Developmental Cell, Volume 23

Supplemental Information

Mig6 Is a Sensor of EGF Receptor Inactivation

that Directly Activates c-Abl to Induce Apoptosis

during Epithelial Homeostasis

Sarah Hopkins, Emma Linderoth, Oliver Hantschel, Paula Suarez-Henriques, Giulia Pilia, Howard Kendrick, Matthew J. Smalley, Giulio Superti-Furga, and Ingvar Ferby

Inventory of Supplemental Data

Figure S1

Relating to Figure 1, showing **i**) histological characterization of the mammary ductal morphogenesis defects in the *Errfi1^{-/-}* mice and **ii**) normal proliferation rate of *Errfi1^{-/-}* pMECs cultured in vitro.

Figure S2

Relating to Figure 2, showing i) normal apoptotic response of *Errfi1^{-/-}* pMECs upon cell detachment and DNA damage induced by Adriamycin, ii) that *Errfi1^{-/-}* MECs express wild-type levels of markers for mammary epithelial differentiation an display normal cellular morphology and iii) that EGF-independent survival displayed by *Errfi1^{-/-}* cells is not due to a gain in basal EGFR signalling or canonical mitogenic signalling and finally that iv) the binding of Mig6 and Abl is direct.

Figure S3

Relating to Figure 4. i) Maps the region of Abl that binds Mig6 and ii) models the structural similarity of the predicted Abl-Mig6 contact residues based on the analogy with the EGFR-Mig6 structure.

Figure S4

Relating to Figure 7, showing that RNAi-mediated knockdown of c-Abl in vivo, prevents mammary outgrowth.

SUPPLEMENTAL FIGURES

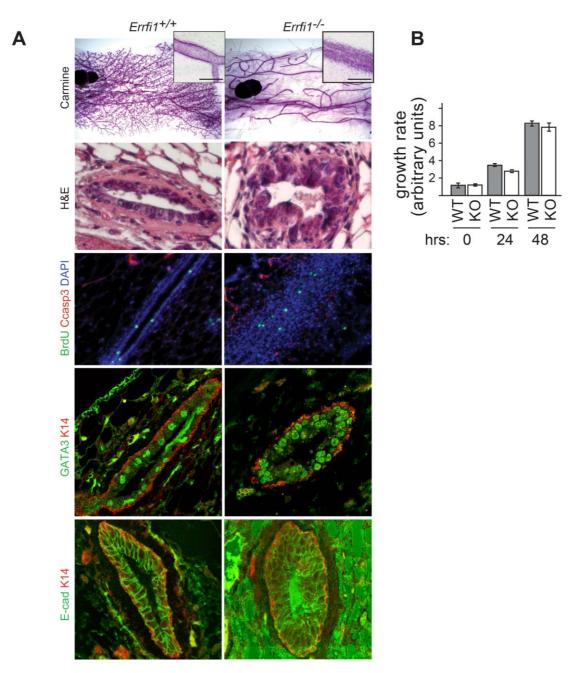


Figure S1 - Hopkins

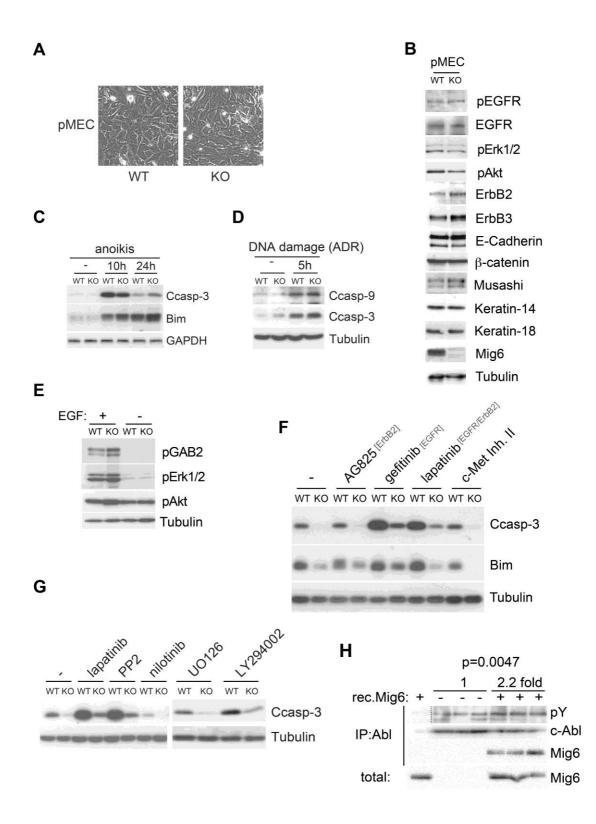
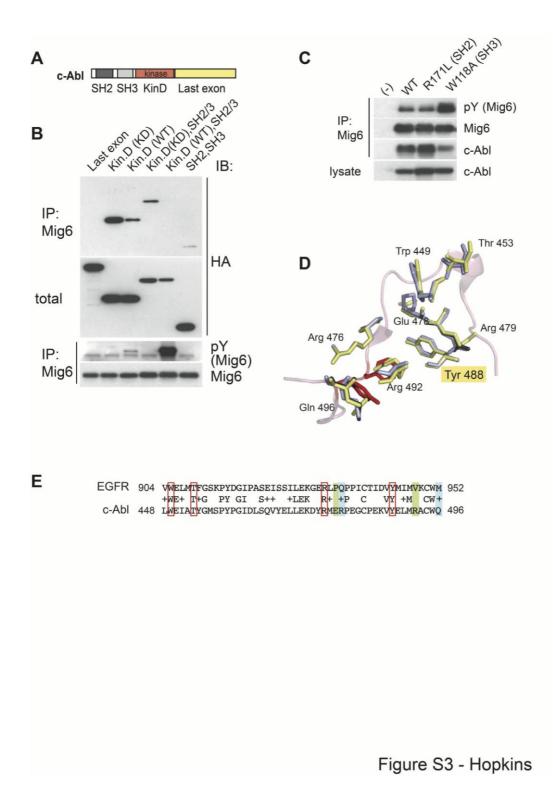



Figure S2 - Hopkins

A B mammary transplants **GFP GFP GFP**

c-Abl

in vivo shRNA: Ctrl

Figure S4 - Hopkins

c-Abl

in vivo shRNA: Ctrl

FIGURE LEGENDS

Figure S1 related to Figure 1. Deletion of *Errfi1* leads to impaired mammary ductal morphogenesis and luminal filling. (A) Mammary glands from 12-week old $Errfi1^{-/-}$ or littermate wild-type female mice subjected to whole mount carmine staining (upper panels). Cross sections and longitudinal ductal sections from 10-week old mice were subjected to hematoxylin and eosin (H&E) staining (middle panels) immunostaining against indicated proteins. The images are representative of n=3 (BrdU/Ccasp3 and GATA3/K14) or n=4 (E-cadherin/K14) or n>8 (Carmine and H&E) mice. (B) $Errfi1^{-/-}$ or wild-type pMECs were cultured for indicated times and subjected to MTT reduction assay. Absorbance was measured at 570nm and units set arbitrary (n=4 independent experiments from 2 different mice). Error bars represent s.e.m. and indicated P-values were determined by two-tailed unpaired Student *t*-test.

Figure S2 related to Figure 2. Deletion of *Errfi1* does not affect mammary epithelial cell anoikis or apoptosis induced by genotoxic stress. (A) Phase contrast imaging of WT or *Errfi1* KO pMECs cultured for 6 days to confluence. Note the

normal morphology of KO pMECs. (B) Western analysis of cell lysates from confluent Errfil^{-/-} (KO) or littermate wild-type (WT) pMECs against indicated proteins cultured in the presence of EGF. (C,D) $Errfil^{-/-}$ or wild-type pMECs isolated from 7-10 weeks old mice were either (A) cultured on cell repellent, poly-Hemacoated, tissue culture dishes (anoikis) or (B) treated with 1µg/ml adriamycin (ADR) for indicated times and cell lysates subjected to immunoblotting as indicated (n=2 independent experiments). (E) pMECs from WT or KO mice were either cultured in the presence or absence of EGF for 6 hours and analysed by western against indication proteins. (F) KO or littermate WT pMECs were deprived of EGF for 9 hours in the absence (-) or presence of 1µM AG825, 1µM Gefitinib, 1µM Lapatinib, 1µM c-Met inhibitor II, prior to western analysis for indicated proteins (representative of 2 independent experiments). (G) KO or littermate WT pMECs were deprived of EGF for 9 hours in the absence (-) or presence of 1µM Lapatinib, 0.8µM PP2, 2 µM nilotinib, 100nM UO126 or 1 µM LY294002, prior to western analysis for indicated proteins (representative of 2 independent experiments). (H) c-Abl was overexpressed in HEK293T cells, immunopurified, incubated with bacterially produced recombinant Mig6 (Abcam) and subjected to a kinase assay as described under Experimental Procedures. Samples were subjected to western analysis as shown. The indicated values denote fold change in pY signal intensity normalized against total c-Abl levels as determined by densitometry. The P-value were determined by two-tailed unpaired Student *t*-test (n=3).

Figure S3 related to Figure 4. Mapping the Mig6 interaction site on c-Abl (A) Outline of the domain structure of c-Abl (B) Co-immunopurification of Mig6 with HA-tagged fragments of c-Abl ectopically co-expressed in HEK293T cells, followed by western analysis as indicated. The c-Abl fragments are the C-terminal last exon region, the wild-type catalytic domain alone (Kin.D), a point mutant catalytically inactive form of the kinase domain (Kin.D (KD)), the N-terminal SH2 and SH3 domains alone (SH2, SH3) or the wild-type and kinase inactive catalytic domain including the SH2 and -3 domains. Note that Mig6 binds preferentially to the catalytically inactive kinase domain. (C) Co-immunopurification of Mig6 with wildtype or mutant forms of c-Abl that disrupt the SH2 (R171L) or SH3 domain (W118A) expressed in HEK293T cells. (D) High similarity between the Mig6 binding site of EGFR and c-Abl. Molecular modeling shows that the identified contact residues of c-Abl (yellow, and denoted) are strikingly similar; 4 out of 8 contact residues are identical while 2 represent conservative changes (EGFR/Mig6: PDB 2RF9 and c-Abl: PDB 10PK). The non-conserved changes are: V924 and P510 in EGFR are R492 and E478 in c-Abl respectively. (E) Alignment of human EGFR and c-Abl protein sequences highlighting the conserved contact residues (boxed).

Figure S4, related to Figure 7. In vivo silencing of c-Abl leads to impaired mammary outgrowth. (A,B) Cleared fat pad transplants of pMECs infected with lentivirus carriying c-Abl-targeting shRNA or non-targeting control shRNA. GFP marks infected cells. (A) Representative fluorescence image of whole GFP-positive outgrowths. (B) The maximum diameter of individual GFP-positive mammary outgrowths: Ctrl (n=12) or Abl knock-down (n=11). Individual glands are plotted and black bar indicates the mean while red bars represent s.e.m. The p-value was determined by two-tailed unpaired Student *t*-test. Scale bars=500 μ m.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

cDNA constructs. Mammalian expression constructs with wild-type, point mutant and HA-tagged truncation mutant c-Abl1b were previously described (Hantschel et al., 2003). Mig6 was cloned into pcDNA4.1/TO and point mutants of Mig6: the F352A/Y358A, Y394/5F, deletion aa328-361, PP319/20AA as well as the c-Abl1b Y488E/F, W449T, L471A and R476A were generated by site-directed mutagenesis using the QuikChange XL Site-Directed Mutagenesis Kit (Agilent) and mutations confirmed by DNA sequencing. The HA-tagged Mig6 deletion mutants (AH1+2: aa314-403 and AH1: aa335-365) were cloned by PCR into pcDNA4.1/TO.

shRNA and siRNA. shRNA sequences used to target c-Abl were Abl#1: 5'
AAAAGCAAGAACCTGTACACTTTCTTTCGAGAAAGTGTACAGGTTCTTGC3
'Abl#1 or

5'AAAAGCAACAAGTCCACTATCTACGTTCGCGTAGATAGTGGGCTTGTTG C3' (Abl#2). Sequence of siRNA oligo targeting p73 was: GAATGAAAGTACCACCAAATT (Applied Biosystems).

Antibodies. The following antibodies were used for immunofluorescence: Cleaved Caspase-3, phopho-Y877-ErbB2 (Cell Signaling), Mig6 (Sigma), E-cadherin (BD Transduction Laboratories), Cytokeratin 14 (Covance), Cytokeratin 18 (Novocastra) GATA-3 (Santa Cruz) and anti-BrdU conjugated Alexa 488. Secondary antibodies used were Cy3, Cy5 (Molecular Probes) or Alexa 488 or Alexa 594 (Jackson ImmunoResearch)-conjugated antibodies. The following antibodies were used for western blotting: a phosphospecific c-Abl (Tyr488) antibody generated against KVpYELMRA (Eurogentech), Mig6 (Sigma), α-Tubulin, EGFR, Cleaved Caspase-3 (Asp175), Cleaved Caspase-9 (Asp353) and Phospho-c-Abl Tyr412 (Cell Signaling), Bim (Abcam, ab7888), c-Abl1 (Hantschel et al., 2003), c-Abl1 (8E9), Phospho-cAbl Tyr245 and Phospho-Tyr (4G10). Secondary HRP conjugated antibodies were from Jackson ImmunoResearch.

SiRNA transfection of MEFs. Immortalized primary *Errfi1^{-/-}* MEFs were grown in DMEM containing 10%FBS to 50-60% confluence and transfected with a siRNA oligo targeting p73 using Jetprime (Polyplus).

MTT cell proliferation assay. Freshly isolated pMECs from *Errfi1^{-/-}* or wild-type 8week old mice were cultured were seeded at a density of 30000 cells/cm² in 24-well plates and cultured for indicated times. 3-(-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT, Sigma) was added to the cells for 2 hours at 37C prior to harvest of cells and measurement of absorbance at 570nm.

Flow cytometry. pMECs were resuspended in mammary epithelial cell medium. Endothelial (CD31⁺) cells and leukocytes (CD45⁺) were labelled with rat anti-mouse CD31 antibody (MEC 13.3; BD Biosciences), anti-rat IgG microbeads and monoclonal anti-mouse CD45 conjugated microbeads (30f11.1; Miltenyi Biotec) and removed via magnetic cell separation using a MACS column and separator (Miltenyi Biotec). Separation of myoepithelial and luminal pMECs was obtained by incubation with anti-CD29 FITC (HM beta 1-1; AbD serotec) and biotin conjugated anti-CD61 (2C9.G2; BD Biosciences) in combination with APC-streptavidin (BD Biosciences) 4°C. Dead cells were excluded using 7-AAD. **Co-Immunoprecipitation.** pMECs were lysed in 50mM Tris-HCL (pH7.5), 150mM NaCl, 1% v/v NP-40 and cleared by centrifugation at 9500g for 15 minutes. Soluble proteins were incubated with anti-c-Abl antibody (Hantschel et al., 2003) or anti-Mig6 antibody overnight at 4°C followed by a 2 hour incubation in protein G conjugated sepharose beads at 4°C. Immunocomplexes were washed twice with lysis buffer, twice with lysis buffer excluding NaCl and subjected to SDS-PAGE and western analysis of interacting proteins. Transfected HEK293T cells were lysed in RIPA lysis buffer (50 mM Tris-Cl pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) and insoluble material removed by centrifugation for 15 min at 9500g. Cleared lysates were incubated with anti-c-Abl (Hantschel et al., 2003), anti-Mig6 or anti-HA antibodies overnight at 4°C followed by a 1 hour incubation in protein G conjugated sepharose beads at 4°C. Immunocomplexes were washed four times with RIPA buffer and subjected to SDS-PAGE and western analysis for interacting proteins.

SUPPLEMENTAL REFERENCE

Hantschel, O., Nagar, B., Guettler, S., Kretzschmar, J., Dorey, K., Kuriyan, J., and Superti-Furga, G. (2003). A myristoyl/phosphotyrosine switch regulates c-Abl. Cell *112*, 845-857.