1	Wounding-Induced Pectin Methylesterases Enhance Banana (Musa spp. AAA)
2	Susceptibility to Fusarium oxysporum f. sp. cubense
3	Li Ma, Shuang Jiang, Guimei Lin, Jianghua Cai, Xiaoxi Ye, Houbin Chen, Minhui Li ³ ,
4	Huaping Li, Tomáš Takáč, Jozef Šamaj, Chunxiang Xu [*]
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	Supporting Information Table S1-S2, Figs S1–S8, Methods S1-S2 and References
28	
29	
30	

Gene	GeneBank number	Primer sequences (Forward/ Reverse)	Product size (bp)
Ubiquitin	HQ853254	GGCACCACAAACAACAGG AGACGAGCAAGGCTTCCATT	379
MaPME1	FJ264505.1	CTTTTACCGCAGGGTTGAACTAAG GAAGAAACGTTTTATTCCACACATC	125

Table S1 Primers for quantitative real-time PCR

Antibody	Antigen	Reference	
LM7	Non-blockwise de-esterification of HG	Mastroberti et al., 2008	
2F4	Un-esterified/Calcium ion cross-linked HG	Liners et al., 1989	
CCRC-M38	Fully de-esterified HG	Pattathil et al., 2010	
JIM5	Partially methyl-esterified HG epitope: unesterified and partially esterified residues (up to 40%)	Knox et al., 1990	
LM18	Low methyl-esterified HG	Verhertbruggen et al., 2009	
LM19	Low methyl-esterified HG	Verhertbruggen et al., 2009	
JIM7	Partially methyl-esterified HG epitope: methyl-esterified residues (up to 80%)	Knox et al., 1990	
LM20	Highly methyl-esterified HG	Pattathil et al., 2010	
CCRC-M34	Partially methyl-esterified HG	Pattathil et al., 2010	
CCRC-M130	A methyl-esterified epitope on HG	Pattathil et al., 2010	
	Antibody LM7 2F4 CCRC-M38 JIM5 LM18 LM19 JIM7 LM20 CCRC-M34 CCRC-M130	Antibody Antigen LM7 Non-blockwise de-esterification of HG 2F4 Un-esterified/Calcium ion cross-linked HG CCRC-M38 Fully de-esterified HG Partially methyl-esterified HG Partially methyl-esterified HG JIM5 unesterified and partially esterified residues (up to 40%) LM18 Low methyl-esterified HG JIM7 Partially methyl-esterified HG JIM7 Partially methyl-esterified HG JIM7 Partially methyl-esterified HG LM20 Highly methyl-esterified HG CCRC-M34 Partially methyl-esterified HG CCRC-M130 A methyl-esterified epitope on HG	

Table S2 Antibodies recognizing different HGs and their antigens

Figure S1 A transection through banana (*Musa* spp. AAA) root in the elongation zone revealed by immunolabelling using LM18 antibody. Outermost layer of cells represents epidermis. The monolayer of cells encircling vascular cylinder is endodermis. Big parenchyma cells with intercellular spaces between epidermis and endodermis belong to the cortex. The vascular cylinder includes monolayer of pericycle cells and vascular tissue. The holes in the center of the vascular cylinder of the root are xylem elements (including metaxylem and protoxylem). Groups of small cells with dense content, lying between protoxylem elements represent phloem. Between these two vessel elements are vascular parenchyma cells. CC, cortical cells; E, epidermis; En endodermis; Pe, pericycle; Ph, phloem; Xy, xylem, Vp, vascular parenchyma. Bar represents 50 µm.

Figure S2. The tissue-specific pathogen diffusion in the roots of susceptible (A) and 113 114 resistant (B) banana cultivar (Musa spp. AAA) and the corresponding quantification of 115 the hypha (C) 48 h after infection with *Fusarium oxysporum* f. sp. *cubense*, showing much more hyphae (arrows) in the cortical cells, endodermis, epidermis and the 116 117 periphery of the epidermis. In all cases cross-sections through roots are presented. CC, 118 cortical cells; E, epidermis; En, endodermis; PE, the periphery of the epidermis; R, 119 resistant cultivar 'Yueyoukang 1'; S, susceptible cultivar 'Brazil'. Bars represent 100 120 μm.

The quantitative data in the Fig. S2 (C) represents an average of three biological replicates (each was the average of hypha number counted from 10 banana cell area of 0.01 cm^2) \pm standard deviation. A comparison of groups was conducted using a paired *t*-test of variance. Value marked with a star was considered significant at P < 0.05.

- 125
- 126
- 127
- 128

Figure S3 The changes in PG and PMG activities in banana (*Musa* spp. AAA) after

131 infection with *Fusarium oxysporum* f. sp. *cubense*

132 0, non-cut control; PG, polygalacturonase; PMG, polymethylgalacturonase; R, resistant

133 cultivar 'Yueyoukang 1'; S, susceptible cultivar 'Brazil'. Data represent an average of

- 134 three replicates \pm SD. Values followed by the same letter are not significantly different
- using Duncan's multiple range test at p < 0.05 after angular transformation of the data.

Figure S4 The optical density of PME fluorescence in banana (*Musa* spp. AAA) roots
after infection with *Fusarium oxysporum* f. sp. *cubense*

0, non-cut control; CK, the cut control; PME, pectin methylesterase; R, resistant cultivar 'Yueyoukang 1'; S, susceptible culitvar 'Brazil' ; T, pathogen treatment. For quantification of fluorescence signal, the mean fluorescence intensity (n =3 sections of roots) was measured with Image J 1.44 software.

Figure S5 The optical density of fluorescence signal of pectins with different degree ofmethylesterification.

174 0, non-cut control; CK, the cut control; R, resistant cultivar 'Yueyoukang 1' (*Musa* spp.

AAA); S, susceptible culitvar 'Brazil' (*Musa* spp. AAA); T, pathogen treatment. For
quantification of fluorescence signal, the mean fluorescence intensity (n =3 sections of

- 177 roots) was measured with Image J 1.44 software.

Figure S6. The changes in immunolocalization by CCRC-M38 antibody in banana
(*Musa* spp. AAA) roots after infection with *Fusarium oxysporum* f. sp. *cubense*.

In all cases cross-sections through roots are presented. Resistant cultivar: **A-E**; susceptible cultivar: **F-J**. The immunolabelling observed before the treatment (A, F), six hours after cut (B, G), six hours after infection (C, H), 48 h after cut (D, I) and 48 after infection (E, J) are presented. CC, cortical cells; E, epidermis; En, endodermis. Bars represent 50 µm.

- 217
- 218
- 219

Figure S7. The changes in immunolocalization of CCRC-M130 (A-J) and CCRC-M34 (K-T) epitopes in banana (Musa spp. AAA) roots after infection with Fusarium oxysporum f. sp. cubense. In all cases cross-sections through roots are presented. Resistant cultivar: A-E, K-O; susceptible cultivar: F-J, P-T. The immunolabelling observed before the treatment (A, F, K, P), six hours after cut (B, G, L, Q), six hours after infection (C, H, M, R), 48 h after cut (D, I, N, S) and 48 after infection (E, J, O, T) are presented. CC, cortical cells; E, epidermis; En, endodermis. Bars represent 100 µm.

Figure S8. Immunodot analysis of changes in the abundance of HGs in banana cultivars (Musa spp. AAA) after infection with Fusarium oxysporum f. sp. cubense

CK, the cut control; R, resistant cultivar 'Yueyoukang 1'; S, susceptible culitvar 'Brazil'; T, pathogen treatment. The quantification of dot signal was measured with Image J 1.44 software.

246 Methods S1 Enzyme assay

PG and PMG activities were assayed by measuring the release of reducing sugars by 247 the modified Somogyi method (1952), using mono-D-galacturonic acid as standard. 248 Aliquots of the supernatant (0.1 ml) were added to a 10 ml tube containing 0.3 ml 249 of sodium acetate buffer (0.1 M, pH 5.0) and 0.2 ml of substrate (in sodium acetate 250 251 buffer, pH 5.0; 0.25% polygalacturonic acid or 1% pectin for PG and PMG, respectively). The mixtures were incubated at 37°C for 30 min. The reaction was 252 253 stopped by adding 1.5 ml of 3, 5-dinitrosalicylic acid (DNS) and placing the tubes in boiling water bath for 5 min. After cooled to room temperature and constant volume, 254 the absorbance was read in a spectrophotometer at 540 nm against a suitable blank. 255 The enzymatic activity was expressed in terms of Unit (U). One unit of enzyme 256 257 activity was defined as the amount of enzyme that catalyzes the release of 1 µmol of galacturonic acid per hour under assay conditions. The protein content was determined 258 by the Bradford (1976) method. 259

260

261 Methods S2 Immunodot assay

All antibodies used for immunodot assay and their corresponding antigens are 262 presented in Table S2. Anti-mouse IgG (whole molecule)-peroxidase (Sigma A4416) 263 was used as secondary antibody for 2F4 and CCRM antibodies while anti-rat IgG 264 265 (whole molecule)-peroxidase (Sigma A5795) for all the other antibodies. Pectin was extracted from AIR with 0.5% (w/v) ammonium oxalate buffer at 100°C and the 266 concentration was adjusted to 1mg/ml. Samples (5µl) were spotted onto nitrocellulose 267 membrane by a micropipette. The membrane with dots was air dried at RT for 1h. 268 Assays with antibodies JIM5, JIM7, LM7, LM18, LM19 and LM20, CCRC-M34 and 269 CCRC-M38 were carried out as described by Willats et al. (2001). T/Ca/S buffer was 270 used to replace PBS for the assay with 2F4 antibody. After the final wash, the 271 membrane was developed by using 3, 3'-diaminobenzidine tetrahydrochloride kit (TCI 272 Development Co., Ltd, Shanghai). 273

274

References:

- Knox JP, Linstead PJ, King J, Cooper C, Roberts K. 1990. Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. *Planta* 181, 512-521.
- Liners LF, Letesson JJ, Didembourg C, van Cutsem P. 1989. Monoclonal antibodies against pectin: recognition of a conformation induced by calcium. *Plant Physiology* **91**, 1419–1424.
- Mastroberti AA, de Araujo Mariath JE. 2008. Immunocytochemistry of the mucilage cells of *Araucaria angustifolia* (Bertol.) Kuntze (Araucariaceae). *Revista Brasileira de Botânica* **31**, 1-13.
- Pattathil S, Avci U, Baldwin D, et al. 2010. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiology 153, 514–525.
- **Somogyi M.** 1952. Notes on sugar determination. *The Journal of Biological Chemistry* **195(1)**, 19-23.
- Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP. 2009. An extended set of monoclonal antibodies to pectic homogalacturonan. *Carbohydrate Research* 344, 1858-1862.
- Willats WGT, McCartney L, Mackie W, Knox JP. 2001. Pectin: cell biology and prospects for functional analysis. *Plant Molecular Biology* 47, 9-27.