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Supplementary Materials: 

Materials and Methods: 

Human Subjects:  

All human subjects were recruited at the Massachusetts General Hospital 

Gastrointestinal Unit and the Department of Surgery in accordance with the IRB 

approved study: “Cell mediated immunity in Hepatitis C virus infection”; Protocol # 1999-

P-004983/54; MGH Legacy #: 90-7246. Liver specimens were obtained from 

explantation or resection of 8 patients with at least 5 years of chronic HCV infection, 

defined by positive anti-HCV antibody and detectable viral load. Three patients with 

treatment induced sustained virological response (SVR, undetectable viral load 6 

months after end of treatment) were analyzed. SVR of all 3 patients was achieved at 

least 3 years prior to liver sampling. Intrahepatic lymphocytes (IHL) were extracted by 

mechanical disruption of liver tissue. The cell suspension was then washed twice in 

RPMI 1640 culture medium supplemented with 10% FBS, followed by centrifugation at 

300 rpm each time to remove cell debris and hepatocytes. The final washing step was 

followed by centrifugation at 1500 rpm to obtain a pellet of IHL.  

 

Mice and Infections: 

All animals were housed at the University of Pennsylvania (Philadelphia, PA). 

Experiments were performed in accordance with protocols approved by the University of 

Pennsylvania Institutional Animal Care and Use Committee. Eomesflox/flox, Eomesgfp/+, 

and Tbx21-/- (T-bet KO) mice have been described previously (7, 20, 32). To examine 

CD8+ T cell differentiation in the absence of Eomes, Eomesflox/flox mice were crossed to 
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CD4-Cre mice (Eomes cKO) (7). CD4-Cre+ Eomes+/+ or littermate CD4-Cre- Eomesf/f 

mice were used as WT controls. Mice were infected with either 2 x 105 PFU of 

lymphocytic choriomenigitis virus (LCMV) Armstrong strain by i.p. injection to generate 

an acutely resolved infection or 4 x 106 PFU of LCMV clone 13 strain by i.v. injection to 

generate a chronic infection. The V35A variant of clone 13 has been previously 

described (19, 33).  

 

Flow cytometry and real-time PCR: 

All cells were stained with LIVE/DEAD® Fixable Dead Cell Stain (Invitrogen) to 

discriminate live from dead cells. Surface staining was performed as described 

previously (7, 34). Intracellular staining was performed using the Foxp3 / Transcription 

Factor Staining Buffer Set per manufacturer’s instructions (eBioscience; San Diego, 

CA). Antibodies used for flow cytometry were purchased from BD Biosciences (CD4, 

CD8, CD19, CD44, 2B4, Ki-67; San Jose, CA), Biolegend (PD-1, Tim3, TNF-D, IFN-J, T-

bet; San Diego, CA), R&D Systems (MIP-1D; Minneapolis, MN), or eBioscience (CD8, 

Lag3, CD160, 2B4, CD45.1, CD45.2, CD107a, Eomes). MHC class I peptide tetramers 

were made and used as described previously (30, 35). Data were collected on a BD 

LSRII (BD Biosciences) and analyzed with FlowJo software (Tree Star, Ashland, OR). 

Cell sorting was performed using a BD Aria II (BD Biosciences). qRT-PCR was carried 

out as previously described (7, 36). Gene expression was normalized to GAPDH. 

Target gene probes were purchased from Applied Biosystems (Foster City, CA). 
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Total Body Estimation of Blood, Skin, and Bone Marrow: 

Mice were weighed for total blood volume and surface area estimation. Total blood 

volume was estimated as 6% body weight (37). Total skin surface area (in cm2) was 

estimated as 9.822 * (mass in g)0.667 as described in (38). Total body bone marrow was 

estimated to be 7.9-fold of the yield from two femurs as previously described (35, 39, 

40). Tissues were processed and hematopoietic cells isolated as described (35). 

 

Bone Marrow Chimeras 

Bone marrow (BM) from WT (CD45.1+), T-bet KO (CD45.2+), and Eomes cKO 

(CD45.2+) donors was harvested. 5-10 x 106 donor cells were transferred i.v. into 

sublethally irradiated (450 rads) Rag2-/- recipients. 8 weeks after BM transfer, chimeras 

were infected with LCMV clone 13. 

 

BrdU Treatment and Detection 

Animals were treated with 2mg of BrdU (Sigma-Aldrich; St. Louis, MO) i.p. daily for 7 

days prior to tissue harvest and analysis. BrdU incorporation was assessed by the BrdU 

Flow Kit per manufacturer’s instructions (BD Biosciences). 

 

CFSE labeling, temporal deletion and adoptive transfers: 

At indicated days p.i., spleens were harvested from indicated CD45.2+ donor mice. 

CD8+ T cells were purified from splenocytes using magnetic beads according to 

manufacturer’s protocol (CD8 negative selection; MACS beads; Miltenyi Biotec, Auburn, 

CA). Purified CD8+ T cells were labeled with CFSE as described previously (30, 35), 
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and transferred i.v. into CD45.1+ infection-matched controls. Temporal Eomes deletion 

with Tat-Cre was performed as described (36). 

 

Statistical Analysis: 

Student’s t test (Paired and Unpaired), Mann-Whitney test, and 2-way ANOVA were 

performed using Prism software (Graphpad, La Jolla, CA). 

 

Figure Legends 

Figure S1. Eomes expression is enhanced during chronic viral infection and 

segregates antiviral CD8+ T cells with distinct functional properties. (A) Flow 

cytometric analysis of GFP expression in Dbgp33-specific CD8+ T cells in WT (shaded) 

or Eomesgfp/+ (open) mice at indicated days p.i. (B) Flow cytometric analysis of YFP 

(Blimp1) versus GFP (Eomes) expression in Dbgp33-specific CD8+ T cells on d8 post 

LCMV Armstrong infection of WT, single, or double reporter mice as indicated. (C) Flow 

cytometric analysis of IFN-J and TNF-D expression in Eomeshi and Eomeslo virus-

specific CD8+ T cells after stimulation with indicated LCMV peptides on d22 p.i. (2-way 

ANOVA). (D) Flow cytometric analysis of granzyme B expression in naïve (shaded) or 

Eomes+ and Eomes- Dbgp276-specifc CD8+ T cells (open) d22 post clone 13 infection. 

(A-D) Numbers denote frequency of gated population. (A-D) Data are representative of 

2-5 independent experiments with at least three mice per experimental group. (E) Flow 

cytometric analysis of CD107a staining of naïve (shaded) or Eomes+ and Eomes- MIP-

1D+ CD8+ T cells (open) after stimulation with gp276-286 peptide on d23 p.i. post clone 

13 infection. Data is aggregated across three independent experiments. (F) PD-1 
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expression effectively separates cells with elevated T-bet (T-bethi) versus elevated 

Eomes (Eomeshi). Flow cytometric analysis of T-bet, Eomes, and PD-1 expression in 

Dbgp33-specific CD8+ T cells d21 post clone 13 infection. (G) Eomeshi cells have 

enhanced cytotoxicity compared to T-bethi cells. Cytotoxicity of sorted PD-1int (T-bethi) 

and PD-1hi (Eomeshi) Dbgp33-specific CD8+ T cells on d22 p.i. (H) 2,000 Eomesgfp/+ 

TCR-transgenic Dbgp33-specific (P14) CD8+ T cells were transferred into naïve 

recipients one day before infection with clone 13. Donor P14 cells from chronically 

infected mice were isolated on d22 p.i., sorted based on GFP expression, and added to 

target cells pulsed with LCMV-derived peptide gp33-41. % specific lysis was determined 

by the loss of target cells compared to control cells. Graphs display mean ± S.E.M. (D, 

E, H) (*p<0.05, **p<0.01; Paired t test). (F-H) Data are representative of 2-5 

independent experiments. 

 

Figure S2. Genetic deletion of Eomes leads to loss of the T-betlo PD-1hi population 

of exhausted CD8+ T cells. Rag KO hosts were sublethally irradiated and reconstituted 

with a 1:1 mixture of WT and EKO bone marrow, followed by infection with LCMV clone 

13. (A) Flow cytometric analysis of T-bet and PD-1 expression in Dbgp276-specific CD8+ 

T cells d60 p.i. Numbers denote frequency of gated population. (B) MFI of T-bet and 

PD-1 expression from cells in (A). (*p<0.05, **p<0.01; Paired t test). All data are 

representative of 3 independent experiments with at least four mice. 

 

Figure S3. T-bethi and Eomeshi exhausted CD8+ T cell subsets have distinct 

population size and anatomical distribution. (A) Eomeshi cells outnumber T-bethi 



 23

cells. T-bethi and Eomeshi populations of Dbgp276-specific CD8+ T cells were quantified 

for the total mouse (see Methods). Graph displays sum of all tissues in (B). (B) 

Individual organs contain distinct proportions of T-bethi and Eomeshi populations. The 

frequency of T-bethi and Eomeshi populations of Dbgp276-specific CD8+ T cells are 

displayed for each indicated organ. (C) Quantification of T-bethi and Eomeshi 

populations of Dbgp276-specific CD8+ T cells are displayed for each indicated organ. 

(D) CD8+ T cells from chronically infected CD45.2 mice were isolated d22 p.i. post clone 

13 infection, sorted based on PD-1 expression and adoptively transferred into infection-

matched CD45.1 recipient mice. (E) Two weeks post-transfer, virus-specific CD8+ T 

cells were enumerated in indicated organs. All graphs display mean ± S.E.M. (*p<0.05; 

Unpaired t test). All data are representative of 2-5 independent experiments with at least 

three mice per experimental group. 

 

Figure S4. T-bet and Eomes-dependent populations exhibit differential 

proliferation. (A) Flow cytometric analysis of T-bet, Eomes, and PD-1 versus Ki-67 

expression in Dbgp33-specific CD8+ T cells on d22 p.i. (B) Representative gating 

strategy for T-bethi and T-betlo populations for Fig 2A, 2B. (C) Flow cytometric analysis 

of Eomes expression versus BrdU incorporation for Dbgp276-specific CD8+ T cells in 

indicated tissues. (A-C) Data are representative of 3-4 independent experiments with at 

least three mice per experimental group. (D) CD8+ T cells from CD45.2 LCMV clone 13 

chronically infected mice were isolated d15 p.i., CFSE-labeled, and transferred into 

clone 13 infection-matched CD45.1 recipient mice. One week post-transfer, virus-

specific CD8+ T cells were analyzed for CFSE dilution. (E) CD8+ T cells from CD45.2 
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LCMV Armstrong-immune (d30+) or clone 13 chronically infected (d30) mice were 

isolated, CFSE-labeled, and transferred into LCMV Armstrong-immune (d30+) or 

chronically infected (d30) CD45.1 recipient mice. One week post-transfer, virus-specific 

CD8+ T cells were analyzed for CFSE dilution. (F) Flow cytometric analysis of CFSE 

dilution in Dbgp33-specific donor CD8+ T cells. Data are representative of 2 independent 

experiments. (G) Flow cytometric analysis of Ki-67 expression in Dbgp33-specific CD8+ 

T cells from WT, T-bet KO, and Eomes cKO mice at indicated days p.i. (***p<0.001; 

Unpaired t test). Data are aggregated across 2 independent experiments. 

 

Figure S5. T-bethi Eomeslo CD8+ T cells convert to T-betlo Eomeshi CD8+ T cells. (A) 

CD8+ T cells from chronically infected CD45.2 mice were isolated d22 p.i. with LCMV 

clone 13, sorted based on PD-1 expression, CFSE-labeled, and transferred into 

infection-matched CD45.1 recipient mice. One week post-transfer, virus-specific CD8+ T 

cells were analyzed for CFSE dilution. (B) Flow cytometric analysis of PD-1 expression 

versus CFSE dilution of sorted donor Dbgp276+CD8+ T cells in indicated organs. 

Populations in division 0-2, 3-6, and 7+ are indicated. Quantification of the indicated 

division is provided from the liver. Graph displays mean ± S.E.M. (*p<0.05; Unpaired t 

test) (C) CD8+ T cells from chronically infected Eomesgfp/+ mice were isolated d15 p.i. 

with clone 13, sorted based on GFP expression, and adoptively transferred into 

infection-matched CD45.1 recipient mice. Two weeks post-transfer, virus-specific CD8+ 

T cells were analyzed for GFP expression. (D) Flow cytometric analysis of GFP 

expression (open) of sorted Dbgp276-specific Eomesgfp/+ CD8+ T cells 2 weeks post-

transfer. (D) CD8+ T cells from chronically infected Eomes+/+ or Eomesf/f mice were 
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isolated d15 p.i. with clone 13, treated with Tat-Cre in vitro, CFSE-labeled, and 

adoptively transferred into infection-matched CD45.1 recipient mice. Two weeks post-

transfer, virus-specific CD8+ T cells were analyzed for CFSE dilution. (E) CD8+ T cells 

from chronically infected T-bet+/+ or T-betf/f mice were isolated d15 p.i. with clone 13, 

treated with Tat-Cre in vitro, CFSE-labeled, and adoptively transferred into infection-

matched CD45.1 recipient mice. Two weeks post-transfer, virus-specific CD8+ T cells 

were analyzed for CFSE dilution. (B, D) All data are representative of 3-4 independent 

experiments with 1-3 mice per experimental group. 

 

Figure S6. Loss of either T-bet or Eomes leads to reduced CD8+ T cell responses 

during chronic infection. Quantification of Dbgp276-specific CD8+ T cells from 

indicated organs of WT, T-bet KO (TKO), and EKO mice at d30 p.i. (*p<0.05, **p<0.01, 

***p<0.001; Paired t test). Data are representative of 2 independent experiments with at 

least three mice per experimental group. 

 

Figure S7. Eomes acts cell-intrinsically to maintain CD8+ T cell responses. Mixed 

bone-marrow chimeras were generated as in Fig. S2. (A) Longitudinal frequency of 

Dbgp33-specific CD8+ T cells in the blood of infected mice. (B) Total Dbgp33-specific 

and Dbgp276-specific CD8+ T cells in the spleens infected mice d60 p.i. (*p<0.05; 

Paired t test). All data are representative of 3 independent experiments with at least four 

mice group. 
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Figure S8. Deletion of Eomes leads to impaired viral control. WT, TKO, and EKO 

mice were infected with LCMV clone 13 and assessed for viral control. Graphs display 

viral load in indicated tissues d90 p.i. Data are representative of 2 independent 

experiments with at least three mice per experimental group. 

 

Figure S9. Loss of Eomeshi progeny after removal of antigen is due to poor 

repopulation from T-bethi progenitors. (A) CD8+ T cells from chronically infected 

CD45.2 mice were isolated d22 p.i., sorted based on PD-1 expression, and CFSE-

labeled. Equal numbers of Dbgp33-specific CD8+ T cells were adoptively transferred into 

WT or V35A infection-matched CD45.1 recipient mice. Two weeks post-transfer, virus-

specific CD8+ T cells were analyzed for CFSE dilution. (B) 2,000 Eomesgfp/+ TCR-

transgenic Dbgp33-specific (P14) CD8+ T cells were adoptively transferred into naïve 

recipients one day before infection with clone 13. Donor P14 cells from chronically 

infected mice were isolated d22 p.i., sorted based on GFP expression, and adoptively 

transferred into WT or V35A infection-matched recipient mice. Two weeks post-transfer, 

donor P14 CD8+ T cells were analyzed for GFP expression. (C) Flow cytometric 

analysis and quantification of GFP expression in sorted donor P14 CD8+ T cells. Graph 

displays mean ± S.E.M. (*p<0.05; Unpaired t test). Data are representative three mice 

per experimental group. 

 

Figure S10. Continued preferential BrdU incorporation in Eomeshi cells after 

months of sustained viremia. Flow cytometric analysis of Eomes and PD-1 

expression versus BrdU incorporation in Dbgp276-specific CD8+ T cells from CD4 
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depleted WT mice at d250 p.i. with clone 13. All data are representative of four mice 

across 2 independent experiments. 

 

Figure S11. T-bet and Eomes expression in systemic anti-HCV responses. 

Frequency of Eomeshi and T-bethi HCV-specific CD8+ T cells from the blood of subjects 

with resolved or chronic infection. (p > 0.05; Unpaired t test). 
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