Global analysis of the sugarcane microtranscriptome reveals a unique composition of small RNAs associated with axillary bud outgrowth

Fausto A Ortiz-Morea, Renato Vicentini, Geraldo FF Silva, Eder M. Silva, Helaine Carrer, Ana P. Rodrigues, Fabio TS Nogueira

Stem-loop RT-PCR and q	uantitative PCR	
small RNAs	Primer	Primer sequence (5' -> 3')
miRNA529	miR529_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGGCTG
	miR529_Foward	CCTGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
miRNA159	miR159_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGAAGAGCT
	miR159_Foward	GCGGCGTTGGATTGAAGGG
miRNA319	miR319_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGAGGGAGC
	miR319_Foward	GCGGCGTTGGACTGAAGGGT
miRNA160	miR160_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGGCAT
	miR160_Foward	CCTGAGTGCCTGGCTCCCTGT
miRNA164	miR164_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGCACG
	miR164_Foward	ACTGATGTGGAGAAGCAGGGCA
miRNA171	miR171_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGAGTGA
	miR171_Foward	CCTGAGTGAGCCGAACCAATA
miRcand2	miRcand2_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGTTCGA
	miRcand2_Foward	TCATGATGGGGGGGGGAGCAATTCG
sRNA29098	sRNA29098_RT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCCTCCA
	sRNA29098_Foward	TGCTGAGTCTTATAATTTGG
Universal primer	Reverse	GTGCAGGGTCCGAGG

Supplementary Table S1. Primers used in this study

Supplementary Table S1. Continued

Gene (accession)		
SsSPL1 (TC110345)	Foward	CCCCCAGGTGGATGTCT
	Reverse	TTGACAGAAGAGAGAGAGCACAGC
SsGAMYB (TC134732)	Foward	TGGCAGCCATGCCTTTTTA
	Reverse	GGCGATGCACACTCAGATT
SsDCL1 (TC143136)	Foward	CTGCCCATGCCAAAAGATT
	Reverse	CATCAGGCTTGTCACGGTAA
SsARF10/16 (TC141423)	Foward	GCTGTTGAATCCAATTTTCCA
	Reverse	TTGCTAAGCTGGTGGTCTGTT
<i>SsSCL1</i> (TC151967)	Foward	CGAAGCTGGCAATTCCATT
	Reverse	AACGTCGAGTGGTGATGTGA
<i>SsTCP1</i> (TC153622)	Foward	CACGCAGACATGAAGGAGAA
	Reverse	AAGAATTCGGGGAATCATCC
SsRibossomal 25S (TC148086)	Foward	ATAACCGCATCAGGTCTCCAAG
	Reverse	CCTCAGAGCCAATCCTTTTCC
SsGAPDH (TC77224)	Foward	TTTGAATGGCAAGCTCACTG
	Reverse	GGTGGAAACCAAATCCTCCT
SsACTIN (AY742219)	Foward	CTTAGGTTGGATCTTGCTGG
	Reverse	TTAGAAGCATTTTCGGTGGAC
SsRPL35.4 (TC57186)	Foward	CTGAAGACGGAGAGGGAAAA
	Reverse	GGCGAAGAGAAACTAACAC

* miR156 and miR444 primers have been published in Zanca *et al.* (2010).

Supplementary Table S2. Statistics of redundant small RNA sequences from the individual libraries

	0-DAP	2-DAP
	inactive buds	outgrown buds
Total reads	6,747,965	8,300,694
High-quality reads (19 to 25 nt)	5,615,974	4,274,873
Matching Sugarcane Gene Index (%)	2,931,453 (52%)	2,170,365 (51%)
Matching Sugarcane BAC sequences (%)	796,796 (14%)	591,764 (14%)
Perfect matches to masked genomes ^a	945,479 (17%)	505,962 (12%)
Perfect matches to transcriptomes ^a	996,179 (18%)	534,008 (12%)
Other cellular small RNAs (%)		
rRNA (%)	6,377 (0.001%)	5,332 (0.001%)
tRNA (%)	6,662 (0.001%)	7,071 (0.001%)
rasiRNA (%) ^۵	1,273,787 (23%)	761,824 (18%)

^aGenome and transcriptome data from sorghum, rice, and *Arabidopsis thaliana*. ^bsRNAs matching transposable elements or repeat sequences present in sugarcane ESTs and/or publicly available BACs.

Supplementary Table S3. Sugarcane EST sequences similar to miniature inverted-repeat

transposable elements (N	MITEs) and their	associated small RNA	(sRNA) sequences.

Na			MITE	MITE	sRNA		Size	Inactive bud	Active Bud
NO.	ESTID	evalue	annotation	name	שו	SRNA sequence (5 -3)	(nt)	(U DAP)	(2 DAP)
1	TC127268	1.9e-19	Tourist type	MiSc1	7196	UUAGGCUUAAAAGAUUCGUCUCG"	23	1.2	7.3
					13790	AUUAGGCUUAAAAGAUUCGUCUCG	24	1.6	12.2
					24967	UAGGCUUAAAAGAUUCGUCUCG [®]	22	0.5	7.3
					19629	UUAGGCUUAAAAGAUUCGUCUCGUª	24	1.2	4.4
2	TC141274	3.60e-13	Tourist type	MiSc2	7196	UUAGGCUUAAAAGAUUCGUCUCGª	23	1.2	7.3
					13790	AUUAGGCUUAAAAGAUUCGUCUCGª	24	1.6	12.2
					24967	UAGGCUUAAAAGAUUCGUCUCG ^a	22	0.5	7.3
					19629	UUAGGCUUAAAAGAUUCGUCUCGUª	24	1.2	4.4
3	TC152830	1.2e-27	Tourist type	MiSc3	7196	UUAGGCUUAAAAGAUUCGUCUCGª	23	1.2	7.3
					13790	AUUAGGCUUAAAAGAUUCGUCUCGª	24	1.6	12.2
					24967	UAGGCUUAAAAGAUUCGUCUCG ^a	22	0.5	7.3
					19629	UUAGGCUUAAAAGAUUCGUCUCGUª	24	1.2	4.4
4	CA282419	1.3e-28	Tourist type	MiSc4	13790	AUUAGGCUUAAAAGAUUCGUCUCG	24	1.6	12.2
					24967	UAGGCUUAAAAGAUUCGUCUCGª	22	0.5	7.3
					7196	UUAGGCUUAAAAGAUUCGUCUCGª	23	1.2	7.3
					19629	UUAGGCUUAAAAGAUUCGUCUCGUª	24	1.2	4.4
5	CA255688	2.8e-37	Tourist type	MiSc5	7196	UUAGGCUUAAAAGAUUCGUCUCGª	23	1.2	7.3
					13790	AUUAGGCUUAAAAGAUUCGUCUCGª	24	1.6	12.2
					19629	UUAGGCUUAAAAGAUUCGUCUCGUª	24	1.2	4.4
					24967	UAGGCUUAAAAGAUUCGUCUCGª	22	0.5	7.3
6	CA129136	1.3e-05	Tourist type	MiSc6	7196	UUAGGCUUAAAAGAUUCGUCUCGª	23	1.2	7.3
					13790	AUUAGGCUUAAAAGAUUCGUCUCGª	24	1.6	12.2
					19629	UUAGGCUUAAAAGAUUCGUCUCGUª	24	1.2	4.4
					24967	UAGGCUUAAAAGAUUCGUCUCGª	22	0.5	7.3

Supplementary Table S3. Continued

No.	EST ID	evalue	MITE annotation	MITE name	sRNA ID	sRNA sequence (5`-3`)	Size (nt)	Inactive bud (0 DAP) ^b	Active Bud (2 DAP) ^b
7	CA168146	4.1e-18	Pangrangja	MiSc7	20347	GUCCAAAGAUUCGAUGUGACAGUU	24	3.2	2.3
8	CA238633	6.3e-20	MITE-adh, type B	MiSc8	15153 1267	UUUGACCACUCGUCUUAUUC CCACUCGUCUUAUUCAAAAA	20 20	11 7.7	0.1 12.4
9	CF574551	6.2e-06	Stowaway foldback element	MiSc9	29098 14685 7788 27121 4174 30070 27767	UCUUAUAAUUUGGAAUGGAGG GUCUUAUAAUUUGGAACGGAGGGAG UCUUAUAAUUUGGAACGGAGGGAG UUAUAAUUUGGAACGGAGGGAG UCUUAUAAUUUGGGAUGGAGGG UCUUAUAAUUUGGAACGGAGG	21 24 24 22 22 21 21	9.1 2.3 10.3 2.3 2.8 5.9 4.1	6.1 1.9 1.9 1.6 0.9 4 1.4

^asmall RNA sequences that perfectly match different MITE copies. ^bNormalized expression of transcripts per million (TPM).

Supplementary Table S4. Total reads of known and novel sugarcane microRNAs (miRNAs) candidates identified in the axillary bud libraries

miRNA	Sequence (5`-3`)	Size	Inactive bud	Active Bud	Sugarcane miRNA Precursor ^a	Alignment Positions
Known		(119)			110001001	(2000)
miR156		21	14	25	SsMIR156b/c	303-323
miR159	AUUGGAUUGAAGGGAGCUCUG	21	33	43	sof-MIR159c	45-64
	CUUGGAUUGAAGGGAGCUCC	21	30	16	sof-MIR159c	199-218
	CUUGGAUUGAAGGGAGCUCUG	21	94	37	sof-MIR159c	199-217
	GUUGGAUUGAAGGGAGCUCUG	21	14	9	sof-MIR159c	200-217
	UAUGGAUUGAAGGGAGCUCUG	21	1567	552	SsMIR159	223-243
	UCUGGAUUGAAGGGAGCUCUG	21	1352	442	SsMIR159	223-243
	UGGAUUGAAGGGAGCUCUGCA	21	37	8	SsMIR159	225-245
	UGUGGAUUGAAGGGAGCUCUG	21	1317	442	SsMIR159	223-243
	UUGGAUUGAAGGGAGCUCUGA	21	32	6	SsMIR159	224-243
	UUGGAUUGAAGGGAGCUCUGC	21	999	235	SsMIR159	224-244
	UUGGAUUGAAGGGAGCUCUUU	21	41	14	SsMIR159	224-242
	UUUGAAUUGAAGGGAGCUCUG	21	62	22	SsMIR159	223-243
	UUUGCAUUGAAGGGAGCUCUG	21	31	14	SsMIR159	223-243
	UUUGGAAUGAAGGGAGCUCUG	21	23	10	SsMIR159	223-243
	UUUGGACUGAAGGGAGCUCUG	21	97	21	SsMIR159	223-243
	UUUGGAUAGAAGGGAGCUCUG	21	23	6	SsMIR159	223-243
	UUUGGAUCGAAGGGAGCUCUG	21	148	57	SsMIR159	223-243
	UUUGGAUGGAAGGGAGCUCUG	21	16	4	SsMIR159	223-243
	UUUGGAUUAAAGGGAGCUCUG	21	95	46	SsMIR159	223-243
	UUUGGAUUCAAGGGAGCUCUG	21	80	37	SsMIR159	223-243
	UUUGGAUUGAAAGGAGCUCUG	21	148	51	SsMIR159	223-243
	UUUGGAUUGAACGGAGCUCUG	21	145	57	SsMIR159	223-243
	UUUGGAUUGAAGAGAGCUCUG	21	153	48	SsMIR159	223-243
	UUUGGAUUGAAGCGAGCUCUG	21	311	110	SsMIR159	223-243
	UUUGGAUUGAAGGAAGCUCUG	21	82	35	SsMIR159	223-243
	UUUGGAUUGAAGGCAGCUCUG	21	154	50	SsMIR159	223-243
	UUUGGAUUGAAGGGAACUCUG	21	86	32	SsMIR159	223-243
	UUUGGAUUGAAGGGACCUCUG	21	291	113	SsMIR159	223-243
	UUUGGAUUGAAGGGAGAUCUG	21	21	15	SsMIR159	223-243
	UUUGGAUUGAAGGGAGCUCAG	21	27	9	SsMIR159	223-243
	UUUGGAUUGAAGGGAGCUCCG	21	138	59	SsMIR159	223-243

Supplementary Table S4.Continued

miRNA		Size	Inactive bud	Active Bud	Sugarcane miRNA	Alignment Positions
family	Sequence (5`-3`)	(nt)	(0 DAP)	(2 DAP)	Precursor (EST) ^a	(bases) ^b
		0.1	05	10	0.1410450	000.040
	UUUGGAUUGAAGGGAGCUCGG	21	65	16	SSMIR159	223-243
	UUUGGAUUGAAGGGAGCUCUA	21	596	195	SSMIR159	223-242
	UUUGGAUUGAAGGGAGCUCUC	21	110	34	SSMIR159	223-242
	UUUGGAUUGAAGGGAGCUCUG	21	550942	196147	SSMIR159	223-243
	UUUGGAUUGAAGGGAGCUCUU	21	395	139	SsMIR159	223-242
	UUUGGAUUGAAGGGAGGUCUG	21	19	9	SsMIR159	223-243
	UUUGGAUUGAAGGGAGUUCUG	21	226	62	SsMIR159	223-243
	UUUGGAUUGAAGGGAUCUCUG	21	423	183	SsMIR159	223-243
	UUUGGAUUGAAGGGCGCUCUG	21	294	151	SsMIR159	223-243
	UUUGGAUUGAAGGGGGCUCUG	21	142	58	SsMIR159	223-243
	UUUGGAUUGAAGGGUGCUCUG	21	32	6	SsMIR159	223-243
	UUUGGAUUGAAGGUAGCUCUG	21	403	159	SsMIR159	223-243
	UUUGGAUUGAAGUGAGCUCUG	21	482	166	SsMIR159	223-243
	UUUGGAUUGAAUGGAGCUCUG	21	202	71	SsMIR159	223-243
	UUUGGAUUGACGGGAGCUCUG	21	147	57	SsMIR159	223-243
	UUUGGAUUGAGGGGAGCUCUG	21	93	25	SsMIR159	223-243
	UUUGGAUUGAUGGGAGCUCUG	21	42	14	SsMIR159	223-243
	UUUGGAUUGCAGGGAGCUCUG	21	51	20	SsMIR159	223-243
	UUUGGAUUGGAGGGAGCUCUG	21	100	31	SsMIR159	223-243
	UUUGGAUUGUAGGGAGCUCUG	21	30	4	SsMIR159	223-243
	UUUGGAUUUAAGGGAGCUCUG	21	154	74	SsMIR159	223-243
	UUUGGCUUGAAGGGAGCUCUG	21	121	44	SsMIR159	223-243
	UUUGGGUUGAAGGGAGCUCUG	21	117	63	SsMIR159	223-243
	UUUGGUUUGAAGGGAGCUCUG	21	44	10	SsMIR159	223-243
	UUUGUAUUGAAGGGAGCUCUG	21	94	58	SsMIR159	223-243
miR160	UGCCUGGCUCCCUGUAUGCCA	21	177	974	n.d.	n.d.
miR162	UCGAUAAACCUCUGCAUCCAG	21	497	503	n.d.	n.d.
miR164	UGGAGAAGCAGGGCACGUGCA	21	34	148	n.d.	n.d.
miR166	UAGGACCAGGCUUCAUUCCCC	21	12	16	CN607727	178-196
	UCGGACCAGGCCUCAUUCCCC	21	16	19	CN607727	176-196
	UCGGACCAGGCUUCAAUCCCU	21	1044	2141	CN607727	176-195
	UCGGACCAGGCUUCAUCCCCC	21	9	15	CN607727	176-196

Supplementary Table S4.Continued

miRNA		Size	Inactive bud	Active Bud	Sugarcane miRNA	Alignment Positions
family	Sequence (5`-3`)	(nt)	(0 DAP)	(2 DAP)	Precursor (EST) ^a	(bases) ^b
		21	275	956	CN607727	176-194
		21	5	26	CN607727	176-196
		21	158	88	CN607727	174-194
		21	150	8	CN607727	174-194
miP167		21	24	1/	SsMIR167	3-22
111111107		21	24	35	SsMIR167	3-23
miD168		21	20	55 65	SsMIR168	18-38
111111100		21	10	17	SsMIR168	18-38
		21	14	31	SsMIR168	18-38
		21	6424	16661	SsMIR168	18-38
		21	0424	33	SsMIR168	18-38
		21	5 11	23	SsMIR168	18-38
miP160		21	37	16	SsMIR169	3-22
miR171		21	٥١ ٨ ١	510	n.d.	n.d.
		21		71	n.d.	n.d.
		21	26	565	n.d.	n.d.
		21	58	781	n.d.	n.d.
miR172		21	7	14	n.d.	n.d.
miR319		21	28	3	SsMIR319	15-35
	UUGGACUGAAGGGGGGCUCCCU	21	27	7	SsMIR319	15-35
	UUGGACUGAAGGGUGCUCCCU	21	14457	3268	SsMIR319	15-35
miR393	UCCAAAGGGAUCGCAUUGAUC	21	44	20	n.d.	n.d.
miR394	UUGGCAUUCUGUCCACCUCC	20	49	60	n.d.	n.d.
miR395	UGAAGUGUUUGGGGGAACUC	20	17	32	n.d.	n.d.
miR396	UCCACAGGCUUUCUUGAACUG	21	482	302	SsMIR396	8-21
	UUCCACAGCUUUCUUGAACUG	21	29	18	SsMIR396	1-21
miR397	UCAUUGAGUGCAGCGUUGAUG	21	0	29	n.d.	n.d.
miR398	UGUGUUCUCAGGUCGCCCCCG	21	0	23	n.d.	n.d.
miR399	UGCCAAAGGAGAGUUGCCCUG	21	31	7	n.d.	n.d.
miR408	CUGCACUGCCUCUUCCCUGGC	21	5	39	SsMIR408	158-178
miR444	UGCAGUUGUUGCCUCAAGCUU	21	3	29	SsMIR444a	84-104
miR444b.2	UGCAGUUGUUGUCUCAAGCUU	21	5	15	SsMIR444b	82-102

Supplementary Table S4.Continued

miRNA		Size	Inactive bud	Active Bud	Sugarcane miRNA Procursor (EST) ^a	Alignment Positions(bases) ^b
Tanniy	Sequence (S-S)	(111)				1 03110113(08363)
miR444d.3	UUGUGGCUUUCUUGCAAGUUG	21	13	29	ssp-MIR444b	64-84
miR529	AGAAGAGAGAGAGUACAGCCU	21	61	88	n.d.	n.d.
	GAAGAGAGAGAGUACAGCCU	20	41	0	n.d.	n.d.
miR827	UUAGAUGACCAUCAGCAAACA	21	121	373	SsMIR827	106-126
	UUAGAUGACCAUCAGCGAACA	21	18	69	SsMIR827	106-126
	UUAGAUGGCCAUCAGCAAACA	21	16	201	SsMIR827	106-126
miR1878	ACUUAGUCUGGAUACUAUAAAAGA	24	224	44	n.d.	n.d.
Novel miRNA	A candidates					
miRcand1	CCTTGTCTTATCCTCCCTCGA	21	80	3	CA257509	92-112
	CCTTGTCTTATCCTCCCTCGA	21	47	0	CA257509	92-112
	GCCTTGTCTTATCCTCCCTCG	21	45	2	CA257509	91-111
miRcand2	UGGGGAAGCAAUUCGUCGAAC	21	0	127	CA222602	167-187
	UGGGGGAGCAAUUCGUCGAAC	21	165	2141	CA222602	167-187

^aSugarcane miRNA precursors described in Zanca *et al.* (2010) and/or identified in this work with sRNA matches. ^bPosition in the miRNA precursor sequence in which a particular sRNA is aligned,

when applicable.

^cmiRNA sequences in **bold** were used as templates for the stem-loop RT-qPCR primers.

n.d. Not determined.

Supplementary Table S5. Predicted target sequences of known and novel sugarcane microRNAs (miRNAs) identified in the axillary bud libraries

miRNA			
family	Target gene	Score ^ª	Putative function
Known			
MIRNAS			
miR156	Described in Zanca <i>et al.</i> 2010	1	Squamosa promoter binding protein-like proteins (SPLs)
miR159	Described in Zanca <i>et al</i> . 2010	2	GAMyb-like protein
miR160	TC149461, CF574323, TC141423	1	ARF protein
miR162	n.d. ^b	n.d.	n.d.
miR164	CA293713, CA274870, CA285948	1	NAC family transcription factor
miR166	CA226194,TC99735,TC93578, TC85112	2	Class III HD-Zip protein
miR167	Described in Zanca et al. 2010	2, 3	Auxin response factor
miR168	Described in Zanca et al. 2010	3	ARGONAUTE1 (AGO1)-like protein
miR169	Described in Zanca et al. 2010	3	CCAAT-box transcription factor complex
miR171	TC119571, TC151967	1.5	GRAS family transcription factor
	TC99423, TC112055, TC93872, TC87233,		
miR172	TC81342	0.5	APETALA2-like protein
miR319	Described in Zanca et al. 2010	1.5	TCP family transcription factor
miR393	TC80044, TC77356, TC98041	2	Auxin signaling F-box 2 protein
miR394	TC108201, TC88841	0	F-box family protein
miR395	TC151109	0.5	ATP sulfurylase
	CA069883, TC118970	1	Putative sulfate transporter
miR396	Described in Zanca et al. 2010	1	Putative growth-regulating factor
		0.5, 1, 3,	
miR397	TC142804, CA183151, CA170003, TC117778	3	Putative laccase precursor
miR398	n.d.	n.d.	n.d.
miR399	n.d.	n.d.	n.d.
miR408	Described in Zanca et al. 2010	3	Blue copper-like protein
miR444	Described in Zanca et al. 2010	0.5, 2.5	Putative MIKC-type MADS-box transcription factors
miR444b.2	Described in Zanca et al. 2010	0.5, 1.5, 3	Putative MIKC-type MADS-box transcription factors
miR444d.3	Described in Zanca et al. 2010	1.5	Putative MIKC-type MADS-box transcription factors
miR529	CA228340, CA072223, TC110345, TC73496	2.5, 3	Squamosa promoter binding protein-like proteins (SPLs)
miR827	Described in Zanca et al. 2010	2, 2.5	SPX (SYG1/Pho81/XPR1) domain-containing protein-like
	CA126628, CA251729, TC127041	3	DNA (cytosine-5)-methyltransferase 1 domain-containing protein

miRNA family	Target gene	Score ^ª	Putative function				
•							
miR1878	TC141112	3	Homolog to Ran-Binding Protein Mog1p				
Novel miRNA candidates ^c							
miRcand1	n.d.	n.d.	n.d.				
miRcand2	CA185455, CA287982	1	PPR-like proteins				
^a Score values based on miRNA target analyzes using both pSRNATarget (Dai and Zhao, 2011) and ScmiRbase (Zanca et al., 2010) servers.							

^bNot detected (n.d.) in publicly available sugarcane sequence databases.

Figure legends

Fig. S1. sRNA distribution between axillary bud libraries and sRNA counts over annotated sugarcane genomic regions. (A) Size distribution of small RNAs in 0-DAP (inactive) and 2-DAP developing buds. (B) sRNA counts over annotated genomic regions of sugarcane ancient species (BAC 51L01 from *Saccharum officinarum* and BAC 265022 from *S. spontaneum*) and the hybrid R70. Peaks on the graphs represent the total counts of the two major classes of sRNAs as described in the text. A graphical representation of the structure of the BAC regions is provided underneath each peak on the graphs. Transposons and retrotransposons are shown as small and large black diamonds, respectively, while MITEs are shown as small black arrows. Genes are represented as grey arrows.

Fig. S2. Predicted miRNA harpins identified in this study by using EST sequences and the mFOLD program.

Fig. S3. Multiple sequence alignments of sugarcane miR159 mature sequences. The alignments were done using ClustalW program and assigned to two distinct sugarcane *MIR159* precursors.

Fig. S4. Expression profiles of sugarcane reference genes evaluated through RT-qPCR in 0-, 2-, and 5-DAP developing axillary buds of sugarcane hybrid SP80-3280. All RT-qPCR experiments used inactive bud (0 DAP) as the reference sample (set to 1.0). Error bars indicate standard deviation of three biological replicates. Distinct letters indicate the significant differences at P < 0.05 level by Student's t-test. R.E., relative expression.

Fig. S5. Concentrations of ABA and its catabolite dihydrophaseic acid (DPA) were monitored in 0-, 2-, and 5-DAP axillary buds and expressed in nanograms per gram of dry weight (ng/g DW). Error bars indicate standard deviation of three replicates.

SsMIRcand1 UCUUUGAACUA AGUG CU GAA-- CC A -UACCGUU AGUCG UCGAGG GGAUG GAUAAGGCC UC CG U (111 bp) GUGGUAG UCAGU AGCUCC CCUAU CUGUUCCGG AG GC A GGG-CU U GCAAG CC U $\Delta G = -43.60$

SsMIR166

UU UUGC UUCG GG (145 bp) U UCU U Α _ GAG GGAAUG GUCUGGUUC AGGUCUCGC UGCAU \ GAAGCUAUU GCU GAUUUAAGGA UGA CUAAGUUCCU AUU CUUCGAUAA CGA CUC CCUUAC CGGACCAGG UCUAGGGUG AUGUG C ____ C UU С U---U UUUG UA ΔG = -70.30

SsMIRcand2 GA U-С -U G C C--AGC UU С CCG GC GGCCUG CGUGGG GAAGCAA UCGUC AACGGCUG AG GCG UUG AGGC U (129 bp) GGC CG CCGGAC GUACCC CUUCGUU AGCGG UUGUCGAC UC CGC AGC UCCG G UC UC С G С _ U ACA ACU Α

∆G = -70.50

UCC A----G UA ___ – A– GGCCUG UGGG AAGCAAUUCGUCGAACAGCU GC GCGCG GAGG UGG G SbMIRcand2 CCGGAC ACCC UUCGUUAAGCGGUUUGUCGA CG CGCGC CUCC ACU G (114 bp) UGU AU ACUAG G CA G CC

∆G = -67.70

SsMIR159	5'- CCUUGCUGGCCGCUCUUUGGAUUGAAGGGAGCUCUGCAUCCUGAUCCAUCC
(TC119061)	
(-UU GGAUU GAAG GGAGC UCUG <mark>C</mark> -
	-UUGGAUUGAAGGGAGCUCUG <mark>A</mark> -
	U <mark>AU GGAUU GAAG GGAGC UCUG</mark>
	UCU GGAUU GAAG GGAGC UCUG
	U <mark>G</mark> U GGAUU GAAG GGAGC UCUG
	UUU GGCUU GAAG GGAGC UCUG
	UUUGG <mark>GUUGAAGGGAGCUCUG</mark>
	UUU GGUUU GAAG GGAGC UCUG
	UUU GGAUU GAAG GGAGC UCUG
	UUUGGAUUGCAGGGAGCUCUG
	UUU GGAUU GAAGU GAGC UCUG
	UUUUGGAUUGAAA <mark>GGAGGUGUG</mark>
	UUU GGAUU GAA <mark>C</mark> GGAGC UCUG
	UUU GGAUU GAAU GGAGC UCUG
	UUU GGAUU AAAG GGAGC UCUG
	UUU GGAUU <mark>C</mark> AAG GGAGC UCUG
	UUU GGAUU <mark>U</mark> AAG GGAGC UCUG
	UUU GGAU <mark>A</mark> GAAG GGAGC UCUG
	UUU GGAU <mark>C</mark> GAAG GGAGC UCUG
	UUU GGAU <mark>G</mark> GAAG GGAGC UCUG
	UUU GGAAU GAAG GGAGC UCUG
	UUU GGA <mark>C</mark> U GAAG GGAGC UCUG
	UUU GAAUU GAAG GGAGC UCUG
	UUUG <mark>C</mark> AUUGAAGGGAGCUCUG
	UUU G <mark>U</mark> AUU GAAG GGAGC UCUG
	-UU GGAUU GAAG GGAGC UCUU -
	UUU GGAUU GAAG GGAGC UCUU
	UUUGGAUUGAAGGGAGCUCU <mark>A</mark>

(CA229394)

AUU GGAUU GAAG GGAGC UCUG GUU GGAUU GAAG GGAGC UCUG CUU GGAUU GAAG GGAGC UCUG CUU GGAUU GAAG GGAGC UCC

