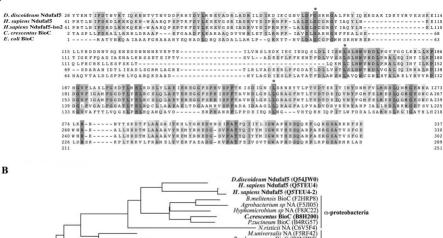
Supplementary Figures


FIGURE S1. Bioinformatic analyses of Ndufaf5 and BioC. (A) Alignment of Ndufaf5 and BioC proteins suggests that they might be truly orthologs. Figure shows both Ndufaf5 isoforms from human, *Dictyostelium* Ndufaf5 and BioC proteins from *E.coli* and *C.crescentus*. Grey intensity represents the identity percentage. Asterisks represent conserved amino acids cited in the text (G86, L165 and L235). (B) Phylogenetic tree of Ndufaf5-BioC family. Ndufaf5 protein from human, *D.discoideum* and a representative group of orthologs in α , β and γ -protebacteria (19 proteins), obtained previously using Blast, were used. Branch lengths represent % of evolution. The number between brackets are Uniprot entries. NA, Not Annotated.

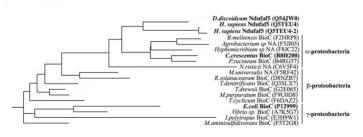

FIGURE S2. *ndufaf5*⁻ **growth rates are complemented in** *ndufaf5*⁻ **Rescue strain but not by AMPK inhibition.** (A) Growth rates in association with bacteria (SM plates) were obtained from at least 3 independent experiments. Numbers between brackets indicate the copy number of the AMPK^{as} construct. (B) A representative experiment of growth in HL5 liquid medium is shown. Numbers between brackets indicate the copy number of the AMPK^{as} construct.

FIGURE S3.

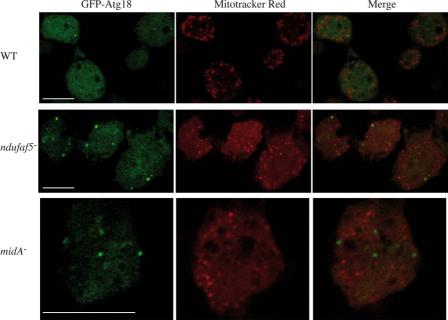

Confocal analyses of GFP-Atg18 and mitochondria I. Wild-type, *ndufaf5*⁻ and *midA*⁻ growing cells transfected with the autophagic marker GFP-Atg18 were stained with the mitochondrial marker Mitotracker Red, fixed and visualized by confocal microscopy. No colocalization was observed. Bar, 10 µm.

FIGURE S4. Confocal analyses of GFP-Atg18 and mitochondria II. Wild-type, *ndufaf5*⁻ and *midA* growing cells transfected with the autophagic marker GFP-Atg18 were fixed, stained with DAPI and visualized by confocal microscopy. Nuclei and mitochondria were stained by DAPI (Red color was assigned to the fluorescence emission of DAPI). The signal was not found to colocalize with GFP-Atg18 puncta. Bar, 10 μm.

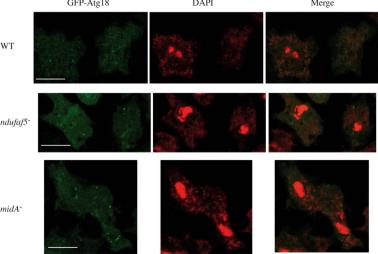


TABLE S1. Oligonucleotides used for KO verification and site- directed mutagenesis

EXPERIMENT	OLIGO FORWARD	OLIGO REVERSE	
GENOMIC KO VERIFICATION	1. AACTTGAGAATCCAATAGTTGC	2. CAAATAATAATTAACCAACCCAAG	
RNA KO VERIFICATION	3.TAGGATCCATGTTAAGAACAACATTTAGAAAAGG	4. CCCAATGTAATGAGAAATTACTTATAATTAAATC	
CONTROL (DDB_G0268840)	5.CGGGATCCGCATGTAACATCCAAAGATTTTAG	6.CGGGATCCCTATATTATTATTTTTTAATAAATCAAATGG	
DIRECTED MUTAGENESIS M1	7.GGTAATGTTTTAGATTTTGTTAGTAGAAATGGAGC	8.GCTCCATTTCTACTAACAAAATCTAAAACATTACC	
DIRECTED MUTAGENESIS M2	9. GATTTAATTATAAGTAATTTCTCATTACATTGGG	10. CCCAATGTAATGAGAAATTACTTATAATTAAATC	
DIRECTED MUTAGENESIS M3	11. GATATTGGTAACATTCCATCAAAGAATAGATAC	12. GTATCTATTCTTTGATGGAATGTTACCAATATC	

Organism	E-value	Eukaryote	Bacteria	GenBank
-		·		accession
Polysphondylium	7e-102	Metazoa		EFA86651.1
Drosophila	3e-67	Metazoa		NP_610922.1
Laccaria	6e-66	Fungi		XP_001877001.1
Danio rerio	3e-65	Metazoa		NP_001076363.1
Xenopus	2e-64	Metazoa		NP_001016398.1
Homo sapiens	6e-62	Metazoa		NP_077025.2
Mus musculus	2e-60	Metazoa		NP_081369.2
Anopheles	4e-60	Metazoa		XP_309862.3
Aspergillus	8e-60	Fungi		XP_662522.1
Neurospora	4e-57	Fungi		XP_956725.2
Pichia	9e-54	Fungi		XP_002492537.1
Yarrowia	5e-51	Fungi		XP_501354.1
Oriza sativa	2e-50	Plantae		EEC69002.1
Vitis vinifera	4e-50	Plantae		XP_002279511.1
Arabidopsis	1e-46	Plantae		XP_002890535.1
Rhodospirillum	5e-46		alphaproteobacteria	YP_425827.1
Magnetospirilum	1e-45		alphaproteobacteria	YP_420968.1
Rhodomicrobium	1e-45		alphaproteobacteria	YP_004013051.1
Ochrobactrum	4e-45		alphaproteobacteria	YP_001369577.1
Brucella	6e-44		alphaproteobacteria	YP_001628309.1
Agrobacterium	3e-41		alphaproteobacteria	NP_357097.2
Caenorhabditis	7e-41	Metazoa	-	NP_496949.1
Rhodoseudomonas	1e-40		alphaproteobacteria	YP_530416.1
Rickettsi	4e-19		alphaproteobacteria	YP_001492229.1

TABLE S2. Phylogenetic distribution of Ndufaf5 homologous proteins. *Dictyostelium* Ndufaf5 protein was subjected to Blast and representative homologous showing significant E-values and covering most of the sequence were selected from prokaryotes, metazoan, plants and fungi kingdoms.