
AMBIENT: Active Modules for Bipartite Networks. Using high-throughput transcrip-
tomic data to dissect metabolic response.
Supplementary Methods
Input data and outputs

ambient requires two input files to run - a metabolic model stored in SBML format [1, 2], and a tab-separated
file containing scores for each reaction, with reactions labelled according to their ID in the SBML model.
In principle, reaction scores can come from any source, but in our case study transcriptional data are used.
Any metabolic model stored in the SBML format can be used by ambient to investigate metabolic changes
as mediated by transcription change, as long as gene associations for reactions are given in the model.

A bipartite network is extracted from the SBML file using libSBML [3] and a NetworkX [4] digraph object
is created to hold this network. Reactions and metabolites are all represented as nodes. An edge connects a
metabolite to a reactions when that metabolite is either a substrate or a product of that reaction. Information
about the directionality of the reactions is retained only to indicate which metabolites are co-produced or
co-consumed by particular reactions, this information is not used in the analysis itself. Information is also
extracted about GPR (gene-protein-reaction) relationships, which can be used for calculation of reaction
scores based on the scores of their encoding genes.

Reaction scores from a separate file are then mapped to the relevant reactions in the metabolic network.
In the examples shown, mean log fold-change of the genes associated with each reaction was used as the
score, and for reactions without a score (those not linked with any genes that have transcriptional data
associated with them), the score was set to the median score.

When ambient is run from the command line it produces three files: a .dat file created by the Python
built-in shelve module, containing all of the relevant output Python objects, a GraphML file containing the
metabolic network in bipartite form and an attribute for each node indicating its module membership as
determined by ambient and a flatfile table listing the reactions present in each of the significant modules
found at the end of the simulated annealing run.

ambient algorithm

See methods in the main text for a description of the simulated annealing algorithm.
Initially, 1/50 (tinit) of the available edges are proposed at random and modules induced by those selected

edges are found and scored. Initial results and timings indicated that several improvements could be made
to the simulated annealing strategy of Ideker et al. [5]. This paper suggested retaining modules with the
top 20 scores for improved annealing, but because the program must find and score all modules anyway, it
is computationally inexpensive to keep track of many more modules at each step. The default maximum
number tracked in this program is 1000, though in practice in metabolic networks it would be very unlikely
to reach this number of modules.

In order to search the space of all modules efficiently ‘toggling’ of sets of edges (rather than individual
edges) are done by selecting a set number of edges at random and either removing them from or adding them
to the proposed set, as appropriate. After each step, all modules induced by the new proposed edge set are
scored and ordered, then compared with the scores from the previous proposed edge set. The decision on
whether to keep the proposed edge set is done according to [5], by comparing the two ordered sets of module
scores to determine increases or decreases in those scores.

Importantly, if an edge toggle causes a drop in any of the scores, it is not necessarily discarded. There
is a chance the toggle is kept anyway, the probability being inversely proportional to the score difference
multiplied by the temperature T . For computational efficiency, an adaptive cooling schedule has been
adopted. The principle behind the schedule is that analogously to real annealing, the network should reach
thermal equilibrium at each temperature as it cools in order to find the best scoring modules in the least
computational time. In effect, this means that at each temperature steps are taken until the increase or
decrease in score over the previous 1000 steps is below a certain threshold, then the temperature is dropped
by a constant factor of 0.9 and simultaneously the number of edges toggled per step reduces by the same
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factor, so that as the temperature goes towards 0 the algorithm searches in a more focused way near the
high scoring modules.

Tinit is an important parameter determining the initial rate of acceptance of detrimental changes of the
proposed edge set. It is assigned according to a measurement of the typical scores of modules in random
samples of edge sets in the network of interest. tinit random edges are selected 100 times and the highest
scoring module induced by each of these 100 edge sets is calculated. Tinit takes the value of 0.2× the difference
between the maximum and the minimum of these values. Several different approaches to determining Tinit

were tried, but this method gave the best results in terms of consistency of the final result and number of
steps required to reach a stable result.

The algorithm terminates when no scores have changed in the last 10000 steps, or when a certain number
of steps have been taken, depending on which occurs first. In many cases, negative scores of reactions are
also of interest (in the case study, down-regulation is as informative as up-regulation) so the algorithm can
optionally be run with all reaction scores replaced by their negatives (but with metabolite scores remaining
negative).

Module statistical significance

The results of module significance tests (see main text) are written to the qvals object in the Python .dat
file.
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