp
- 19. 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18
- 20. 3 and 6 and 9 and 19

BMJ Open

Appendix 5 Search Strategy for Cochrane (1993 – Sept 25th 2011)

- 1. MeSH descriptor Diabetes Mellitus explode all trees in all MeSH products
- 2. Diabet*
- 3. 1 or 2
- 4. MeSH descriptor Amputation explode all trees
- 5. Amput*
- 6. 4 or 5
- 7. <u>MeSH descriptor</u> Podiatry <u>explode all trees</u>
- 8. Podiatr*
- 9. 7 or 8
- 10. MeSH descriptor Case-Control Studies explode all trees in all MeSH products
- 11. Case control stud*
- 12. MeSH descriptor Cohort Studies explode all trees in all MeSH products
- 13. Cohort stud*
- 14. MeSH descriptor Retrospective Studies explode all trees in all MeSH products
- 15. MeSH descriptor Prospective Studies explode all trees in all MeSH products
- 16. Article
- 17. Clinical Trial
- 18. Randomised Control Trial
- 19. 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18
- 20. 3 and 6 and 9 and 19

- 13 Cochrane Reviews
- 2 Other Reviews
- 6 Clinical Trials
- 2 Technology Assessments
- 2 Economic Evaluations
- 1 Cochrane Group

Appendix 6 Table of Excluded Studies

Study (Author, Country, Year)	Exclusion criteria	Details
Driver, 2010[39]	Intervention	Podiatric lead limb preservation team - No data on contact with a podiatrist as the
		intervention available
Ellis, 2010[40]	Design / Outcome	Audit / Diabetic Foot Complication
Zayed, 2009[41]	Intervention	Podiatry as part of Multidisciplinary team - No data on contact with a podiatrist as the intervention available
Snyder, 2006[42]	Design	Chart review/case series,
	No reporting of association	Intervention on subset of patients, comparison group not available for this subset
Robbins, 2006[43]	Intervention	Podiatry as part of Multidisciplinary team - No data on contact with a podiatrist as the intervention available
El Sakka 2006[30]	Intervention	Podiatry as part of Multidisciplinary team - No data on contact with a podiatrist as the intervention available
Schraer, 2004[44]	Intervention	Program
Dargis, 1999[31]	Intervention	Podiatry as part of Multidisciplinary team - No data on contact with a podiatrist as the intervention available
Van Gils, 1999[32]	Intervention	Podiatry as part of Multidisciplinary team - No data on contact with a podiatrist as the intervention available
Del Aguila, 1994[45]	No report of association	Number of podiatry visits in 12 months described - Unable to determine whom were not exposed to podiatry
Malone, 1989[46]	Intervention	Intervention involved education by podiatrists, not treatment
Crane, USA, 1999[47]	Intervention	Podiatry-established critical pathway
Carrington, UK, 2001[48]	Intervention	Program including podiatry

Hamalainen, Finland, 1998 [49] McCabe, UK, 1998 [50]	Study described in another paper Intervention	Clinical foot screening programme, only subset of population seen by podiatrist, no
McCabe, UK, 1998 [50]	another paper Intervention	Clinical foot screening programme, only subset of population seen by podiatrist, no
McCabe, UK, 1998 [50]	Intervention	Clinical foot screening programme, only subset of population seen by podiatrist, no
		comparison group involved

BMJ Open

Does contact with a podiatrist prevent the occurrence of a lower extremity amputation in people with diabetes? A systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID:	bmjopen-2012-002331.R1
Article Type:	Research
Date Submitted by the Author:	19-Feb-2013
Complete List of Authors:	Buckley, Claire; UCC, Perry, Ivan; University College Cork, Department of Epidemiology and Public Health Bradley, Colin; University College Cork, Dept of General Practice Kearney, Patricia; University College Cork, Department of Epidemiology and Public Health
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	Health services research, Evidence based practice, Surgery
Keywords:	Diabetic foot < DIABETES & ENDOCRINOLOGY, VASCULAR SURGERY, Organisation of health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts
DOES CONTACT WITH A PODIATRIST PREVENT THE OCCURRENCE OF A LOWER EXTREMITY AMPUTATION IN PEOPLE WITH DIABETES? A SYSTEMATIC REVIEW AND META-ANALYSIS

Short title

Contact with podiatry and lower extremity amputation in people with diabetes

CM BUCKLEY (CMB)^{1,2}, IJ PERRY (IJP)², CP BRADLEY (CPB)¹, PM KEARNEY (PMK)²

1. Dept of General Practice, UCC, Western Gateway Building, Cork, Ireland

2. Dept of Epidemiology and Public Health, UCC, Western Gateway Building, Cork, Ireland,

Corresponding author

Claire Buckley, Department of General Practice, Room 2.57, Western Gateway Building, University College Cork, Ireland Tel No: 00353 86 6020313, Fax No: 00353 21 4205469, Email: Claire.buckley@ucc.ie

Keywords

Podiatry, Amputation, Diabetes Mellitus, Systematic Review, Meta-analysis

Word Count

Abstract: 300 words

Main text: 2,696 words (excluding title page, abstract, references, figures, tables and appendices)

ABSTRACT

Objective

To determine the effect of contact with a podiatrist on the occurrence of Lower Extremity Amputation (LEA) in people with diabetes.

Design & data sources

We conducted a systematic review of available literature on the effect of contact with a podiatrist on the risk of LEA in people with diabetes. Eligible studies, published in English, were identified through searches of PUBMED, CINAHL, EMBASE, and Cochrane databases. The key terms, 'podiatry', 'amputation' and 'diabetes', were searched as Medical Subject Heading (MeSH) terms. Reference lists of selected papers were hand-searched for additional articles. No date restrictions were imposed.

Study Selection

Published randomised and analytical observational studies of the effect of contact with a podiatrist on the risk of LEA in people with diabetes were included. Cross-sectional studies, review articles, chart reviews and case series were excluded. Two reviewers independently assessed titles, abstracts, and full articles to identify eligible studies and extracted data related to study design, characteristics of participants, interventions, outcomes, control for confounding factors and risk estimates.

Analysis

Meta-analysis was performed separately for randomised and non-randomised studies. Relative risks (RRs) with 95% confidence intervals (CIs) were estimated with fixed and random effects models as appropriate.

Results

Six studies met the inclusion criteria and five provided data included in meta-analysis. The identified studies were heterogenous in design and included people with diabetes at both low and high risk of amputation. Contact with a podiatrist did not significantly affect the RR of LEA in a meta-analysis of available data from Randomised Controlled Trials (RCTs); (1.41, 95% CI 0.20-9.78, 2 RCTs) or from cohort studies; (0.73, 95% CI 0.39-1.33, 3 Cohort studies with 4 substudies in one cohort).

Conclusions

There is very limited data available on the effect of contact with a podiatrist on the risk of LEA in people with diabetes.

ARTICLE SUMMARY

Article Focus

- People with diabetes are at increased risk of Lower Extremity Amputation (LEA). As the prevalence of diabetes escalates worldwide, it is anticipated that there will be an increase in the number of LEAs.
- It is assumed that contact with a podiatrist prevents the occurrence of a LEA.
- This systematic review aims to determine from available literature the documented effect of contact with a podiatrist on the occurrence of a LEA in people with diabetes.

Key Messages

- Very limited data is available and the authors conclude that there is insufficient evidence to determine whether contact with a podiatrist has an effect on the risk of LEA in people with diabetes.
- Some existing studies suggest that contact with a podiatrist has a positive effect on shorter term outcomes including patient knowledge of foot care and ulcer recurrence.
- Further research on the long-term outcome of LEA is warranted.

Strengths and Limitations

- This is the first systematic review which investigates if contact with a podiatrist prevents the occurrence of a LEA in people with diabetes.
- Failure to demonstrate an effect on this long-term outcome is most likely due to limitations of available studies.
- Limitations include that studies in this systematic review looked at different sample populations ranging from patients with low baseline risk to patients with active disease. Also, included RCTs were underpowered to detect a significant difference for the outcome of LEA.

INTRODUCTION

 A worldwide diabetes epidemic is unfolding[1]. Diabetes is associated with a significantly increased risk of LEA (Lower Extremity Amputation). LEA rates vary between populations with estimates ranging from 46 to 9,600 per 10⁵ people with diabetes [2]. A number of factors influence the occurrence of a LEA in people with diabetes; including hypertension, obesity and hyperglycaemia [3] [4]. In the foot, previous ulceration, infection and ischaemia are proven risk factors [5]. Nearly 85% of amputations begin as foot ulcers among persons with diabetes [6]. Protective factors include control of clinical parameters and screening to identify those people at high risk and many LEAs are preventable [7] [8]. The effects of clinical and socio-demographic risk factors on the occurrence of a LEA have been well documented in people with diabetes [9] [10] [11] [12].

In 2008, a task force report by the Foot Care Interest Group of the American Diabetes Association, which included podiatrists, stated that all people with diabetes should be assigned to a foot risk category [13]. These categories were designed to direct referral to and subsequent therapy by a speciality clinician or team but did not refer specifically to the role of podiatry. Recent guidelines from Scotland outline a diabetic risk stratification and triage tool, highlighting which people need podiatry referral. According to these guidelines, all patients classified as moderate risk (i.e. at least one risk factor present), severe risk or with active disease require podiatry review [14]. Podiatry is practiced as a specialty in many countries and in many English-speaking countries, the older term of 'chiropodist' may still be used. According to the National Health Service in the UK , there is no difference between a chiropodist and a podiatrist [15]. It is assumed that podiatrists prevent LEAs by treating existing disease and educating people with diabetes on proper foot care. However, the effect of patient contact with a podiatrist on the risk of LEA in people with diabetes is unproven.

Two previous Cochrane reviews by Dorresteijn et al. have looked at firstly the effect of an integrated care approach and secondly the effect of patient education on the outcome of LEA in people with diabetes [16] [17]. The first of these reviews found no high quality evidence evaluating an integrated care approach and insufficient evidence of benefit in preventing diabetic foot ulceration [16]. The second review, updated in 2012, concluded that there is insufficient robust evidence that limited patient education alone is effective in achieving clinically relevant reductions in ulcer and LEA incidence [17]. Individual patient contact with a podiatrist was not examined as an intervention in either review. Thus, the objective of the present systematic review of published literature is to examine the effect of contact with a podiatrist on risk of LEA in people with diabetes.

METHODS

The research question, inclusion and exclusion criteria and proposed methods of analysis were specified in advance and documented in a protocol (attached as supplementary file).

Search Strategy

Pubmed, CINAHL, EMBASE (Excerpta Medica), and Cochrane databases were searched to identify relevant studies published up to and including September 25th 2011. The key terms, 'podiatry', 'amputation' and 'diabetes', were searched as Medical Subject Heading (MeSH) terms. Randomised and observational studies, published in English, which reported the effect of contact with a

Page 5 of 50

BMJ Open

podiatrist on risk of LEA in people with diabetes (type 1 or 2), were included. No date restrictions were imposed. Cross-sectional studies, review articles, non-systematic reviews, chart reviews and case series were excluded. A manual search of references cited in relevant articles was performed. All potentially eligible studies were independently reviewed by two authors (CMB and PMK).

Data abstraction and quality assessment:

Using a standardised data collection form, two reviewers (CMB, PMK) independently abstracted information on study design, year of study, characteristics of participants, interventions and outcomes, control for potential confounding factors and risk estimates. A modified version of a checklist developed by Downs and Black for assessing the methodological quality of both randomised and non-randomised studies of health care interventions was used to critically appraise the studies in this review [18]. Inconsistencies between reviewers were discussed and resolved through consensus.

Statistical Analysis

Review Manager Software Version 5 (Revman 5.0; the Cochrane Collaboration, Oxford, England) and STATA Version 12IC were used for statistical analysis. The relative risk (RR) with 95% CI was recorded for included studies. One study presented individual results for four various stages of disease so this study was analysed as 4 substudies. Meta-analysis was performed separately for randomised and non-randomised studies, using either the fixed or random effects model as appropriate. Statistical heterogeneity was assessed with Cochran's *Q* statistic. Cochran's *Q* is computed by summing the squared deviations of each study's estimate from the overall meta-analytic estimate, weighting each study's contribution in the same manner as in the meta-analysis. P-values were obtained by comparing the statistic with a χ^2 distribution with *k*-1 degrees of freedom (where *k* is the number of studies) [19]. To assess publication bias, a funnel plot of the overall estimate and its standard error (SE) was derived.

RESULTS

Four hundred and ninety-nine titles were retrieved from searches of electronic databases. Duplicates (138) were removed and 361 titles/abstracts were reviewed. Eighteen papers were considered for review after initial screening of titles and abstracts. Three further studies were identified as potentially eligible from reference checking. After reviewing the full text articles, 6 studies met the inclusion criteria; 2 RCTS and 4 cohort studies (figure 1)[20]. Studies were excluded because of study design e.g. chart review/audit; intervention e.g. contact with a multidisciplinary team instead of contact with a podiatrist; or in one case, the study was described in another article already included in this systematic review.

Table 1 describes the included studies according to study design, participants, interventions and outcomes. Quality of included studies was assessed and all studies were deemed of suitable quality for inclusion (tables 2 & 3). Risk of foot disease at baseline was assessed using the Diabetic foot risk stratification and triage system from the SIGN (Scottish Intercollegiate Guidelines Network) guidelines (Appendix 1) [14]. Results of included studies are presented in table 4.

Results from available studies were pooled together in separate meta-analyses for RCTs and observational studies. Five of these studies provided sufficient data to allow meta-analysis. For

RCTs, the fixed effects model was applied (*Q*=0.328, p=0.567) and for cohort studies, the random effects model is reported as there was evidence of significant heterogeneity between the cohort studies (Q=32.698, p=0.000). Meta-analysis of the two RCTs yielded an insignificant pooled RR of 1.41 (95% CI 0.20-9.78) while meta-analysis of the cohort studies also yielded an insignificant pooled RR of 0.73 (95% CI 0.39-1.33) (figure 2).

Data required for inclusion in the meta-analysis was unavailable for 1 eligible study. Lavery et al. compared people with diabetes on dialysis and people with diabetes with a history of a healed ulcer. During a 30-month evaluation period, only 30% of patients from both groups combined were seen for preventative care prior to ulceration. The amputation incidence density was high in both groups (dialysis group 58.7 and ulcer group 13.1 per 1,000 person-years) [21]. However, it was not possible to extract the LEA event rate in those who did or did not have contact with a podiatrist.

Visual inspection of the funnel plot produced for the included studies shows no strong evidence of publication bias (figure 3).

DISCUSSION

 In this systematic review, we conclude that there is insufficient evidence to determine whether contact with a podiatrist has an effect on LEA in people with diabetes.

Strengths and limitations of this review

This is the first systematic review that the authors are aware of that investigates if contact with a podiatrist prevents the occurrence of a lower extremity amputation in patients with diabetes. A thorough literature search examining multiple databases was undertaken and 6 studies with 2 different study designs were included. While individual study design meta-analysis was performed in an effort to pool the available data, we acknowledge that heterogeneity exists between studies included in the meta-analysis in terms of baseline diabetic foot risk and type of intervention.

Included studies looked at different sample populations ranging from patients with low baseline risk to patients with active disease. For example, Ronnemaa et al. recruited patients with diabetes from the national drug imbursement register in Finland which is representative of the total population with diabetes [22]. However, Plank et al. recruited patients with diabetes from a tertiary referral centre which represents a population of patients with diabetes that have developed complications requiring referral to a tertiary centre [23]. In 5 of the 6 included studies, the population at risk were patients with diabetes. However, Sowell et al. examined a population mix of patients with diabetes, PVD and gangrene [24]. It was decided to include this study due to the dearth of research in this area. This difference in populations studied between the Sowell paper and the other 5 studies needs to be highlighted as a limitation in this review.

The diabetic foot risk of the participants at baseline (low-active) reflects the different treatment settings at recruitment and highlights heterogeneity amongst the studies (table 1). Cochran's *Q* statistic was used to assess heterogeneity. For RCTs, the fixed effects model was appropriate but this meta-analysis is limited as there are only 2 included studies. For cohort studies, the *Q* statistic of 32.698 (p=0.000) indicated that strong heterogeneity existed so the random effects model was applied to account for both random variability and the variability in effects among the studies. However, use of the random effects model limits the conclusions that can be drawn from the meta-

4

5 6

7

8

9 10

11

12

13

14

15 16

17

18

19 20

21

22

23

24 25

26 27

28

29

30

31

32 33

34

35

36 37

38 39

40

41

42

43 44

45

46

47

48 49

50

51

52 53

54 55

56

57

58 59

60

BMJ Open

analysis [25]. 'A priori' sensitivity analyses were planned for different levels of baseline risk but there were insufficient data.

Sources of potential bias should be considered in relation to the observational studies. Although information was collected on potential confounders in many of the included observational studies, the analyses were not adjusted for potential confounders and sources of bias. Clinical practices may vary per individual and per location. Guidelines have been recently developed to standardise referral of patients with diabetes to podiatry [14]. Healthcare-seeking behaviours are complex and multifactorial and ethnicity and socio-economic position can influence attendance at podiatry [26] [27]. Level of disease may also influence a patient's decision to attend the podiatrist and create a self-selection bias in the patients with diabetes that attend the podiatrist. Patients that attend healthcare services in early stages of disease may be more likely to engage in other healthy lifestyle behaviours e.g. healthy diet, not smoking and this phenomenon of 'healthy user bias' has been previously documented [28]. In their retrospective cohort study, Sowell et al. reported 20 LEAs in the intervention group and 130 in the control group (noting that the population at risk in this study is patients with diabetes and/or gangrene and/or PVD) [24]. This study described the majority of included participants with the outcome of LEA. However, their analysis did not adjust for important potential confounders which limit the conclusions that can be drawn from this study.

The issues of bias and confounding are minimised by the gold standard technique of randomisation in RCTs. However, there is a lack of RCTs in this area. The 2 available RCTs have a lack of power as few participants had the outcome of LEA. The most likely cause of the low numbers of outcomes in the included studies is length of follow-up. LEA takes years to develop, especially from the timepoint when a patient is classified as low risk. In the 1st included RCT, Plank et al. described 2 LEAs in the intervention group and 1 in the control group [23]. In the 2nd RCT, Ronnemaa et al. noted no LEA after 1 year of follow-up and 1 LEA in the intervention group after 7 years of follow-up [22] [16]. Neither RCT was designed to assess LEA as a primary outcome and thus, had insufficient power to detect a significant difference for the outcome of LEA.

Conclusions and Implications

Two Cochrane reviews have looked at the outcome of LEA in patients with diabetes [16] [17]. These reviews concluded that there is insufficient evidence that brief educational interventions or complex interventions reduce the risk of LEA. This systematic review concludes that there is insufficient evidence that contact with a podiatrist reduces the risk of LEA in patients with diabetes. Thus, this review cannot make any recommendations about practice. To detect the true effect, adequately powered RCTs and longer follow-up studies are needed to examine the effect of contact with a podiatrist on LEA in patients with diabetes. Perhaps, podiatry programmes could be rolled out in a manner designed to answer the question of effect on outcomes such as LEA. Such studies could also assess the impact of the timing and intensity of the podiatry intervention on outcomes. Perhaps studies focusing on high-risk participants are too close in timing to the LEA event and studies of lower-risk participants would be better to detect an effect in LEA prevention.

International standards recommend a multidisciplinary team should manage the footcare of a patient with diabetes [14]. Many studies have looked at the effects of a multidisciplinary team of which podiatry serves as a member of the team and found positive effects on various outcomes [29-36]. This may be a more realistic reflection of how patients with diabetes are managed; looking at

one service in isolation could be flawed as services are seldom delivered in isolation. According to the SIGN (Scottish Intercollegiate Guidelines Network) guidelines a multidisciplinary foot team should include a podiatrist, diabetes physician, orthotist, diabetes nurse specialist, vascular surgeon, orthopaedic surgeon and radiologist [14]. A systematic review of the literature looking at the effectiveness of multidisciplinary teams which include contact with a podiatrist would be useful.

Acknowledgements

We would like to thank the authors who responded to our queries and Professor John Browne, UCC for advice on methodology.

Declaration of Competing Interests

Nothing to declare.

Funding

 This project is partially funded by the HRB (Health Research Board), Ireland – Grant Reference Number: HPF/2009/79 and partially funded by the ICGP (Irish College of General Practitioners) Research and Education Foundation.

Contributor statement

Claire M Buckley (CMB) conceived and designed the study, extracted the data and wrote the paper. Ivan J Perry (IJP) revised the paper. Colin P Bradley (CPB) approved the final version to be published. Patricia M Kearney (PMK) designed the study, extracted the data and wrote the paper. CMB will act as guarantor for the paper.

Ethical Approval

None required.

Data Sharing Statement

no additional data available.

Abbreviations

CINAHL, Cumulative Index to Nursing and Allied Health Literature, LEA, Lower Extremity Amputation, MeSH, Medical Subject Headings, NHS, National Health Service, PVD, Peripheral Vascular Disease, RCT, Randomised Controlled Trial, SIGN, Scottish Intercollegiate Guidelines Network, UCC, University College Cork, UK, United Kingdom

REFERENCES

- 1. Lam DW, LeRoith D. The worldwide diabetes epidemic. Current Opinion in Endocrinology, Diabetes and Obesity 2012;**19**(2):93-96 10.1097/MED.0b013e328350583a
- 2. Moxey P, Gogalniceanu P, Hinchliffe R, et al. Lower extremity amputations—a review of global variability in incidence. Diabetic Medicine 2011;**28**(10):1144–53
- 3. Turner R, Holman R, Stratton I, et al. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;**317**(7160):703-13
- 4. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK

BMJ Open

2	
3	Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352 (9131):837-53 doi:
4	S0140673698070196 [pii][published Online First: Epub Date] .
5	5. Boulton AJ. Lowering the risk of neuropathy, foot ulcers and amputations. Diabet Med 1998;15
6	Suppl 4:S57-9 doi: 10.1002/(sici)1096-9136(1998120)15:4+ <s57::aid-dia741>3.0.co;2-</s57::aid-dia741>
7	d[published Online First: Epub Date]].
8	6. Apelovist J. Larsson J. What is the most effective way to reduce incidence of amputation in the
9	diabetic foot? Diabetes/metabolism research and reviews 2000: 16 (S1):S75-S83
10	7 Singh N Armstrong DG Linsky BA Preventing foot ulcers in nationts with diabetes IAMA
11	200E: 202 (2):217.22 doi: 10.1001/jama.202.2.217[published Opling First: Epub Date]]
12	2003, 233 (2).217-28 doi: 10.1001/jania.253.2.217 [published Online First. Lpub Date]].
13	8. IDF. Position Statement - the Diabetic Pool. Secondary Position Statement - the Diabetic Pool.
14	<u>nttp://www.idt.org/position-statement-diabetic-root</u> .
15	9. Adler A, Erqou S, Lima TAS, et al. Association between glycated haemoglobin and the risk of lower
16	extremity amputation in patients with diabetes mellitus—review and meta-analysis.
17	Diabetologia 2010; 53 (5):840-49
18	10. Adler AI, Boyko EJ, Ahroni JH, et al. Lower-extremity amputation in diabetes. The independent
19	effects of peripheral vascular disease, sensory neuropathy, and foot ulcers. Diabetes Care
20	1999; 22 (7):1029
21	11. Pecoraro R, Reiber G, Burgess E. Pathways to diabetic limb amputation. Basis for prevention.
22	Diabetes Care 1990; 13 (5):513
23	12. Agardh E, Allebeck P, Hallqvist J, et al. Type 2 diabetes incidence and socio-economic position: a
24	systematic review and meta-analysis. International Journal of Epidemiology 2011 doi:
20	10.1093/jie/dvr029[published Online First: Epub Date]].
20	13 Boulton AIM Armstrong DG Albert SE et al Comprehensive Foot Examination and Risk
21	Assessment Diabetes Care 2008: 31 (8):1679-85 doi: 10.2337/dc08-9021[nublished Online
20	First: Enub Datall
29	Filst. Lpub Datejj. 14. SICN. Management of diabotes. A notional clinical guideling March 2010
30	14. SIGN. Management of diabetes. A national clinical guideline March 2010.
30	nttp://www.sign.ac.uk/pdf/sign116.pdf
32	15. NHS. Careers in Detail. Secondary Careers in Detail.
34	http://www.nhscareers.nhs.uk/details/Default.aspx?Id=280.
35	16. Dorresteijn Johannes AN, Kriegsman Didi MW, Valk Gerlof D. Complex interventions for
36	preventing diabetic foot ulceration. Cochrane Database of Systematic Reviews 2010; (1).
37	http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD007610/frame.html.
38	17. Dorresteijn Johannes AN KDM, Assendelft Willem JJ, Valk Gerlof D. Patient education for
39	preventing diabetic foot ulceration. Cochrane Database of Systematic Reviews Updated;
40	John Wiley & Sons, Ltd.
41	http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD001488.pub4/abstract (accessed
42	2012).
43	18. Downs SH. Black N. The feasibility of creating a checklist for the assessment of the
44	methodological quality both of randomised and non-randomised studies of health care
45	interventions Journal of Epidemiology and Community Health 1998: 52 (6):377-84 doi:
46	10 1136/jech 52 6 377[nublished Online First: Enub Date]]
47	10.1150/jech.52.0.577 [published Online First: Epub Date]].
48	13. Filiggins JPT, Thompson 30, Deeks JJ, et al. Measuring inconsistency in meta-analyses. Divid
49	2005; 527 (7414).557-60 doi: 10.1136/billj.527.7414.557[published Olimite First. Epub Date]].
50	20. Liberati A, Altman DG, Tetziam J, et al. The PRISMA statement for reporting systematic reviews
51	and meta-analyses of studies that evaluate healthcare interventions: explanation and
52	elaboration. BIVIJ 2009; 339 doi: 10.1136/bmJ.b2/00[published Online First: Epub Date]].
53	21. Lavery LA, Hunt NA, LaFontaine J, et al. Diabetic Foot Prevention. Diabetes Care 2010; 33 (7):1460-
54	62 doi: 10.2337/dc10-0310[published Online First: Epub Date]].
55	22. Ronnemaa T, Hamalainen H, Toikka T, et al. Evaluation of the impact of podiatrist care in the
56	primary prevention of foot problems in diabetic subjects. Diabetes Care 1997;20(12):1833-7
57	
58	
59	
60	9

- 23. Plank J, Haas W, Rakovac I, et al. Evaluation of the Impact of Chiropodist Care in the Secondary Prevention of Foot Ulcerations in Diabetic Subjects. Diabetes Care 2003;**26**(6):1691-95 doi: 10.2337/diacare.26.6.1691[published Online First: Epub Date]].
- 24. Sowell RD, Mangel WB, Kilczewski CJ, et al. Effect of podiatric medical care on rates of lowerextremity amputation in a Medicare population. J Am Podiatr Med Assoc 1999;**89**(6):312-7
- 25. Pereira TV, Patsopoulos NA, Salanti G, et al. Critical interpretation of Cochran's Q test depends on power and prior assumptions about heterogeneity. Research Synthesis Methods 2010;1(2):149-61 doi: 10.1002/jrsm.13[published Online First: Epub Date]].
- 26. Fylkesnes K. Determinants of Health Care Utilization Visits and Referrals. Scandinavian Journal of Public Health 1993;**21**(1):40-50 doi: 10.1177/140349489302100107[published Online First: Epub Date]|.
- 27. Adamson J, Ben-Shlomo Y, Chaturvedi N, et al. Ethnicity, socio-economic position and gender do they affect reported health—care seeking behaviour? Social Science & amp; Medicine 2003;**57**(5):895-904 doi: 10.1016/s0277-9536(02)00458-6[published Online First: Epub Date]|.
- 28. Jackson LA, Jackson ML, Nelson JC, et al. Evidence of bias in estimates of influenza vaccine effectiveness in seniors. International Journal of Epidemiology 2006;35(2):337-44 doi: 10.1093/ije/dyi274[published Online First: Epub Date]].
- 29. Leese GP, Schofield CJ. Amputations in diabetes: A changing scene. Practical Diabetes International 2008;**25**(8):297-99
- 30. El Sakka K, Fassiadis N, Gambhir RP, et al. An integrated care pathway to save the critically ischaemic diabetic foot. Int J Clin Pract 2006;60(6):667-9 doi: 10.1111/j.1368-5031.2006.00953.x[published Online First: Epub Date]].
- 31. Dargis V, Pantelejeva O, Jonushaite A, et al. Benefits of a multidisciplinary approach in the management of recurrent diabetic foot ulceration in Lithuania: a prospective study. Diabetes Care 1999;**22**(9):1428-31
- 32. Van Gils CC, Wheeler LA, Mellstrom M, et al. Amputation prevention by vascular surgery and podiatry collaboration in high-risk diabetic and nondiabetic patients. The Operation Desert Foot experience. Diabetes Care 1999;**22**(5):678-83
- 33. Meltzer DD, Pels S, Payne WG, et al. Decreasing amputation rates in patients with diabetes mellitus. An outcome study. Journal of the American Podiatric Medical Association 2002;92(8):425-28
- 34. Larsson J, Apelqvist J, Agardh CD, et al. Decreasing incidence of major amputation in diabetic patients: a consequence of a multidisciplinary foot care team approach? Diabet Med 1995;**12**(9):770-6
- 35. Frykberg RG. Team approach toward lower extremity amputation prevention in diabetes. J Am Podiatr Med Assoc 1997;**87**(7):305-12
- 36. Patout CA, Birke JA, Horswell R, et al. Effectiveness of a comprehensive diabetes lower-extremity amputation prevention program in a predominantly low-income African-American population. Diabetes Care 2000;**23**(9):1339-42 doi: 10.2337/diacare.23.9.1339[published Online First: Epub Date]].
- 37. Lipscombe J, Jassal SV, Bailey S, et al. Chiropody may prevent amputations in diabetic patients on peritoneal dialysis. Perit Dial Int 2003;**23**(3):255-9
- 38. Sloan FA, Feinglos MN, Grossman DS. Receipt of Care and Reduction of Lower Extremity Amputations in a Nationally Representative Sample of U.S. Elderly. Health Services Research 2010;45(6p1):1740-62 doi: 10.1111/j.1475-6773.2010.01157.x[published Online First: Epub Date]|.

Figure legends

Figure 1 PRISMA flow chart: selection of studies for inclusion in review

Figure 2 Forest plots of meta- analysis of RCTs (top) and Cohort studies (bottom) with the intervention of contact with a podiatrist on left side of plot

Figure 3 Funnel plot of included studies (RCTs and Cohort studies)

Table legends

- Table 1 Characteristics of Included Studies
- Table 2 Quality Assessment of Included RCTs
- Table 3 Quality Assessment of Included Cohort Studies
- Table 4 Results of Included Studies

Appendices legends

Appendix 1 Diabetic foot risk stratification and triage Appendix 2 Search Strategy for PUBMED (1966 – Sept 25th 2011) Appendix 3 Search Strategy for CINAHL (1981 – Sept 25th 2011) Appendix 4 Search Strategy for EMBASE (1974 – Sept 25th 2011) Appendix 5 Search Strategy for Cochrane (1993 – Sept 25th 2011) Appendix 6 Table of Excluded Studies

TABLES

Table 1 Characteristics of Included Studies

Study (Author, Country, Year)	Type of study	Participants	Interventions	Source of data used in study	Length of follow-up	Baseline risk as per diabetic foot risk stratification [14]	Outcomes
Ronnemaa, Finland, 1997[22] [16]	RCT	530 patients with diabetes randomised Intervention: 267 Control: 263	Intervention: 45 minutes individual patient education Podiatric care visits as necessary Control: Written information	Clinical report forms	1 year and 7 years	Low	Primary: Patient Knowledge about foot care Secondary: Ulcer incidence Amputation rate
Plank, Austria, 2003[23]	RCT	91 patients with diabetes randomised Intervention: 47 Control: 44	Intervention: Chiropodist visit at least once a month Control: chiropodist treatment not specifically recommended	Clinical report forms	386 days (368-424, 25 th -75 th percentile)	High (healed foot ulcers)	Primary: recurrence rate of ulcers Secondary: Amputation rate Death
Sowell, USA, 1999[24]	Cohort	255,256 with diabetes or PVD or gangrene followed over time	Intervention: Podiatric Medical care – receipt of any M0101 services Comparison: Did not receive podiatry (M0101) services	Medicare claims database	1 year	Unknown	Number of Amputations

Lipscombe,	Cohort	132 patients with	Intervention: Assessment,	Medical	3 years	High	Number of
Canada,		diabetes on PD	education and footcare by	charts			Amputations
2003 [37]		(Peritoneal	chiropody				
		Dialysis)					
Lavery, USA,	Cohort	300 high-risk	Intervention: Podiatry services -	Claims data	30 months	High (history of	Amputation
2010[21]		patients with	number of visits to podiatrist for	&		foot ulcer)	rate
		diabetes	prevention, ulcer treatment of	Electronic			Ulcer incidence
		150 with an ulcer	other pathology	Medical			
		history		Records			
		150 on dialysis					
		followed over					
		time					
Sloan, UK,	Cohort	189,598 patients	Intervention: Care provided by	Medicare	6 years	Stage 1: Moderate	Amputation
2010[38]		with diabetes	podiatrist	claims		Stage 2: High Stage	rate
		followed over	Comparison: Care provided by	database		3: Active	
		time	'other health professional' –			Stage 4: Active	
		Participants	GP/Internist/Endocrinologist/Nurse				
		grouped into	/Physician Assistant				
		different stages					
		(1-4) of disease					
		depending on					
		severity of					
		symptoms & signs					

Table 2 Quality Assessment of Included RCTs

Study	Type of study	Base Population	Randomisation	Blinding	Confounding	Losses to follow-up	Analysis
(Author,							
Country,							
Year)							
Ronnemaa, Finland, 1997 [22]	RCT	Community based care in Finland, receiving anti- diabetic drug treatment from the national drug reimbursement register	Randomisation performed separately for men/women and patients 20 years. Method of randomisation not described	Outcome assessor blinded to baseline characteristics but no further information on blinding provided	Baseline Characteristics not described	Follow-up completed by 63% of patients in intervention group and 62% patients in control group at seven years	No intention to treat analysis undertaken
Plank, Austria, 2003 [23]	RCT	All in routine outpatient care at hospital diabetic foot clinic in Austria	Subjects were assigned a patient number in ascending order and randomly allocated to the intervention or control group	Allocation concealment ensured	Similar Baseline Characteristics	All patients followed up	Intention to treat & per protocol analysis
	I	L	<u> </u>	<u>.</u>	5		<u>.</u>

Table 3 Quality Assessment of Included Cohort Studies

Study (Author, Country,	Type of	Base Population	Confounding	Losses to follow-up	Analysis
Year)	study				
Sowell, USA, 1999 [24]	Cohort	All Medicare population at risk	Not addressed – only	No losses to follow-up	Amputation incidence
		for lower extremity amputation	looked at 1 variable –		rates with & without
		in 1993-1994	acknowledged as a		exposure to podiatry
		r b	limitation		
Lipscombe,	Cohort	Patients in Peritoneal Dialysis	Data on confounding	No losses to follow-up	Descriptive Stats
Canada, 2003 [37]		program at University Health	variables collected		
		Network, between January			
		1997 and December 1999			
Lavery, USA, 2010 [21]	Cohort	Patients with diabetes	Data on confounding	150 consecutive	Descriptive Stats
		attending Scott and White	variables collected	patients with at least 30	
		Health Plan, Texas, USA		months follow-up from	
				the time of diagnosis	
				recruited so no losses to	
				follow-up	
Sloan, UK, 2010 [38]	Cohort	All individuals with a DM-	Data on confounding	No losses to follow-up	Hazard Ratios adjusted
		related LEC diagnosis between	variables collected		for Medicare
		1994 and 2001			expenditures from care
					received from non-study
					health professionals

Table 4 Results of Included Studies

Study (Author, Country,	Type of	Primary Outcome	Baseline risk as per diabetic	Relative risk of amputation
Year)	study		foot risk stratification [14]	with contact with a podiatrist
				compared to no contact with a
				podiatrist
Ronnemaa, Finland,	RCT	Diabetes-related Amputation:	Low	2.96
1997 [22] [16]		One year follow-up: Intervention: 0 Control: 0		
		Seven years follow-up: Intervention: 1 Control: 0		
Plank, Austria, 2003 [23]	RCT	Diabetes-related Amputation:	High (healed foot ulcers)	0.92
		One year follow-up: Intervention: 2 Control: 1		
		C A		
Sowell, USA, 1999 [24]	Cohort	Amputation related to diabetes/gangrene/PVD	Unknown	0.25
		One year follow-up: Intervention: 20		
		Control: 130		
Lipscombe,	Cohort	Diabetes-related Amputation:	High	2.16
Canada, 2003 [37]		Amputation during any of the 3 years of the		
		study: Intervention: 11 Control: 4		
Lavery, USA, 2010 [21]	Cohort	Diabetes-related Amputation:	High (history of foot ulcer)	Unknown
		Actual number of amputations not outlined		
		Amputation Incidence Density:		
		58.7 in Dialysis Group per 1,000 person years		
		13.1 in Ulcer Group per 1,000 person years		
Sloan, UK, 2010 [38]	Cohort	Diabetes-related Amputation:	Stage 1: Moderate	Stage 1 disease : 2.20
		Six year follow-up: actual number of	Stage 2: High	Stage 2 disease : 0.85
		amputations not outlined	Stage 3: Active	Stage 3 disease : 0.44
			Stage 4: Active	Stage 4 disease : 0.36

DOES CONTACT WITH A PODIATRIST PREVENT THE OCCURRENCE OF A LOWER EXTREMITY AMPUTATION IN PEOPLE WITH DIABETES? A SYSTEMATIC REVIEW AND META-ANALYSIS

Short title

Contact with podiatry and lower extremity amputation in people with diabetes

CM BUCKLEY (CMB)^{1,2}, IJ PERRY (IJP)², CP BRADLEY (CPB)¹, PM KEARNEY (PMK)²

1. Dept of General Practice, UCC, Western Gateway Building, Cork, Ireland

2. Dept of Epidemiology and Public Health, UCC, Western Gateway Building, Cork, Ireland,

Corresponding author

Claire Buckley, Department of General Practice, Room 2.57, Western Gateway Building, University College Cork, Ireland

Tel No: 00353 86 6020313, Fax No: 00353 21 4205469,

Email: Claire.buckley@ucc.ie

Keywords

Podiatry, Amputation, Diabetes Mellitus, Systematic Review, Meta-analysis

Word Count

Abstract: 300 words

Main text: 2,6<u>9683</u> words (excluding title page, abstract, references, figures, tables and appendices)

ABSTRACT

Objective

To determine the effect of contact with a podiatrist on the occurrence of <u>L</u>lower <u>Eextremity</u> <u>A</u>amputation (LEA) in people with diabetes.

Design & data sources

We conducted a systematic review of available literature on the effect of contact with a podiatrist on the risk of <u>LEAlower extremity amputation</u> in people with diabetes. Eligible studies, published in the English language, were identified through searches of PUBMED, CINAHL, EMBASE, and Cochrane databases. The key terms, 'podiatry', 'amputation' and 'diabetes', were searched as MeSH (Medical Subject Heading (<u>MeSH</u>) terms. Reference lists of selected papers were hand-searched for additional eligible articles. No date restrictions were imposed.

Study Selection

Published randomised and analytical observational studies of the effect of contact with a podiatrist on the risk of LEA in people with diabetes were included. Cross-sectional studies, review articles, chart reviews and case series were excluded. Two reviewers independently assessed titles, abstracts, and full articles to identify eligible studies and extracted data related to study design, characteristics of participants, interventions, and outcomes, control for potential confounding factors and risk estimates.

Analysis

Meta-analysis was performed separately for randomised and non-randomised studies. Relative risks (<u>RRs</u>) with 95% confidence intervals (<u>Cls</u>) were estimated with fixed and random effects models as appropriate.

Results

Six studies met the inclusion criteria and five provided data included in meta-analysis. The identified studies were heterogenous in design and included people with diabetes at both low and high risk of amputation. Contact with a podiatrist did not significantly affect the RR of LEA in a meta-analysis of available data from <u>Randomised Controlled Trials (RCTs)</u>; (1.4<u>1</u>, 95% CI 0.2<u>0</u>-9.<u>7</u>8, 2 RCTs) or from cohort studies; (0.7<u>3</u>, 95% CI 0.3<u>9</u>4-1.3<u>3</u>, 3 Cohort studies with 4 substudies in one cohort).

Conclusions

There is very limited data available on the effect of contact with a podiatrist on the risk of LEA in people with diabetes.

Article Focus

- People with diabetes are at increased risk of LEA (Lower Extremity Amputation (LEA). As the prevalence of diabetes escalates worldwide, it is anticipated that there will be an increase in the number of LEAs.
- It is assumed that contact with a podiatrist prevents the occurrence of a LEA.
- This systematic review aims to determine from available literature the documented effect of contact with a podiatrist on the occurrence of a LEA in people with diabetes.

Key Messages

- Very limited data is available and the authors conclude that there is insufficient evidence to determine whether contact with a podiatrist has an effect on the risk of LEA in people with diabetes.
- Some existing studies suggest that contact with a podiatrist has a positive effect on shorter term outcomes including patient knowledge of foot care and ulcer recurrence.
- Further research on the long-term outcome of LEA is warranted.

Strengths and Limitations

- This is the first systematic review which investigates if contact with a podiatrist prevents the occurrence of a LEA in people with diabetes.
- Failure to demonstrate an effect on this long-term outcome is most likely due to limitations of available studies.
- Limitations include that studies in this systematic review looked at different sample populations ranging from patients with low baseline risk to patients with active disease. Also, included RCTs were underpowered to detect a significant difference for the outcome of LEA.

INTRODUCTION

A worldwide diabetes epidemic is unfolding[1]. Diabetes is associated with a significantly increased risk of LEA (Lower Extremity Amputation). LEA rates vary between populations with estimates ranging from 46 to 9,600 per 10⁵ people with diabetes [2]. A number of factors influence the occurrence of a LEA in people with diabetes; including hypertension, obesity and hyperglycaemia_[3] [4].-[3-4]. In the foot, previous ulceration, infection and ischaemia are proven risk factors [5]. Nearly 85% of amputations begin as foot ulcers among persons with diabetes [6]. Protective factors include control of clinical parameters and screening to identify those people at high risk and many LEAs are preventable [7] [8]. The effects of clinical and socio-demographic risk factors on the occurrence of a LEA have been well documented in people with diabetes [9] [10] [11] [12].

In 2008, a task force report by the Foot Care Interest Group of the American Diabetes Association, which included podiatrists, stated that all people with diabetes should be assigned to a foot risk category [13]. These categories were designed to direct referral to and subsequent therapy by a speciality clinician or team but did not refer specifically to the role of podiatry. Recent guidelines from Scotland outline a diabetic risk stratification and triage tool, highlighting which people need podiatry referral. According to these guidelines, all patients classified as moderate risk (i.e. at least one risk factor present), severe risk or with active disease require podiatry review [14]. Podiatry is practiced as a specialty in many countries and in many English-speaking countries, the older term of <u>"</u>chiropodist<u>"</u> may still be used. According to the National Health Service in the UK , there is no difference between a chiropodist and a podiatrist [15]. It is assumed that podiatrists prevent LEAs by treating existing disease and educating people with diabetes on proper foot care. However, the effect of patient contact with a podiatrist on the risk of LEA in people with diabetes is unproven.

Two previous Cochrane reviews by Dorresteijn et al. have looked at firstly the effect of an integrated care approach and secondly the effect of patient education on the outcome of LEA in people with diabetes [16] [17] [16 17]. The first of these reviews found no high quality evidence evaluating an integrated care approach and insufficient evidence of benefit in preventing diabetic foot ulceration [16]. The second review, updated in 2012, concluded that there is insufficient robust evidence that limited patient education alone is effective in achieving clinically relevant reductions in ulcer and LEA incidence [17]. Individual patient contact with a podiatrist was not examined as an intervention in either review. Thus, the objective of the present systematic review of published literature is to examines the effect of contact with a podiatrist on risk of LEA in people with diabetes.

METHODS

The research question, inclusion and exclusion criteria and proposed methods of analysis were specified in advance and documented in a protocol (attached as supplementary file).

Search Strategy

Pubmed, CINAHL, EMBASE (Excerpta Medica), and Cochrane databases were searched to identify relevant studies published up to and including September 25th 2011. The key terms, 'podiatry', 'amputation' and 'diabetes', were searched as MeSH (Medical Subject Heading (MeSH) terms. Randomised and observational studies, published in English, which reported the effect of contact

with a podiatrist on risk of LEA in people with diabetes (type 1 or 2), were included. No date restrictions were imposed. Cross-sectional studies, review articles, non-systematic reviews, chart reviews and case series were excluded. A manual search of references cited in relevant articles was performed. All potentially eligible studies were independently reviewed by two authors (CMB and PMK).

Data abstraction and quality assessment:

Using a standardised data collection form, two reviewers (CMB, PMK) independently abstracted information on study design, year of study, characteristics of participants, interventions and outcomes, control for potential confounding factors and risk estimates. A modified version of a checklist developed by Downs and Black for assessing the methodological quality of both randomised and non-randomised studies of health care interventions was used to critically appraise the studies in this review [18]. Inconsistencies between reviewers were discussed and resolved through consensus.

Statistical Analysis

Review Manager Software Version 5 (Revman 5.0; the Cochrane Collaboration, Oxford, England) and STATA Version 12IC were used for statistical analysis. The RR (relative risk (RR) with 95% CI was recorded for included studies. One study presented individual results for four various stages of disease so this study was analysed as 4 substudies. Meta-analysis was performed separately for randomised and non-randomised studies, using either the fixed or random effects model as appropriate. Statistical heterogeneity was assessed with Cochran's *Q* statistic. Cochran's *Q* is computed by summing the squared deviations of each study's estimate from the overall meta-analytic estimate, weighting each study's contribution in the same manner as in the meta-analysis. P_values were obtained by comparing the statistic with a χ^2 distribution with *k*-1 degrees of freedom (where *k* is the number of studies) [19]. To assess publication bias, a funnel plot of the overall estimate and its standard error (SE) was derived.

RESULTS

Four hundred and ninety-nine titles were retrieved from searches of electronic databases. Duplicates (138) were removed and 361 titles/abstracts were reviewed. Eighteen papers were considered for review after initial screening of titles and abstracts. Three further studies were identified as potentially eligible from reference checking. After reviewing the full text articles, 6 studies met the inclusion criteria; 2 RCTS and 4 cohort studies (PRISMA flow-chart-figure 1)[20]. Studies were excluded because of study design e.g. chart review/audit; intervention e.g. contact with a multidisciplinary team instead of contact with a podiatrist; or in one case, the study was described in another article already included in this systematic review.

Table 1 describes the included studies according to study design, participants, interventions and outcomes. Quality of included studies was assessed and all studies were deemed of suitable quality for inclusion (tables 2 & 3). Risk of foot disease at baseline was assessed using the Diabetic foot risk stratification and triage system from the SIGN (Scottish Intercollegiate Guidelines Network) guidelines (Appendix 1) [14]. Results of included studies are presented in table 4.

Results from available studies were pooled together in separate meta-analyses for RCTs and observational studies. Five of these studies provided sufficient data to allow meta-analysis. For RCTs, the fixed effects model was applied (Q=0.328, p=0.567) and for cohort studies, the random effects model is reported as there was evidence of significant heterogeneity between the cohort studies (Q=-.32.698, p=0.000). Meta-analysis of the two RCTs yielded an insignificant pooled RR of 1.4<u>1</u> (<u>95% CI</u> 0.2<u>0</u>-9.<u>7</u>8) while meta-analysis of the cohort studies also yielded an insignificant pooled RR of 0.7<u>3</u> (<u>95% CI</u> 0.3<u>94</u>-1.3<u>3</u>) (figure 2).

Data required for inclusion in the meta-analysis was unavailable for 1 eligible study. Lavery et al. compared people with diabetes on dialysis and people with diabetes with a history of a healed ulcer. During a 30-month evaluation period, only 30% of patients from both groups combined were seen for preventative care prior to ulceration. The amputation incidence density was high in both groups (dialysis group 58.7 and ulcer group 13.1 per 1,000 person-years) [21]. However, it was not possible to extract the LEA event rate in those who did or did not have contact with a podiatrist.

Visual inspection of the funnel plot produced for the included studies shows no strong evidence of publication bias (figure 3).

DISCUSSION

In this systematic review, we conclude that there is insufficient evidence to determine whether contact with a podiatrist has an effect on LEA in people with diabetes.

Strengths and limitations of this review

This is the first systematic review that the authors are aware of that investigates if contact with a podiatrist prevents the occurrence of a lower extremity amputation in patients with diabetes. A thorough literature search examining multiple databases was undertaken and 6 studies with 2 different study designs were included. While individual study design meta-analysis was performed in an effort to pool the available data, we acknowledge that heterogeneity exists between studies included in the meta-analysis in terms of baseline diabetic foot risk and type of intervention.

Included studies looked at different sample populations ranging from patients with low baseline risk to patients with active disease. For example, Ronnemaa et al_ recruited patients with diabetes from the national drug imbursement register in Finland which is representative of the total population with diabetes [22]. However, Plank et al_ recruited patients with diabetes from a tertiary referral centre which represents a population of patients with diabetes that have developed complications requiring referral to a tertiary centre [23]. In 5 of the 6 included studies, the population at risk were patients with diabetes. However, Sowell et al_ examined a population mix of patients with diabetes, PVD and gangrene [24]. It was decided to include this study due to the dearth of research in this area. This difference in populations studied between the Sowell paper and the other 5 studies needs to be highlighted as a limitation in this review.

The diabetic foot risk of the participants at baseline (low-active) reflects the different treatment settings at recruitment and highlights heterogeneity amongst the studies (table 1). Cochran's *Q* statistic was used to assess heterogeneity. For RCTs, the fixed effects model was appropriate but this meta-analysis is limited as there are only 2 included studies. For cohort studies, the *Q* statistic of 32.698 (p=0.000) indicated that strong heterogeneity existed so the random effects model was

BMJ Open

applied to account for both random variability and the variability in effects among the studies. However, use of the random effects model limits the conclusions that can be drawn from the metaanalysis [25]. 'A priori' sensitivity analyses were planned for different levels of baseline risk but there were insufficient data.

Sources of potential bias should be considered in relation to the observational studies. Although information was collected on potential confounders in many of the included observational studies, the analyses were not adjusted for potential confounders and sources of bias. Clinical practices may vary per individual and per location. Guidelines have been recently developed to standardise referral of patients with diabetes to podiatry [14]. Healthcare-seeking behaviours are complex and multifactorial and ethnicity and socio-economic position can influence attendance at podiatry [26] [27]. Level of disease may also influence a patient's decision to attend the podiatrist and create a self-selection bias in the patients with diabetes that attend the podiatrist. Patients that attend healthcare services in early stages of disease may be more likely to engage in other healthy lifestyle behaviours e.g. healthy diet, not smoking and this phenomenon of 'healthy user bias' has been previously documented [28]. In their retrospective cohort study, Sowell et al_ reported 20 LEAs in the intervention group and 130 in the control group (noting that the population at risk in this study is patients with diabetes and/or gangrene and/or PVD) [24]. This study described the majority of included participants with the outcome of LEA. However, their analysis did not adjust for important potential confounders which limit the conclusions that can be drawn from this study.

The issues of bias and confounding are <u>minimiseliminated</u> by <u>the gold standard technique of</u> randomisation in RCTs. However, there is a lack of RCTs in this area. The 2 available RCTs have a lack of power as few participants had the outcome of LEA. The most likely cause of the low numbers of outcomes in the included studies is length of follow-up. LEA takes years to develop, especially from the time-point when a patient is classified as low risk. In the 1st included RCT, Plank et al_ described 2 LEAs in the intervention group and 1 in the control group [23]. In the 2nd RCT, Ronnemaa et al_ noted no LEA after 1 year of follow-up and 1 LEA in the intervention group after 7 years of follow-up [22] [16]. Neither RCT was designed to assess LEA as a primary outcome and thus, had insufficient power to detect a significant difference for the outcome of LEA.

Conclusions and Implications

Two Cochrane reviews have looked at the outcome of LEA in patients with diabetes [16] [17] [16 17]. These reviews concluded that there is insufficient evidence that brief educational interventions or complex interventions reduce the risk of LEA. This systematic review concludes that there is insufficient evidence that contact with a podiatrist reduces the risk of LEA in patients with diabetes. Thus, this review cannot make any recommendations about practice. To detect the true effect, adequately powered RCTs and longer follow-up studies are needed to examine the effect of contact with a podiatrist on LEA in patients with diabetes. Perhaps, podiatry programmes could be rolled out in a manner designed to answer the question of effect on outcomes such as LEA. Such studies could also assess the impact of the timing and intensity of the podiatry intervention on outcomes. Perhaps studies focusing on high-risk participants are too close in timing to the LEA event and studies of lower-risk participants would be better to detect an effect in LEA prevention.

International standards recommend a multidisciplinary team should manage the footcare of a patient with diabetes [14]. Many studies have looked at the effects of a multidisciplinary team of

which podiatry serves as a member of the team and found positive effects on various outcomes [29-36]. This may be a more realistic reflection of how patients with diabetes are managed; looking at one service in isolation could be flawed as services are seldom delivered in isolation. According to the SIGN (Scottish Intercollegiate Guidelines Network) guidelines a multidisciplinary foot team should include a podiatrist, diabetes physician, orthotist, diabetes nurse specialist, vascular surgeon, orthopaedic surgeon and radiologist [14]. A systematic review of the literature looking at the effectiveness of multidisciplinary teams which include contact with a podiatrist would be useful.

Acknowledgements

We would like to thank the authors who responded to our queries and Professor John Browne, UCC for advice on methodology.

Declaration of Competing Interests

Nothing to declare.

Funding

This project is partially funded by the HRB (Health Research Board), Ireland – Grant Reference Number: HPF/2009/79 and partially funded by the ICGP (Irish College of General Practitioners) Research and Education Foundation.

Contributor statement

Claire M Buckley (CMB) conceived and designed the study, extracted the data and wrote the paper. Ivan J Perry (IJP) revised the paper. Colin P Bradley (CPB) approved the final version to be published. Patricia M Kearney (PMK) designed the study, extracted the data and wrote the paper. CMB will act as guarantor for the paper.

Ethical Approval

None required.

Data Sharing Statement

There is no additional data available.

Abbreviations

CINAHL, Cumulative Index to Nursing and Allied Health Literature, LEA, Lower Extremity Amputation, MeSH, Medical Subject Headings, NHS, National Health Service, PVD, Peripheral Vascular Disease, RCT, Randomised Controlled Trial, SIGN, Scottish Intercollegiate Guidelines Network, UCC, University College Cork, UK, United Kingdom

REFERENCES

1. Lam DW, LeRoith D. The worldwide diabetes epidemic. Current Opinion in Endocrinology, Diabetes and Obesity 2012;**19**(2):93-96 10.1097/MED.0b013e328350583a

- 2. Moxey P, Gogalniceanu P, Hinchliffe R, et al. Lower extremity amputations—a review of global variability in incidence. Diabetic Medicine 2011;**28**(10):1144–53
- Turner R, Holman R, Stratton I, et al. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;317(7160):703-13

Page 25 of	50 BMJ Open	
1		
2		
3		
4		
5		
6		
7	4. Intensive blood-glucose control with supponylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (LIKEDS 22), LIK	
8	Prospective Diabetes Study (LIKPDS) Group Lancet 1998: 352 (9131):837-53 doi:	
9	S0140673698070196 [pii][published Online First: Epub Date]].	
10	5. Boulton AJ. Lowering the risk of neuropathy, foot ulcers and amputations. Diabet Med 1998;15	
11	Suppl 4:S57-9 doi: 10.1002/(sici)1096-9136(1998120)15:4+ <s57::aid-dia741>3.0.co;2-</s57::aid-dia741>	
12	d[published Online First: Epub Date] .	
13	6. Apelqvist J, Larsson J. What is the most effective way to reduce incidence of amputation in the	
15	Clabetic root? Diabetes/ metabolism research and reviews 2000; 16(51):575-583	
16	2005: 293 (2):217-28 doi: 10.1001/iama.293.2.217[published Online First: Epub Date]].	
17	8. IDF. Position Statement - the Diabetic Foot. Secondary Position Statement - the Diabetic Foot.	
18	http://www.idf.org/position-statement-diabetic-foot	
19	9. Adler A, Erqou S, Lima TAS, Robinson AHN. Association between glycated haemoglobin and the	
20	risk of lower extremity amputation in patients with diabetes mellitus—review and meta-	
21	analysis. Diabetologia 2010; 53 (5):840-49	
22	independent effects of peripheral vascular disease sensory neuropathy and foot ulcers	
23	Diabetes Care 1999: 22 (7):1029	
24	11. Pecoraro R, Reiber G, Burgess E. Pathways to diabetic limb amputation. Basis for prevention.	
25	Diabetes Care 1990; 13 (5):513	
20 27	12. Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk A. Type 2 diabetes incidence and socio-	
28	economic position: a systematic review and meta-analysis. International Journal of	
29	Epidemiology 2011 doi: 10.1093/1je/dyr029[published Online First: Epub Date]].	
30	Assessment. Diabetes Care 2008: 31 (8):1679-85 doi: 10.2337/dc08-9021[published Online	
31	First: Epub Date] .	
32	14. SIGN. Management of diabetes. A national clinical guideline March 2010.	
33	http://www.sign.ac.uk/pdf/sign116.pdf.	
34	15. NHS. Careers in Detail. Secondary Careers in Detail.	
35	<u>http://www.nnscareers.nns.uk/details/Default.aspx?id=280</u> .	
36	neventing diabetic foot ulceration. Cochrane Database of Systematic Reviews 2010: (1)	
37	http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD007610/frame.htr	nl.
30	17. Dorresteijn Johannes AN KDM, Assendelft Willem JJ, Valk Gerlof D. Patient education for	
40	preventing diabetic foot ulceration. Cochrane Database of Systematic Reviews Updated;	
41	John Wiley & Sons, Ltd.	•
42	http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD001488.pub4/abstract (accessed	
43	18 Downs SH Black N. The feasibility of creating a checklist for the assessment of the	
44	methodological quality both of randomised and non-randomised studies of health care	
45	interventions. Journal of Epidemiology and Community Health 1998; 52 (6):377-84 doi:	
46	10.1136/jech.52.6.377[published Online First: Epub Date] .	
47	19. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BM	٩J
48	2003; 327 (7414):557-60 doi: 10.1136/bmj.327.7414.557[published Online First: Epub Date	e] .
49	20. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews	
50	elaboration, BMJ 2009: 339 doi: 10.1136/bmi.b2700[published Online First: Epub Date]].	
52	21. Lavery LA, Hunt NA, LaFontaine J, Baxter CL, Ndip A, Boulton AJM. Diabetic Foot Prevention.	
53	Diabetes Care 2010;33(7):1460-62 doi: 10.2337/dc10-0310[published Online First: Epub	
54	Date] .	
55		
56		9
57		
58		
59		

BMJ Open

2
3
1
4
5
6
7
ß
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
24
21
22
23
24
25
20
26
27
28
20
29
30
31
32
22
33
34
35
36
27
51
38
39
40
11
+1
42
43
44
15
40
46
47
48
<u>1</u> 0
50
51
52
53
55
0 4
55
56
57
50
00
59

60

22. Ronnemaa T, Hamalainen H, Toikka T, Liukkonen I. Evaluation of the impact of podiatrist care in
the primary prevention of foot problems in diabetic subjects. Diabetes Care
1997- 20 (12)-1833-7

- 23. Plank J, Haas W, Rakovac I, et al. Evaluation of the Impact of Chiropodist Care in the Secondary Prevention of Foot Ulcerations in Diabetic Subjects. Diabetes Care 2003;26(6):1691-95 doi: 10.2337/diacare.26.6.1691[published Online First: Epub Date]|.
- 24. Sowell RD, Mangel WB, Kilczewski CJ, Normington JM. Effect of podiatric medical care on rates of lower-extremity amputation in a Medicare population. J Am Podiatr Med Assoc 1999;89(6):312-7
- 25. Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JPA. Critical interpretation of Cochran's Q test depends on power and prior assumptions about heterogeneity. Research Synthesis Methods 2010;1(2):149-61 doi: 10.1002/jrsm.13[published Online First: Epub Date]].
- 26. Fylkesnes K. Determinants of Health Care Utilization Visits and Referrals. Scandinavian Journal of Public Health 1993;21(1):40-50 doi: 10.1177/140349489302100107[published Online First: Epub Date]].
- 27. Adamson J, Ben-Shlomo Y, Chaturvedi N, Donovan J. Ethnicity, socio-economic position and gender—do they affect reported health—care seeking behaviour? Social Science & amp; Medicine 2003;57(5):895-904 doi: 10.1016/s0277-9536(02)00458-6[published Online First: Epub Date]].
- Jackson LA, Jackson ML, Nelson JC, Neuzil KM, Weiss NS. Evidence of bias in estimates of influenza vaccine effectiveness in seniors. International Journal of Epidemiology 2006;35(2):337-44 doi: 10.1093/ije/dyi274[published Online First: Epub Date]].
- 29. Leese GP, Schofield CJ. Amputations in diabetes: A changing scene. Practical Diabetes International 2008;**25**(8):297-99
- 30. El Sakka K, Fassiadis N, Gambhir RP, et al. An integrated care pathway to save the critically ischaemic diabetic foot. Int J Clin Pract 2006;**60**(6):667-9 doi: 10.1111/j.1368-5031.2006.00953.x[published Online First: Epub Date]].
- 31. Dargis V, Pantelejeva O, Jonushaite A, Vileikyte L, Boulton AJ. Benefits of a multidisciplinary approach in the management of recurrent diabetic foot ulceration in Lithuania: a prospective study. Diabetes Care 1999;**22**(9):1428-31
- 32. Van Gils CC, Wheeler LA, Mellstrom M, Brinton EA, Mason S, Wheeler CG. Amputation prevention by vascular surgery and podiatry collaboration in high-risk diabetic and nondiabetic patients. The Operation Desert Foot experience. Diabetes Care 1999;22(5):678-83
- 33. Meltzer DD, Pels S, Payne WG, et al. Decreasing amputation rates in patients with diabetes mellitus. An outcome study. Journal of the American Podiatric Medical Association 2002;**92**(8):425-28
- 34. Larsson J, Apelqvist J, Agardh CD, Stenstrom A. Decreasing incidence of major amputation in diabetic patients: a consequence of a multidisciplinary foot care team approach? Diabet Med 1995;12(9):770-6
- 35. Frykberg RG. Team approach toward lower extremity amputation prevention in diabetes. J Am Podiatr Med Assoc 1997;**87**(7):305-12
- 36. Patout CA, Birke JA, Horswell R, Williams D, Cerise FP. Effectiveness of a comprehensive diabetes lower-extremity amputation prevention program in a predominantly low-income African-American population. Diabetes Care 2000;**23**(9):1339-42 doi: 10.2337/diacare.23.9.1339[published Online First: Epub Date]].
- 37. Lipscombe J, Jassal SV, Bailey S, Bargman JM, Vas S, Oreopoulos DG. Chiropody may prevent amputations in diabetic patients on peritoneal dialysis. Perit Dial Int 2003;**23**(3):255-9
- 38. Sloan FA, Feinglos MN, Grossman DS. Receipt of Care and Reduction of Lower Extremity Amputations in a Nationally Representative Sample of U.S. Elderly. Health Services Research

2010;**45**(6p1):1740-62 doi: 10.1111/j.1475-6773.2010.01157.x[published Online First: Epub Date]|.

Table legends

- Table 1 Characteristics of Included Studies
- Table 2 Quality Assessment of Included RCTs
- Table 3 Quality Assessment of Included Cohort Studies
- Table 4 Results of Included Studies

Appendices legends

Appendix 1 Diabetic foot risk stratification and triage Appendix 2 Search Strategy for PUBMED (1966 – Sept 25th 2011) Appendix 3 Search Strategy for CINAHL (1981 – Sept 25th 2011) Appendix 4 Search Strategy for EMBASE (1974 – Sept 25th 2011) Appendix 5 Search Strategy for Cochrane (1993 – Sept 25th 2011) Appendix 6 Table of Excluded Studies

TABLES

Study (Author, Country,	Type of study	Participants	Interventions	Source of data used in study	Length of follow-up	Baseline risk as per diabetic foot risk stratification [14]	Outcomes	← Formatted Tab
Ronnemaa, Finland, 1997[22]	RCT	530 patients with diabetes randomised	Intervention: 45 minutes individual patient education Podiatric care visits as necessary	Clinical report forms	1 year and 7 years	Low	Primary: Patient Knowledge	
[16]		Intervention: 267 Control: 263	Control: Written information	(e)			about foot care Secondary: Ulcer incidence Amputation	
Plank, Austria, 2003[23]	RCT	91 patients with diabetes randomised Intervention: 47 Control: 44	Intervention: Chiropodist visit at least once a month Control: chiropodist treatment not specifically recommended	Clinical report forms	386 days (368-424, 25 th -75 th percentile)	High (healed foot ulcers)	Primary: recurrence rate of ulcers Secondary: Amputation rate Death	
Sowell, USA, 1999[24]	Cohort	255,256 with diabetes or PVD or gangrene followed over time	Intervention: Podiatric Medical care – receipt of any M0101 services Comparison: Did not receive podiatry (M0101) services	Medicare claims database	1 year	Unknown	Number of Amputations	

Lipscombe,	Cohort	132 patients with	Intervention: Assessment,	Medical	3 years	High	Number of
Canada,		diabetes on PD	education and footcare by	charts			Amputation <u>s</u>
2003 [37]		(Peritoneal	chiropody				
		Dialysis)					
Lavery, USA,	Cohort	300 high-risk	Intervention: Podiatry services -	Claims data	30 months	High (history of	Amputation
2010[21]		patients with	number of visits to podiatrist for	&		foot ulcer)	rate
		diabetes	prevention, ulcer treatment of	Electronic			Ulcer incidence
		150 with an ulcer	other pathology	Medical			
		history		Records			
		150 on dialysis					
		followed over					
		time					
Sloan, UK,	Cohort	189,598 patients	Intervention: Care provided by	Medicare	6 years	Stage 1: Moderate	Amputation
2010[38]		with diabetes	podiatrist	claims		Stage 2: High Stage	rate
		followed over	Comparison: Care provided by	database		3: Active	
		time	'other health professional' –			Stage 4: Active	
		Participants	GP/Internist/Endocrinologist/Nurse				
		grouped into	/Physician Assistant				
		different stages					
		(1-4) of disease					
		depending on					
		severity of					

Table 2 Quality Assessment of Included RCTs

Study (Author, Country,	Type of study	Base Population	Randomisation	Blinding	Confounding	Losses to follow-up	Analysis
Ronnemaa, Finland, 1997 [22]	RCT	Community based care in Finland, receiving anti- diabetic drug treatment from the national drug reimbursement register	Randomisation performed separately for men/women and patients 20 years. Method of randomisation not described	Outcome assessor blinded to baseline characteristics but no further information on blinding provided	Baseline Characteristics not described	Follow-up completed by 63% of patients in intervention group and 62% patients in control group at seven years	No intention to treat analysis undertaken
Plank, Austria, 2003 [23]	RCT	All in routine outpatient care at hospital diabetic foot clinic in Austria	Subjects were assigned a patient number in ascending order and randomly allocated to the intervention or control group	Allocation concealment ensured	Similar Baseline Characteristics	All patients followed up	Intention to treat & per protocol analysis
						07	

Table 3 Quality Assessment of Included Cohort Studies

Study (Author, Country,	Type of	Base Population	Confounding	Losses to follow-up	Analysis
Year)	study				
Sowell, USA, 1999 [24]	Cohort	All Medicare population at risk for lower extremity amputation in 1993-1994	Not addressed – only looked at 1 variable – acknowledged as a limitation	No losses to follow-up	Amputation incidence rates with & without exposure to podiatry
Lipscombe, Canada, 2003 [37]	Cohort	Patients in Peritoneal Dialysis program at University Health Network, between January 1997 and December 1999	Data on confounding variables collected	No losses to follow-up	Descriptive Stats
Lavery, USA, 2010 [21]	Cohort	Patients with diabetes attending Scott and White Health Plan, Texas, USA	Data on confounding variables collected	150 consecutive patients with at least 30 months follow-up from the time of diagnosis recruited so no losses to follow-up	Descriptive Stats
Sloan, UK, 2010 [38]	Cohort	All individuals with a DM- related LEC diagnosis between 1994 and 2001	Data on confounding variables collected	No losses to follow-up	Hazard Ratios adjusted for Medicare expenditures from care received from non-study health professionals

Table 4 Results of Included Studies

Study (Author, Country, Year)	Type of study	Primary Outcome	Baseline risk as per diabetic foot risk stratification [14]	Relative risk of amputation with contact with a podiatrist compared to no contact with a podiatrist
Ronnemaa, Finland, 1997 [22]_[16]	RCT	Diabetes-related Amputation: One year follow-up: Intervention: 0 Control: 0 Seven years follow-up: Intervention: 1 Control: 0	Low	2.96
Plank, Austria, 2003_[23]	RCT	Diabetes-related Amputation: One year follow-up: Intervention: 2 Control: 1	High (healed foot ulcers)	0.9 <u>2</u>
Sowell, USA, 1999_[24]	Cohort	Amputation related to diabetes/gangrene/PVD One year follow-up: Intervention: 20 Control: 130	Unknown	0.25
Lipscombe, Canada, 2003 [37]	Cohort	Diabetes-related Amputation: Amputation during any of the 3 years of the study: Intervention: 11 Control: 4	High	2.1 <u>6</u>
Lavery, USA, 2010_[21]	Cohort	Diabetes-related Amputation: Actual number of amputations not outlined Amputation Incidence Density: 58.7 in Dialysis Group per 1,000 person years 13.1 in Ulcer Group per 1,000 person years	High (history of foot ulcer)	Unknown
Sloan, UK, 2010 <u>[</u> 38]	Cohort	Diabetes-related Amputation: Six year follow-up: actual number of amputations not outlined	Stage 1: Moderate Stage 2: High Stage 3: Active Stage 4: Active	Stage 1 disease : 2.20 Stage 2 disease : 0.85 Stage 3 disease : 0.44 Stage 4 disease : 0.36

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
2 Structured summary 3 4	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	4, Supplementary File
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	4-5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Appendices 2-5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5
3 Data items)	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	5
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	5
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	5

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	
RESULTS	<u> </u>		
Study selection	17	ive numbers of studies screened, assessed for eligibility, and included in the review, with reasons for xclusions at each stage, ideally with a flow diagram.	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	13-14
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	15-16
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	17 Figure 2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	6
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	6 Figure 3
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	n/a
DISCUSSION	·		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	6
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	6
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	7-8
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	8
From: Moher D, Liberati A, Tetzlaff doi:10.1371/journal.pmed1000097	J, Altm	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. P For more information, visit: <u>www.prisma-statement.org</u> .	LoS Med 6(6): e1000
- •		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Appendices

Appendix 1 Diabetic foot risk stratification and triage

DIABETIC FOOT RISK STRATIFICATION AND TRIAGE

These risk categories relate to the use of the SCI-DC foot risk stratification tool

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Appendix 2 Search Strategy for PUBMED (1966 – Sept 25th 2011)

- 1. Diabetes mellitus (MeSH)
- 2. Diabet*
- 3. 1 or 2
- 4. Amputation (MeSH)
- 5. Amput*
- 6. 4 or 5
- 7. Podiatry (MeSH)
- 8. Podiatr*
- 9. 7 or 8
- 10. Case-control study (MeSH)
- 11. Case-control* (free text)
- 12. Cohort studies (MeSH)
- 13. Cohort* (free text)
- 14. Retrospective Studies (MeSH)
- 15. Prospective Studies (MeSH)
- 16. Journal Article (Publication type)
- 17. Clinical Trial (Publication Type)
- 18. Randomized Controlled Trial (Publication Type)
- 19. 10 or 11 or 12 or 13 or 14 or 14 or 16 or 17 or 18
- 20. 3 and 6 and 9 and 19

Results: 184
2	
3	
1	
5	
0	
6	
7	
8	
9	
1	0
1	1
1	י ר
1	2
1	3
1	4
1	5
1	6
1	7
1	, Q
1	0
1	3
2	U
2	1
2	2
2	3
2	4
2	5
2	0
2	0
2	1
2	8
2	9
3	0
3	1
2	2
ວ າ	2
3	3
3	4
3	5
3	6
3	7
3	8
2 2	a
J ⊿	0
4	4
4	1
4	2
4	3
4	4
4	5
⊿	6
1	7
4	0
4	ğ
4	9
5	0
5	1
5	2
5	2
5	⊿
о С	4
5	5
5	6
5	
_	7
-5	7 8
5	7 8 9
5 5 6	7 8 9 0

- 1. (MH "Diabetes Mellitus+") OR (MH "Diabetes Mellitus, Insulin-Dependent") OR (MH "Diabetes Mellitus, Non-Insulin-Dependent")
- 2. Diabet*
- 3. 1 or 2
- 4. (MH "Amputation+") OR (MH "Above-Knee Amputation") OR (MH "Amputation Stumps") OR (MH "Amputation Care (Iowa NIC)")
- 5. Amput*
- 6. 4 or 5
- Podiatric Assessment") OR (MH "Education, Podiatry") OR (MH "Surgery, Podiatric+") OR (MH "Podiatric Care")
- 8. Podiatr*
- 9. 7 or 8
- 10. (MH "Case Control Studies+")
- 11. Case-control* (free text)
- 12. Cohort studies (MeSH)
- 13. Cohort* (free text)
- 14. (MH "Retrospective Panel Studies") OR (MH "Retrospective Design")
- 15. (MH "Prospective Studies") OR (MH "Concurrent Prospective Studies") OR (MH "Nonconcurrent Prospective Studies")
- 16. (MH "Electronic Publications+") OR (MH "Electronic Journals") OR (MH "Publication Formats+")
- 17. Article (free text)
- 18. (MH "Clinical Trials+")
- 19. (MH "Randomized Controlled Trials")
- 20. 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19
- 21. 3 and 6 and 9 and 20

Results: 43

Appendix 4 Search Strategy for EMBASE (1974 – Sept 25th 2011)

- 1. 'diabetes mellitus'/exp
- 2. diabet*
- 3. 1 or 2
- 4. 'amputation'/exp
- 5. amput*
- 6. 4 or 5
- 7. 'podiatry'/exp
- 8. podiatr*
- 9. 7 or 8
- 10. 'case control study'/exp (mesh/emtree)
- 11. 'case control study'/exp OR 'case control study' (case control*)
- 12. 'cohort study'/exp (mesh/emtree)
- 13. Cohort*
- 14. 'retrospective study'/exp
- 15. 'prospective study'/exp
- 16. 'article'/exp
- 17. 'clinical trial'/exp
- 18. 'randomized controlled trial'/exp
- 19. 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18
- 20. 3 and 6 and 9 and 19

Results: 246

BMJ Open

1			
2			
3	Appendix 5 Search Strategy for Cochrane (1993 – Sent 25 th 2011)		
4	Appendix 5 Scalen Strategy for Colinane (1555 Sept 15 2011)		
5	1 MoCH descriptor Diabates Mollitus evolade all trees in all MoCH products		
6	1. Mesh descriptor Diabetes Mellitus explode all trees in all Mesh products		
7			
8	2. Diabet*		
9			
10	3. 1 or 2		
11			
12	 MeSH descriptor Amputation explode all trees 		
13			
14	5. <u>Amput*</u>		
15			
16	6. 4 or 5		
17			
18	7 MeSH descriptor Podiatry explode all trees		
19	7. <u>Mesh descriptor</u> found <u>y explode un rees</u>		
20	8 Podiatr*		
21	o. roulati		
22			
23	9. 7018		
24			
25	10. MeSH descriptor Case-Control Studies explode all trees in all MeSH products		
26			
27	11. Case control stud*		
28			
29	12. MeSH descriptor Cohort Studies explode all trees in all MeSH products		
30			
31	13. Cohort stud*		
32			
33	MeSH descriptor Retrospective Studies explode all trees in all MeSH products		
34			
35	15. MeSH descriptor Prospective Studies explode all trees in all MeSH products		
36			
37	16. Article		
38			
39	17. Clinical Trial		
40			
41	18 Randomised Control Trial		
42 13			
43 11	19, 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18		
44 45			
46	30, 3 and 6 and 0 and 10		
40			
48			
49			
50			
51	Results: 25		
52	13 Cochrane Reviews		
53	2 Other Reviews		
54			
55	6 Clinical Trials		
56	2 Technology Assessments		
57	2 Economic Evaluations		
58			

Appendix 6 Table of Excluded Studies

Study (Author, Country, Year)	Exclusion criteria	Details
Driver, 2010[39]	Intervention	Podiatric lead limb preservation team - No data on contact with a podiatrist as the intervention available
Ellis, 2010[40]	Design / Outcome	Audit / Diabetic Foot Complication
Zayed, 2009[41]	Intervention	Podiatry as part of Multidisciplinary team - No data on contact with a podiatrist as the intervention available
Snyder, 2006[42]	Design No reporting of association	Chart review/case series, Intervention on subset of patients, comparison group not available for this subset
Robbins, 2006[43]	Intervention	Podiatry as part of Multidisciplinary team - No data on contact with a podiatrist as the intervention available
El Sakka 2006[30]	Intervention	Podiatry as part of Multidisciplinary team - No data on contact with a podiatrist as the intervention available
Schraer, 2004[44]	Intervention	Program
Dargis, 1999[31]	Intervention	Podiatry as part of Multidisciplinary team - No data on contact with a podiatrist as the intervention available
Van Gils, 1999[32]	Intervention	Podiatry as part of Multidisciplinary team - No data on contact with a podiatrist as the intervention available
Del Aguila, 1994[45]	No report of association	Number of podiatry visits in 12 months described - Unable to determine whom were not exposed to podiatry
Malone, 1989[46]	Intervention	Intervention involved education by podiatrists, not treatment
Crane, USA, 1999[47]	Intervention	Podiatry-established critical pathway
Carrington, UK, 2001[48]	Intervention	Program including podiatry

1	
2	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
31	
04	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
15	
40	
46	
47	

Hamalainen, Finland, 1998 [49]	Study described in	
	another paper	
McCabe, UK, 1998 [50]	Intervention	Clinical foot screening programme, only subset of population seen by podiatrist, no
		comparison group involved
	For peer review only -	http://bmiopen.bmi.com/site/about/guidelines.xhtml

PROTOCOL FOR SYSTEMATIC REVIEW

DOES CONTACT WITH A PODIATRIST PREVENT THE OCCURRENCE OF A LOWER EXTREMITY AMPUTATION IN PEOPLE WITH DIABETES? A SYSTEMATIC REVIEW AND META-ANALYSIS

Authors:

Dr Claire M. Buckley Professor Ivan J. Perry Professor Colin P. Bradley Dr Patricia M. Kearney

BACKGROUND

Diabetes is associated with a significant risk of LEA (lower extremity amputation)[1]. LEA rates vary between communities, 46-9,600 per 10^5 people with diabetes, for many reasons [2]. A number of factors influence the occurrence of a LEA in patients with diabetes; including hypertension, obesity and hyperglycaemia [3-7]. In the foot, previous ulceration, infection and ischaemia are proven risk factors [8]. Nearly 85% of amputations begin as foot ulcers among persons with diabetes [9]. Protective factors include control of clinical parameters and screening to identify those patients at high risk [10]. Many LEAs are preventable [11]. Thus, the effects of clinical and socio-demographic risk factors on the occurrence of a lower extremity amputation have been well documented in patients with diabetes in previous studies [12] [13] [14]. However, the effect of patient contact with a podiatrist on the occurrence of LEA in patients with diabetes is less well explored.

In 1998, the ADA (American Diabetes Association) published a technical review and position statement on preventive foot care in people with diabetes, highlighting the importance of foot care in people with diabetes to prevent adverse outcomes [15 16]. An updated position statement by the ADA in 2003 stated that early recognition and management of independent risk factors for ulcers and amputations can prevent or delay the onset of adverse outcomes [17]. However, these statements did not specify the role of podiatry. In 2005, the Standards of Medical Care of Diabetes issued by the ADA advised that problems involving the feet, especially ulcers and wound care, may require care by a podiatrist [18]. And in 2008, a task force report by the Foot Care Interest Group of the ADA stated that all patients with diabetes should be assigned to a foot risk category. These categories were designed to direct referral and subsequent therapy by the speciality clinician or team [19]. This report did not outline the role of podiatry but panel members included podiatric medicine representatives, suggesting that podiatry does have a place in footcare of patients with diabetes. It is now being recognised across the globe that podiatry has a role in the management of the diabetic foot. Guidelines from Scotland, Europe outline a diabetic risk stratification and triage tool, highlighting which patients need podiatry referral [20] (Appendix 1).

The management of diabetes is a complex process involving many healthcare professionals, including podiatrists. Two previous Cochrane reviews by Dorrestiejn et al have looked at lower extremity amputation in patients with diabetes as an outcome [21 22]. In 2009, Dorrestiejn et al concluded that there is no high quality evidence evaluating complex interventions (complex intervention defined as an integrated care approach) and insufficient evidence of benefit in preventing diabetic foot ulceration [21]. The second Cochrane review in 2010 concluded that there is insufficient robust evidence that limited patient education alone is effective in achieving clinically relevant reductions in ulcer and amputation incidence [22]. Individual patient contact with a podiatrist was not examined as an intervention in either review. To the best of our knowledge, the effect of contact with a podiatrist on the occurrence of a LEA in patients with diabetes has not been previously examined in any systematic review.

This review will look at contact with a podiatrist as an intervention to prevent LEA in patients with diabetes. Randomised and non-randomised studies will be included.

Objectives

To conduct a systematic review of international literature to determine if contact with a podiatrist has an effect on the occurrence of LEA in patients with diabetes.

METHODS

Criteria for considering studies for review

Types of study design

Randomised and non-randomised studies that allow analysis of the effect of patient contact with a podiatrist in preventing LEAs will be included.

Types of participants

People with type 1 or type 2 diabetes mellitus in any health care setting.

Types of interventions

Studies of patients with diabetes attending a podiatrist for treatment alone or for treatment and education to prevent the occurrence of LEA will be included. Comparison groups will be those that were not in contact with podiatrists or received written instructions only.

Types of outcome measures

Primary: LEA (first or repeat)

Secondary: N/A

Table 1 Inclusion & Exclusion Criteria

Inclusion Criteria:	Exclusion Criteria:
Any time	Cross-sectional studies
English language	Review articles
Any Country	 Non-systematic reviews
Any age	Chart reviews /Case series
 Patients with a diagnosis of diabetes – either type 1 or type 2 	

Search strategy for identification of studies

Published studies will be identified through searches of PUBMED, CINAHL, EMBASE (Excerpta Medica), and Cochrane databases. No time-limits will be implemented. Where a study is reported in more than one article, data will be extracted from the most relevant report. The key search terms will be 'podiatry', 'amputation' and 'diabetes'. (Figure 1)

Page 45 of 50

Figure 1 Venn diagram of key terms for search strategy

A comprehensive search strategy will be devised with the advice of the librarian. Key terms will be searched as MeSH (Medical Subject Heading) terms e.g. 'diabetes - MeSH term' and as free text with/without truncation as appropriate e.g. 'Diabet*(this symbol is used for identifying all words starting with Diabet, e.g. diabetes, diabetic etc.). The search will include case-control studies, cohort studies, retrospective and prospective studies, articles, clinical trials and RCTs. The strategy will be adapted as per database requirements.

In addition, hand searches will be conducted of the reference lists of all articles retrieved to identify other potentially eligible articles.

Methods - data collection and analysis

Selection of studies

Full copies of potentially eligible studies will be obtained and two review authors (CMB and PK) will decide independently on inclusion or exclusion (table 1). In the case of disagreement, consensus will be reached by discussion between four review authors (CMB, PK, CB and IJ).

Data extraction and management

Data on eligible studies will be extracted and summarised using a pre-agreed data extraction summary form. This form will include study design, baseline characteristics of participants including number of participants, age, gender, ethnicity, type of diabetes, information on exposure, outcome measure (lower extremity amputation) and other relevant data. Risk of foot disease at baseline will be assessed using the Diabetic foot risk stratification and triage system from the SIGN (Scottish Intercollegiate Guidelines Network) guidelines (Appendix 1). If the data required for the review is missing from the published article, the authors will be contacted.

Assessment of quality in included studies

A modified version of a checklist developed by Downs and Black for assessing the methodological quality of both randomised and non-randomised studies of health care interventions will be used to critically appraise the studies in this review [23].

Assessment of heterogeneity

All eligible studies will be included in the data analysis. If data are too scarce or the quality of the studies is inadequate or results are too varied to present in numerical form, the authors will perform a narrative qualitative summary. If appropriate, meta-analysis will be attempted to pool outcome data. Either a fixed or random effects model will be used depending on the heterogeneity between studies. The most suitable model will be chosen after assessing the l² statistic for heterogeneity.

Pilot Results

Preliminary searches of the electronic databases have yielded approximately 500 titles & abstracts for initial screening.

REFERENCES

- Vamos EP, Bottle A, Edmonds ME, Valabhji J, Majeed A, Millett C. Changes in the Incidence of Lower Extremity Amputations in Individuals With and Without Diabetes in England Between 2004 and 2008. Diabetes Care 2010;33(12):2592-97 doi: 10.2337/dc10-0989[published Online First: Epub Date]].
- 2. Moxey P, Gogalniceanu P, Hinchliffe R, et al. Lower extremity amputations—a review of global variability in incidence. Diabetic Medicine 2011;28(10):1144–53
- 3. Turner R, Holman R, Stratton I, et al. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;**317**(7160):703-13
- Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352(9131):837-53 doi: S0140673698070196 [pii][published Online First: Epub Date]].
- Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352(9131):854-65 doi: S0140673698070378 [pii][published Online First: Epub Date]].
- DCCT. The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine 1993;**329**(14):977-86 doi: doi:10.1056/NEJM199309303291401[published Online First: Epub Date]|.
- 7. EDIC. Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 1999;22(1):99-111 doi: 10.2337/diacare.22.1.99[published Online First: Epub Date]].
- Boulton AJ. Lowering the risk of neuropathy, foot ulcers and amputations. Diabet Med 1998;15
 Suppl 4:S57-9 doi: 10.1002/(sici)1096-9136(1998120)15:4+<s57::aid-dia741>3.0.co;2-d[published Online First: Epub Date]|.
- 9. Apelqvist J, Larsson J. What is the most effective way to reduce incidence of amputation in the diabetic foot? Diabetes/metabolism research and reviews 2000;**16**(S1):S75-S83
- 10. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA 2005;**293**(2):217-28

3
4
5
5
6
7
8
0
9
10
11
12
12
13
14
15
16
10
17
18
19
20
20
21
22
23
21
24 05
25
26
27
20
20
29
30
31
201
32
33
34
35
30
36
37
38
20
39
40
41
42
40 10
43
44
45
46
17
41
48
49
50
50
51
52
53
51
54
55
56
57
50
00
59

- 11. IDF. Position Statement the Diabetic Foot. Secondary Position Statement the Diabetic Foot. <u>http://www.idf.org/position-statement-diabetic-foot</u>.
- 12. Adler AI, Boyko EJ, Ahroni JH, Smith DG. Lower-extremity amputation in diabetes. The independent effects of peripheral vascular disease, sensory neuropathy, and foot ulcers. Diabetes Care 1999;**22**(7):1029
- 13. Pecoraro R, Reiber G, Burgess E. Pathways to diabetic limb amputation. Basis for prevention. Diabetes Care 1990;**13**(5):513
- 14. Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk A. Type 2 diabetes incidence and socioeconomic position: a systematic review and meta-analysis. International Journal of Epidemiology 2011 doi: 10.1093/ije/dyr029[published Online First: Epub Date]|.
- 15. Mayfield J, Reiber G, Sanders L, Janisse D, Pogach L. Preventive foot care in people with diabetes. Diabetes Care 1998;**21**(12):2161
- 16. ADA. Position Statement: Preventive foot care in people with diabetes. . Diabetes Care 1998;**21**:2178 79
- 17. ADA. Preventive Foot Care in People With Diabetes. Diabetes Care 2003;**26**(suppl 1):s78-s79 doi: 10.2337/diacare.26.2007.S78[published Online First: Epub Date]].
- 18. ADA. Standards of Medical Care in Diabetes. Diabetes Care 2005;**28**(suppl 1):s4-s36 doi: 10.2337/diacare.28.suppl_1.S4[published Online First: Epub Date]].
- 19. Boulton AJM, Armstrong DG, Albert SF, et al. Comprehensive Foot Examination and Risk Assessment. Diabetes Care 2008;**31**(8):1679-85 doi: 10.2337/dc08-9021[published Online First: Epub Date]].
- 20. SIGN. Management of diabetes. A national clinical guideline March 2010. http://www.sign.ac.uk/pdf/sign116.pdf.
- 21. Dorresteijn Johannes AN, Kriegsman Didi MW, Valk Gerlof D. Complex interventions for preventing diabetic foot ulceration. Cochrane Database of Systematic Reviews 2010; (1). <u>http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD007610/frame.html</u>.
- Dorresteijn Johannes AN, Kriegsman Didi MW, Assendelft Willem JJ, Valk Gerlof D. Patient education for preventing diabetic foot ulceration. Cochrane Database of Systematic Reviews 2010; (5).

http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD001488/frame.html.

23. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of Epidemiology and Community Health 1998;52(6):377-84 doi: 10.1136/jech.52.6.377[published Online First: Epub Date]].

3 additional

searching

records identified

through reference

499 records

database

searching

identified through

Page 49 of 50

Figure 3 Funnel plot of included studies (RCTs and Cohort studies)

117x90mm (300 x 300 DPI)