Null alleles of *ABCG2* encoding the breast cancer resistance protein define the new blood group system Junior

Carole Saison, Virginie Helias, Bryan A. Ballif, Thierry Peyrard, Hervé Puy, Toru Miyazaki, Sébastien Perrot, Muriel Vayssier-Taussat, Mauro Waldner, Pierre-Yves Le Pennec, Jean-Pierre Cartron & Lionel Arnaud

- Supplementary Figures 1-5

- Supplementary Tables 1-2

Supplementary Figure 1: Flow cytometry analysis of RBCs from 10 mammalian species with anti-Jr^a HMR0921. Blood samples were taken on EDTA and extensively washed to deplete leukocytes. RBCs were incubated with the human monoclonal HMR0921 (blue profiles) or without (grey profiles) in low-ionic strength solution supplemented with bovine serum albumin. Binding of HMR0921 to RBCs was revealed with a goat $F(ab')_2$ anti-human IgG(H+L)-PE and immediately analyzed with a FACSCalibur flow cytometer, with the same voltage settings as human RBCs on 05/15/2008. Data were analyzed with FlowJo software; the density dot plots show the FSC/SSC gating of RBCs while the overlays show their HMR0921 staining.

Species	Gene ID	Peptide ID	Peptide length	Genomic location
Homo sapiens	ENSG00000118777	ENSP00000237612	655 aa	4:89011416-89152474
Felis catus	ENSFCAG00000002841	ENSFCAP00000002614	587 aa	1506:113877-209541
CLUSTAL W(1.81) mul	tiple sequence alig	ynment		
ENSP00000237612/1-6 ENSFCAP00000002614/	55 MSSSNVEVFIPVS 1-587	SQGNTNGFPATASNDL <u>K</u> AF	TEGAVLSFHNICY <u>R</u> V	<u>KLK</u> SGFLPC <u>R</u> KPVE
ENSP00000237612/1-6 ENSFCAP00000002614/	55 <u>K</u> EILSNINGIMKH 1-587GIMRH ***:'	PGLNAILGPTGGG <u>K</u> SSLLD ^v PGLNAILGPTGGG <u>K</u> SSLLD ^v	VLAA <u>RK</u> DPSGLSGDV VLAA <u>RK</u> DPHGLSGDV *******	LINGAPRPANF <u>K</u> CN LINGAPRPANF <u>K</u> CN ******
ENSP00000237612/1-6 ENSFCAP00000002614/	55 SGYVVQDDVVMG 1-587 SGYVVQDDVVMG ************	TLTV <u>R</u> ENLQFSAAL <u>R</u> LATTI TLTV <u>R</u> ENLQFSAAL <u>R</u> LPTTI *****	MTNHEKNERINRVIQ MTTNEKNMRINRVIQ **.:*** ******	ELGLD <u>K</u> VADS <u>K</u> VGT ELGLD <u>K</u> VADS <u>K</u> VGT *****
ENSP00000237612/1-6 ENSFCAP00000002614/	55 QFI <u>R</u> GVSGGE <u>RKF</u> 1-587 QFI <u>R</u> GVSGGE <u>RKF</u> ************	RTSIGMELITDPSILFLDE	PTTGLDSSTANAVLL PTTGLDSSTANAVLL ************	LL <u>KRMSKQGR</u> TIIF LL <u>KR</u> MSEQG <u>R</u> TIIF ******::******
ENSP00000237612/1-6 ENSFCAP00000002614/	55 SIHQPRYSIFKLE 1-587 SIHQPRYSIFKLE *************	FDSLTLLASG <u>R</u> LMFHGPAQ FDSLTLLASG <u>R</u> LMFHGPAQ	EALGYFESAGYHCEA EALGYFALMXXXXXX * * * * * *	YNNPADFFLDIING XXXXXXXXXXXXX

Supplementary Figure 2: Partial alignment of human ABCG2 with predicted cat Abcg2 showing the peptides identified by mass spectrometry from the cat RBC membrane protein immunoprecipitated by anti-Jr^a HMR0921. The tryptic peptides identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), on the basis of the human genome, are shown in blue in the alignment of human ABCG2 with the predicted cat Abcg2 (alignment with Clustal W software (v. 1.82), as found at http://www.ensembl.org) and the predicted trypsin cleavage sites are underlined. The tryptic peptides identified from cat Abcg2 are fully conserved in human ABCG2, as expected.

Supplementary Figure 3a: Representative sequencing traces of *ABCG2* null mutation c.187_197del11 (p.I63YfsX54)

Supplementary Figure 3b: Representative sequencing traces of *ABCG2* null mutation c.376C>T (p.Q126X)

Supplementary Figure 3c: Representative sequencing traces of *ABCG2* null mutation c.542_543insA (p.F182VfsX14)

Supplementary Figure 3d: Representative sequencing traces of *ABCG2* null mutation c.706C>T (p.R236X)

Supplementary Figure 3e: Representative sequencing traces of *ABCG2* null mutation c.730C>T (p.Q244X)

Supplementary Figure 3f: Representative sequencing traces of *ABCG2* null mutation c.791_792deITT (p.L264HfsX14)

Supplementary Figure 3g: Representative sequencing traces of *ABCG2* null mutation c.875_878dupACTT (p.F293LfsX8)

Supplementary Figure 3h: Representative sequencing traces of *ABCG2* null mutation c.1111_1112deIAC (p.T371LfsX20)

Supplementary Figure 4: Example of a pedigree of a Jr(a-) subject analyzed in this study. The Jr(a-) proband (indicated by an arrow) was identified after developing an anti-Jr^a induced by pregnancy.

Supplementary Figure 5: Comparison of the reactivity of monoclonal antibody 5D3 and HMR0921. (a) Reactivity of 5D3 (purple) or HMR0921 (blue) with human RBCs non-treated (NT), treated with 200 mM dithiothreitol (DTT) or treated with 1 % paraformaldehyde (PFA), as analyzed by flow cytometry (bars represent the means of binding, and error bars the s.d. (n=3)); notably, the epitope recognized by HMR0921 is different from the epitope recognized by 5D3 since only the latter is sensitive to the reducing agent DTT. (b) Reactivity of 5D3 (purple) or HMR0921 (blue), as well as control mouse mAb (clone MCP11; light purple) or control human mAb (clone T27S; light blue) with Hela cells treated with different concentrations of DTT for 10 min at 21 °C, as analyzed by flow cytometry (bars represents the geometric mean of fluorescence intensity); DTT treatment of Hela cells reduces the binding of 5D3, but not of HMR0921. (c) Flow cytometry profile of HeLa cells treated with 40 mM DTT (heavy line) or 0 mM DTT (light line), and labeled with 5D3 (left overlay) or HMR0921 (right overlay) as in (b). (d) Same as (b) but with Hela cells treated with different concentrations of PFA; PFA treatment of HeLa cells increases the binding of both 5D3 and HMR0921. (e) Flow cytometry profile of HeLa cells treated with 2 % PFA (heavy line) or 0 mM DTT (light line), and labeled with 5D3 (left overlay) or HMR0921 (right overlay) as in (d). Flow cytometry data were acquired with a FACSCanto II flow cytometer and analyzed with FlowJo software.

	ABCG2 exo	n / intre	uc			Exon	2	Exon 4	Exon 5	Exon 6
	Mutation (in	NM_0(14827.1)	c.19G>A	c.34G>A	c.166C>A	c.187_197deIATATTATCGAA	c.376C>T	c.393G>T	c.542_543insA
	Reported in c	dbSNP	build 132		rs2231137			rs72552713		
	Type of mut	tation		missense	missense	silent	frameshift	nonsense	missense	frameshift
	Position on N	NT_016:	354.19	13608850C>T	13608835C>T	13608703C>A	13608682_13608672deITATAATAGCTT	13600678G>A	13600072C>A	13590653insA
Subjects	Phenotype	Sex	Origine							
BENA	Jr(a-)	ш	Northwestern France	9/9	G/G	C/C	ОН	-	9/9	,
YAN	Jr(a-)	ш	Korea	G/G	G/G	C/A	,	Ŷ	G/G	ı
KAN	Jr(a-)	ш	Korea	G/G	G/G	C/C	T	Р	G/G	
LEV	Jr(a-)	ш	Korea	G/G	G/G	C/C	,	우	G/G	ı
BER	Jr(a-)	ш	Central France	G/G	G/G	C/C	T		G/G	HT
BOU	Jr(a-)	ш	Maghreb	G/G	G/G	C/C	,		G/G	·
GIM	Jr(a-)	ш	SW France gypsy	G/G	G/G	C/C		ı	T/T	·
PAT	Jr(a-)	ш	SW France gypsy	G/G	G/G	C/C		ı	T/T	,
BENO	Jr(a-)	ш	SW France gypsy	G/G	G/G	C/C	ı	·	T/T	,
REI	Jr(a-)	ш	SW France gypsy	G/G	G/G	C/C			тл	Ţ
REN	Jr(a-)	ш	SW France gypsy	G/G	G/G	C/C		ı	тл	·
KAR	Jr(a-)	ш	NE Italy gypsy	G/G	G/G	C/C		ı	тл	ı
CAM	Jr(a-)	ш	SW France gypsy	G/G	G/G	C/C	ı	·	GЛ	,
CHA	Jr(a-)	ш	Southeastern France	G/G	G/G	C/C			G/G	Ţ
KER	Jr(a-)	ш	Turkey ?	G/G	G/G	C/C		ı	G/G	·
CIN	Jr(a-)	ш	Turkey ?	G/G	G/G	C/C		I	G/G	ı
GUE	Jr(a-)	ш	French Antilles	G/A	G/A	C/C	-	I	G/G	·
HAF	Jr(a-)	ш	Pakistan	G/G	G/G	c/c			G/G	

Supplementary Table 1 (first part): Sequencing results of ABCG2 in the 18 Jr(a-) subjects analyzed in this study. Only the positions showing a difference with reference *ABCG2* genomic sequence NT_016354.19 in at least one subject are indicated. The mutations responsible for the Jr(a-) blood group phenotype are shown in red (HO for homozygous, HT for heterozygous).

Saison et al., Supplementary Information

		Exon	17	Exon 8	Exon 9	Intron 9	Intron 11	Intron 12	Intro	n 13	Intron 14
	c.706C>T	c.730C>T	c.791_792deITT	c.875_878dupACTT	c.1111_1112delAC	c.1195-60A>T	c.1367+20A>G	c.1492+49G>T	c.1647+40T>C	c.1648-21C>T	c1738-46A>G
						rs2231148	rs2231153	rs2231156	rs2231157	rs2231162	rs2231164
	nonsense	nonsense	frameshift	frameshift	frameshift	non-coding	non-coding	non-coding	non-coding	non-coding	non-coding
	13587117C>T	13587105G>A	13587032_13587031delAA	13583899_13583895dupTGAA	13582259_13582258delTG	13576199T>A	13570083T>C	13568148A>C	13566286A>G	13564503G>A	13563578T>C
Subjects											
BENA		,			-	Т/Т	A/A	G/G	ТЛ	C/C	A/A
YAN						A/A	A/A	G/G	C/C	C/C	A/A
KAN						A/A	A/A	G/G	C/C	C/C	A/A
LEV		1				AT	A/A	G/G	T/C	C/C	A/A
BER	Ħ					AT	AA	G/G	T/C	C/C	A/A
BOU	Р	1				Т/Т	AA	G/G	ТЛ	C/C	A/A
GIM	오					A/A	AA	G/G	C/C	C/C	A/A
PAT	우	1				A/A	A/A	G/G	C/C	C/C	A/A
BENO	우					A/A	AA	G/G	C/C	C/C	A/A
REN	우					A/A	A/A	G/G	C/C	C/C	A/A
REI	우		ı			A/A	A/A	G/G	C/C	C/C	A/A
KAR	우	1				A/A	A/A	G/G	C/C	C/C	A/A
CAM	Ħ	,	Ħ			A/A	A/A	G/G	C/C	C/C	A/A
CHA	1	Р		,		A/A	A/A	G/G	C/C	C/C	A/A
KER	,	ı	ЮН			A/A	A/A	G/G	C/C	C/C	A/A
CIN		1	Ю			A/A	A/A	G/G	C/C	C/C	A/A
GUE			HT	HT		A/A	G/G	G/G	Т/Т	Т/Т	G/G
HAF					Я	A/A	AA	T/T	т/т	C/C	G/G

Supplementary Table 1 (second part)

Page 15/16

Exon	Primer	Sequence	Orientation	Position on NT_016354.19	Reference
2	ABCG2-6	CTGCTCATTGCCGCACATTT	sense	13608998-13608979	Lee et al.
2	ABCG2-7	GCCAAAACCTGTGAGGTTCA	antisense	13608599-13608618	Lee et al.
2	ABCG2-8	GTTGGTTTGTGCTTGTGTTC	sense	13601635-13601616	Lee et al.
3	ABCG2-9	GCGTTGCAAATGCTCAATAA	antisense	13601342-13601361	Lee et al.
4	ABCG2-1b	TGGATTCAAAGTAGCCATGAGA	sense	13600902-13600881	Lee et al.
4	ABCG2-2b	ATTCTCCCTGCCTTTTCACA	antisense	13600501-13600520	Lee et al.
Б	ABCG2-10	GGTTCATCATTAGCTAGAACTTTACC	sense	13600216-13600191	Lee et al.
5	ABCG2-11	TGGAAAGCAACCATTTTTGA	antisense	13599814-13599833	Lee et al.
6	ABCG2-3b	TCTTACAGGACTGGCACACG	sense	13590750-13590731	Lee et al.
0	ABCG2-4b	CCTTCCCTACATTCTTACCTGCT	antisense	13590325-13590347	Lee et al.
7	ABCG2-12	TCAGGCTGAACTAGAGCAAACA	sense	13587240-13587219	Lee et al.
	ABCG2-13	AGCACCAAATGGAACAAACA	antisense	13586834-13586853	Lee et al.
Q	ABCG2-14	CGTGGGAAGAAGAGAGAAAGAAA	sense	13584075-13584053	Lee et al.
0	ABCG2-15	CAAAAACACCAACAGCACTCA	antisense	13583664-13583684	Lee et al.
0	ABCG2-5b	GGTGTTAGGGAAGCATCCAA	sense	13582523-13582504	Lee et al.
9	ABCG2-6b	TGAAGCAGATGATAACAGAACCA	antisense	13582111-13582133	Lee et al.
10	ABCG2-30	GCCAAGCCATTGAGTGTTTA	sense	13576274-13576255	ltoda et al.
10	ABCG2-33	CTGACTCATCCTACCCTCAA	antisense	13575924-13575943	ltoda et al.
11	ABCG2-34	TGTGGAAAGAGTTTTGTGGGTA	sense	13570274-13570253	Bäckström et al.
	ABCG2-35	CCCAACCCCAGATGTAATCA	antisense	13570024-13570043	Bäckström et al.
12	ABCG2-20	GGTCTAGCCCTGAGGATGTG	sense	13568457-13568438	Lee et al.
12	ABCG2-21	GAGTGCAAAATGGACAGGTG	antisense	13568055-13568074	Lee et al.
13	ABCG2-22	AGGGTGGTTGGAGAGTGGAT	sense	13566622-13566603	Lee et al.
15	ABCG2-23	AGCAGAGCCCCATTTACAGA	antisense	13566211-13566230	Lee et al.
14	ABCG2-38	TGGTAGGGACTTGAAGAGGGTA	sense	13564567-13564546	Bäckström et al.
14	ABCG2-39	AGCTCATGGTCAGGGAAATG	antisense	13564301-13564320	Bäckström et al.
15	ABCG2-26	TCTTGATTGCCAGGGAAAAT	sense	13563704-13563685	Lee et al.
15	ABCG2-27	CGCGCACAACTCACTTTATG	antisense	13563301-13563320	Lee et al.
16	ABCG2-28	TGACGGATGCTAGGAATGAA	sense	13561302-13561283	Lee et al.
10	ABCG2-29	CCCATGGTTACTGTCTGAGGA	antisense	13560873-13560893	Lee et al.

Supplementary Table 2: Description of the primers used in this study for amplifying and sequencing *ABCG2*.