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Autonomous Expression of c-myc in BC3H1 Cells Partially Inhibits
but Does Not Prevent Myogenic Differentiation
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Myogenic differentiation is obligatorily coupled to withdrawal of myoblasts from the cell cycle and is
inhibited by specific polypeptide growth factors. To investigate the potential involvement of c-myc in the control
of myogenesis, the BC;H1 muscle cell line was stably transfected with a simian virus 40 promoter:c-myc
chimeric gene. In quiescent cells in 0.5% serum, the exogenous c-myc gene was expressed at a level more than
threefold greater than the level of endogenous c-myc in undifferentiated, proliferating cells of the parental line
in 20% serum. The transfected myc gene partially inhibited the expression of both muscle creatine kinase and
the nicotinic acetylcholine receptor, but was not sufficient to prevent the induction of these muscle

differentiation products upon mitogen withdrawal.

Myogenic differentiation is accompanied by coordinate
induction of a battery of tissue-specific gene products which
include the muscle isoenzyme of creatine kinase (CK) and
the nicotinic acetylcholine (ACh) receptor (5, 14, 21, 26,
28-33, 40). Activation of muscle-specific genes during
myogenesis is coupled to cessation of cell division and is
inhibited by serum components, fibroblast growth factor,
and type B transforming growth factor (9, 22, 24, 29-32, 43).
Several lines of evidence have suggested that the molecular
control of myogenesis might involve the cellular oncogene
c-myc (11, 38, 43), the putative intranuclear mediator of
growth factor signals (2, 3, 16, 18). The onset of myogenesis
has been reported to be preceded by a decline in c-myc
expression (38). In certain variant muscle cell lines that
cannot differentiate, c-myc fails to be down-regulated after
removal of mitogens, despite withdrawal of myocytes from
the cell cycle (38). These observations agree with reports
that the viral myc oncogene can block differentiation of quail
embryo myoblasts (11) and that deregulated expression of
c-myc may block the differentiation of mouse erythroleu-
kemia cells (7). However, it is conjectural whether the
normal decline of this growth factor-inducible protein is a
cause or, instead, a consequence of differentiation. For
example, reinduction of c-myc was not sufficient to inacti-
vate muscle-specific gene expression in LgEg myotubes that
were terminally differentiated (10). Furthermore, contrasting
reports have questioned whether mitogen-inducible cellular
oncogenes are either obligatory or sufficient to account for
the changes in cell phenotype evoked by altered growth
factor levels in a variety of other systems (4, 8, 23, 27).

In the present study, we have examined the potential role
of c-myc in the control of myogenesis by stable transfection
of BC3H1 cells with a transcriptionally active c-myc gene.
The BC3;H1 myogenic cell line was selected for these studies
because differentiation in this system is accompanied by
high-level induction of muscle CK and the ACh receptor, is
relatively synchronous, and, most importantly, remains sus-
ceptible to modulation by growth factors (21, 22, 30-32, 37,
43). While the precise origin of this cell line is unknown,
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BC;H1 cells have become a widely employed model for
gaining insight into the mechanisms involved in regulation of
myogenesis by mitogens. In this report, we present evidence
that deregulated expression of c-myc partially inhibits, but
does not prevent, myogenic differentiation of BC;H1 cells
after mitogen withdrawal.

The c-myc vector pSVc-myc-1 (20) comprised the murine
c-myc coding sequences contained within exons 2 and 3,
transcriptionally activated via the simian virus 40 (SV40)
promoter. Transfection (13, 41) employed overnight incuba-
tion of 10° cells with 30 pg of carrier DNA, 0.1 ug of
pSV2neo DNA to confer neomycin resistance (42), and 1 pg
of the chimeric oncogene DNA. After an additional 24 h, the
cells were fed with medium containing the néomycin analog
G418 at 400 ug ml™! and were refed weekly. Colonies
resulting from transfection with the neomycin resistance
gene alone were morphologically indistinguishable from pa-
rental BCsH1 cells (Fig. 1A and B). c-myc-transfected
myocytes typically were smaller, rounder, and more
refractile (Fig. 1C and D). Seven independent clonal c-myc-
transfected cell lines initially were screened for expression
of muscle CK and ACh receptor as indicators of myogenic
differentiation; a representative cell line was selected for
more detailed characterization shown below. Southern hy-
bridization (25) revealed the single 4.6-kilobase-pair HindIII
c-myc restriction fragment in neo transfectants and con-
firmed stable incorporation of the exogenous DNA in
myocytes transfected with the c-myc vector (Fig. 2).

Cells transfected with c-myc exhibited doubling times
equivalent to neo transfectants in medium with 20% fetal
bovine serum (FBS) and exhibited contact inhibition of cell
proliferation at confluent densities. Moreover, for both neo
and miyc transfectants, transfer to medium with 0.5% FBS
was accompanied by withdrawal from the cell cycle within
~48 h even at subconfluent densities (Fig. 3A). Thus, the
c-myc expression vector was unable by itself to release
BC;H1 cells from their dependence on exogenous growth
factors for proliferation. These results do not exclude more
subtle alterations in growth factor requirements, as have
been reported for c-myc-transfected fibroblasts (2, 17).
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FIG. 1. Morphology of transfected BC;H1 myocytes. Phase-contrast microscopy is shown for pairs of independent replicate colonies,
photographed after 18 days in selective medium: (A and B) pSV2nreo alone; (C and D) pSVc-myc-1 + pSV2neo. Subsequent experiments were
performed on gelatin-treated polystyrene to ensure stable monolayers. Bar, 100 pm.

As reported previously (30-32, 43), exposure of BC;H1
cells to medium with FBS reduced to 0.5% was accompanied
by induction of CK activity and cell surface ACh receptors
(Fig. 3B and C). These muscle-specific gene products were
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FIG. 2. Southern hybridization analysis of transfected BC;H1
myocytes. DNA was extracted from clonal BC;H1 myocytes
transfected with pSV2neo or pSVc-myc-1. DNA was digested with
Hindlll, size fractionated (10 pg per lane), transferred to nitrocel-
lulose, and hybridized to the **P-labeled Xbal-HindlII fragment of
pSVc-myc-1 (12, 25). The endogenous 4.6-kilobase-pair HindIIl
fragment is indicated (arrow).

also induced after mitogen withdrawal in cells transfected
with c-myc. However, expression of these muscle differen-
tiation products was inhibited by 50 to 75%. Because CK and
ACh receptors were expressed with similar kinetics and
reached maximum levels within 4 to 5 days after exposure of
neo and myc transfectants to medium with 0.5% FBS, the
reduced expression of these muscle-specific gene products in
the presence of an exogenous c-myc gene may be due to
interference in the differentiation program, rather than to a
simple delay in the onset of differentiation.

c-myc mRNA is generally expressed at basal levels in cells
under conditions of serum deprivation and rapidly accumu-
lates after mitogenic stimulation (24, 6, 8, 10, 18, 45). To
compare relative levels of endogenous and exogenous myc
transcripts in the different cell lines and to determine
whether exogenous myc transcripts were subject to regula-
tion similar to the endogenous mRNA, we analyzéd levels of
c-myc mRNA under conditions of serum deprivation and
after exposure of quiescent cells to medium with 20% FBS
for 2 and 4 h (Fig. 4A). The pSVc-myc-1 transcript, which
lacks exon 1, is 200 to 300 nucleotides shorter than the
2.1-kilobase endogenous transcript and can be readily dis-
tinguished. In 0.5% FBS, exogenous c-myc mRNA levels
were 20 to 40-fold higher in c-myc transfectants than were
the endogenous c-myc mRNA levels in controls (compare
lanes 1 and 4, Fig. 4A). Serum stimulation resulted in an
approximate 10-fold increase in c-myc mRNA levels in each
cell type. Because SV40-driven c-myc was induced in par-
allel with the endogenous c-myc transcript found in control
cultures, it will be interesting to determine whether this
reflects transcriptional induction of the SV40 promoter (15),
an alteration in c-myc mRNA stability, or both. Though the
SV40 promoter-linked gene was regulated by serum compo-
nents and was significantly down-regulated upon serum
withdrawal, the minimal level of exogenous c-myc expres-
sion observed in 0.5% serum (nominally ‘‘differentiating”
conditions) was at least threefold higher than the level of
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FIG. 3. (A) Proliferation of transfected BC;H1 myocytes. BC3;H1 myocytes transfected with pSV2neo (control) or pSVc-myc-1 (c-myc)
were cultured to ~25% confluency in Dulbecco modified Eagle medium with 20% FBS. On day 0, half of the cultures were exposed to medium
with 0.5% FBS, and cells were counted on subsequent days using a Coulter counter. Each cell line became quiescent with respect to growth
within 2 days. Results are shown on a semilogarithmic scale. (B and C) Expression of CK and ACh receptors in transfected BC;H1 myocytes.
BC;H1 myocytes transfected with pSV2neo (control) or pSVc-myc-1 (c-myc) were cultured in Dulbecco modified Eagle medium with 20%
FBS. On day 0, cultures were exposed to medium with 0.5% FBS. On consecutive days, (B) CK activity was determined enzymatically (36),
and (C) ACh receptors were measured by specific binding of a-'?’I-bungarotoxin (31).

endogenous c-myc expression found in the parental line
during logarithmic growth in 20% serum.

As anticipated from the induction of CK activity in the
SV40:c-myc transfectants, mck transcripts measured by
Northern blot hybridization also were induced in these cells
at 4 days of mitogen withdrawal and were diminished in
abundance by ~75% (Fig. 4B). Transfection with c-myc did
not influence expression of all cellular mRNA, as demon-
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strated by the constitutive expression of glyceraldehyde-3-
phosphate dehydrogenase mRNA in all cell lines examined
(unpublished data).

We have examined the phenotypic consequences of
transfecting BC3H1 cells with an exogenous c-myc gene, a
‘‘distal’’ element in the cascade postulated for transduction
of growth factor signals. There are at least four biochemical
mechanisms through which deregulated expression of the
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FIG. 4. Expression of c-myc mRNA and mck mRNA in transfected BC;H1 myocytes. (A) BC;H1 myocytes and SV40:c-myc-transfected

cells were cultured in Dulbecco modified Eagle medium with 20% FBS and were exposed to medium with 0.5% FBS for 4 days. Total cellular
RNA was isolated from (0) quiescent cells and after treatment with 20% FBS for 2 or 4 hours as indicated. Northern hybridization was
performed using the Xbal-Hind III fragment of pSVc-myc-1 (11, 23). Lanes: 1, 2, and 3, control BC;H1 myocytes; 4, 5, and 6, c-myc
transfectants. (B) Total cellular RNA was isolated from BC;H1 cells and SV40:c-myc transfectants, (+) during proliferative growth in 20%
FBS or (—) after mitogen withdrawal for 4 days. The mck probe comprised the 0.84-kilobase-pair Smal-EcoRI fragment of R21 (35);

comparable results were obtained with the 0.85-kilobase-pair PstI fragment of pHMCK-Ia (34). Lanes: 1 and 2, control BC;H1 myocytes; 3
and 4, c-myc transfectants.
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c-myc gene product might impinge on the control of differ-
entiation and cause partial inhibition of muscle-specific gene
expression. The c-myc protein is found within the nucleus
(1), and it has been suggested that c-myc protein might itself
regulate cellular promoters of transcription, as do the nu-
clear products of fos (39) and adenovirus E1A genes (19).
Alternatively, autonomous expression of c-myc, a member
of the set of genes induced by ‘‘competence’” growth factors
(6, 8, 18, 45), can serve as a surrogate for those factors and
enable cells to replicate DNA and divide in the presence of
‘‘progression’’ factors (16). Such observations are especially
important in the context of evidence that certain competence
factors can block or reverse myogenic differentiation (22,
43). Other possible functions suggested for c-myc include
influences on activity of transcription complexes or on RNA
processing within the nucleus (6). Finally, deregulated myc
expression potentiates at least the proliferative responses of
cells, elicited by various growth factors, and might, there-
fore, sensitize myoblasts to the negative effects on differen-
tiation of certain growth factors (44).

Because mck and ACh receptor expression in myc
transfectants were induced at least 50-fold after mitogen
withdrawal, our observations argue strongly against the
hypothesis that induction of muscle-specific genes is obliga-
torily coupled to down-regulation of c-myc. The conclusions
we report here are also supported by our recent findings that
functional sodium and calcium channels, characteristic of
skeletal muscle cells, are formed in BC3H1 myocytes only
after mitogen withdrawal; their induction is delayed but not
prevented by expression of the SV40:c-myc gene (J. M.
Caffrey, A. M. Brown, and M. D. Schneider, Science, in
press). These results complement a recent report that
reinduction of c-myc in differentiated L¢Es myotubes was
insufficient to inactivate muscle-specific gene expression (10)
and that deregulated expression of c-myc in transgenic mice
did not disrupt normal development (23).

Contrasting results obtained with the viral myc oncogene
in primary quail myoblasts (11) may reflect cell type-specific
responses to the myc gene product or differences in the
procedures utilized, or might signify functional differences in
the v-myc gene product. The apparent ineffectiveness of
c-myc in myocytes that have already undergone terminal
differentiation (10) should be interpreted together with the
observation that type B transforming growth factor, a potent
inhibitor of myogenic differentiation, also is unable to influ-
ence muscle-specific gene expression in cells that are ‘‘com-
mitted”’ to a differentiated state (32).

In the future, it will be of interest to continue to utilize
gene transfer as a means to test the function of biochemically
discrete cellular and viral oncogene products in the molec-
ular events of myogenesis. Transfected myocytes not only
provide insight into the functional level and molecular details
of the pathways whereby polypeptide growth factors and
oncogene products influence muscle-specific gene expres-
sion, but also may enable studies of differential sensitivity to
competence, progression, or autocrine factors that antago-
nize myogenic differentiation.
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