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1 Simulated Annealing10

Simulated annealing (Kirkpatrick et al. 1983) is a probabilistic method to locate a good approxima-11

tion to the global optimum of a given function in a large search space. At each step of the annealing12

procedure the current solution is perturbed to produce a newcandidate solution. This new solution13

will be accepted depending on the difference between the corresponding function values and also14

on a parameter termed the “synthetic temperature”,T . Thus, if exp (−∆D/T ) > r, where∆D is15

the difference between the function values, andr is a random number in [0, 1], the new solution16

will be accepted. If the temperature is very large then almost all new solutions will be accepted;17

conversely whenT is small then most solutions will be rejected, with only those that substantially18

improve the solution being accepted. Thus a major componentof simulated annealing is to lower19

the temperatureT during the procedure. Once∆D starts to decline only slowly, the temperatureT20

is lowered, thus limiting the chances and the distance of a worse solution. The temperature can be21

lowered several times, and the process may then be ”quenched” by accepting only “good” changes22

to find the local minimum of the cost function.23

We used an algorithm of simulated annealing to optimise the contributions, where the function24

to optimise is25

Np∑

i=1

Np∑

j=1

cic j fi j

T 2
(1)

and the variables changed in the optimisation are thec’s. We started from a random set ofc’s,26

constrained such that the sum of contributions from parentsis equal to the sum of contributions27

from mothers and equal to 2Np. ∆D was the change in the value of the sum described in Eq. 1 due28

to changing to another set ofc solutions.29

We also used simulated annealing to arrange the matings between contributing individuals ac-30

cording to
∑

a,b ta,b fa,b, whereta,b is zero if contributing malea and contributing femaleb do not31

mate and one otherwise. As the number of female and male contributions are the same,t is a32

square matrix, and it has 2Np ×2Np elements, and each row and column can only have one element33

equal to one. We started from a diagonal solution fort so that all its elements on the diagonal34
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were one, and changed rows at random until reaching the optimum. ∆D was then the change in35

∑
a,b ta,b fa,b between the candidate and the currentt matrices.36

2 Genetic architecture: number of selected loci37

As mentioned in material and methods, we ran simulations to generate populations with genomes38

including 2000 or 20000 selected loci. Here we show the results for 2000 selected loci (i.e., 10039

selected loci per chromosome), evenly distributed across chromosomes and within chromosomes.40

With 100 selected loci per chromosome, the ancestral population had over 68% of all loci41

fixed, and on average, 9% and 85% of the selected loci are fixed in the Mukai and CGD scenarios,42

respectively. Mean values of mean fitness, mean number of loci per individual carrying deleterious43

alleles and other variables att = 0 for both mutational scenarios for a population with 100 selected44

loci per chromosome and 20 chromosomes are given in Tab. 1.45

Figures 1 and 2 show the results on fitness and diversity when there are only 100 selected loci46

per chromosome. We can see there that the differences between using molecular information and47

using genealogical information in maintaining diversity are much smaller than in scenarios with48

1000 selected loci, particularly in the CGD scenario and forK ≥ 10 (Figure 1).49

The reason for such smaller differences is that while there are more markers per selected locus,50

they are not as tightly linked as they are in the scenario with1000 selected loci per chromosome.51

The initial fitness of the populations are 0.47 and 0.95 underthe Mukai and CGD scenarios,52

respectively, and thus very similar to the populations with1000 selected loci per chromosome.53

The rate of inbreeding depression are slightly closer for 100 selected loci, beingδ 0.80 and 0.2654

under the Mukai and CGD scenarios, respectively. The combination of these values, together55

with the lower linkage between markers and selected loci, explain why the differences between56

using molecular and genealogical information are smaller with 100 selected loci. While for 100057

selected loci, the decay in fitness under the Mukai scenario was much stronger forK = 10 than for58

K = 5000, for 100 selected loci the differences are noticeably smaller (central and right top panels59
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of Figure 1), most likely due to the smaller inbreeding load.60
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Mukai CGD
w̄ 0.48 (0.05) 0.96 (0.04)
n̄a 177.70 (9.62) 2.18 (1.49)
¯nseg 2607 (58) 2339 (51)
δ̄ 0.88 (0.04) 0.26 (0.03)
r̄2 0.04 0.04

Table 1: Mean fitness ( ¯w), mean number of loci carrying a deleterious allelea per individual
(n̄a), mean number of segregating loci averaged over individuals ( ¯nseg), average inbreeding load
(δ) averaged over the last 1000 generations prior to reaching equilibrium, and averager2 over the
first five positions away from each locus in the ancestral populations in the Mukai and the CGD
scenarios with 1000 selected loci, 1000 markers and 2000 neutral loci per chromosome. Standard
deviations for each mean are given in brackets.
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Figure 1: Observed heterozygosity (bottom panels) averaged over all neutral loci that are initially
polymorphic and mean fitness (top panels) versus managementgenerations using different manage-
ment strategies, under the CGD scenario with 100 selected loci per chromosome, using molecular
(M) or genealogical (G) coancestry and different mating strategies. The results show averages over
100 replicates, and the maximum standard deviation in mean fitness is 0.003 att = 0 and 0.03 at
t = 10, and in observed heterozygosity at neutral sites initially segregating is 0.001 att = 0 and
0.006 att = 10.
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Figure 2: Observed heterozygosity (bottom panels) averaged over all neutral loci that are initially
polymorphic and mean fitness (top panels) plotted against management generations using different
management strategies, under the Mukai scenario with 100 selected loci per chromosome. using
molecular (M) or genealogical (G) coancestry and different mating strategies. The results show
averages over 100 replicates, and the maximum standard deviation in mean fitness is 0.005 att = 0
and 0.03 att = 10, and in observed heterozygosity at neutral sites initially segregating is 0.001 at
t = 0 and 0.006 att = 10.
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