Self-Assembling Multidomain Peptide Fibers with Aromatic Cores

Erica L. Bakota[†], Ozge Sensoy[‡], Beytullah Ozgur[‡], Mehmet Sayar[‡] and Jeffrey D. Hartgerink^{§†}

[†] Department of Chemistry and § Department of Bioengineering Rice University, 6100 South Main St., Houston, TX 77005

‡ Department of Mechanical Engineering and Chemical and Biological Engineering Koc University, Istanbul, Turkey

SUPPORTING INFORMATION

Figure S1. MALDI-TOF mass spectrometry of multidomain peptides. $K_2(QF)_6K_2$: Expected Mass: 2222.2, Observed Mass: 2221.2 (M+H)⁺. $K_2(QFQL)_3K_2$: Expected Mass: 2121.5, Observed Mass: 2126.0 (M+H)⁺. $K_2(QL)_6K_2$: Expected Mass: 2019.5, Observed Mass: 2019.8 (M+H)⁺. $K_2(QW)_6K_2$: Expected Mass: 2457.8, Observed Mass: 2458.7 (M+H)⁺. $K_2(QY)_6K_2$: Expected Mass: 2319.6, Observed Mass: 2319.9 (M+H)⁺ and 2342.0 (M+Na)⁺.

Figure 6a presented at a larger size.

Figure 6b presented at a larger size.

Figure 6c presented at a larger size.

Figure 6d presented at a larger size.

Figure 6e presented at a larger size.

Figure S2. AFM of peptide $K_2(QL)_6K_2$ under non-gelling conditions (no phosphate anion and low ionic strength).

Figure S3. AFM of peptide $K_2(QFQL)_3K_2$ under non-gelling conditions (no phosphate anion and low ionic strength).

Figure S4. AFM of peptide $K_2(QF)_6K_2$ under non-gelling conditions (no phosphate anion and low ionic strength).

Figure S5. AFM of peptide $K_2(QW)_6K_2$ under non-gelling conditions (no phosphate anion and low ionic strength).

Figure S6. AFM of peptide $K_2(QY)_6K_2$ under non-gelling conditions (no phosphate anion and low ionic strength).

Figure 7a and 7b presented at a larger size.

Figure 7c and 7d presented at a larger size.

Figure 7e and 7f presented at a larger size.

Figure 7i and 7j presented at a larger size.

Assignments from Grazing Angle FT-IR deconvolution.

peak	approximate	
#	position	assignment
1	1695 cm ⁻¹	Amide I perpendicular; characteristic of anti-parallel β -sheets
2	1675 cm ⁻¹	contribution from lysine side chain
3	1654 cm ⁻¹	contribution from glutamine side chain
4	1625 cm ⁻¹	Amide I parallel; characteristic of β-sheet
5	1612 cm ⁻¹	Amide I parallel; characteristic of extended fiber-like β -sheets
6	1547 cm ⁻¹	Amide II
7	1520 cm ⁻¹	Amide II

Table S1, peak assignments for deconvoluted grazing angle FT-IR spectra. Frequencies given are approximate and vary by several wave numbers depending on the individual peptide analyzed. Exact Values in table S2.

IR Peak	QL	QFQL	QF	QW	QY
1	1695	1695	1698	-	1696
2	1675	1669	1675	1687	1687
3	1654	1652	1661	1663	1657
4	1625	1625	1628	1632	1625
5	1612	1610	1618	1620	1608
6	1547	1548	1548	1554	1545
7	1521	1519	1517	1530	1516

 Table S2. Exact values of decovoluted peaks given in wave numbers, cm⁻¹.