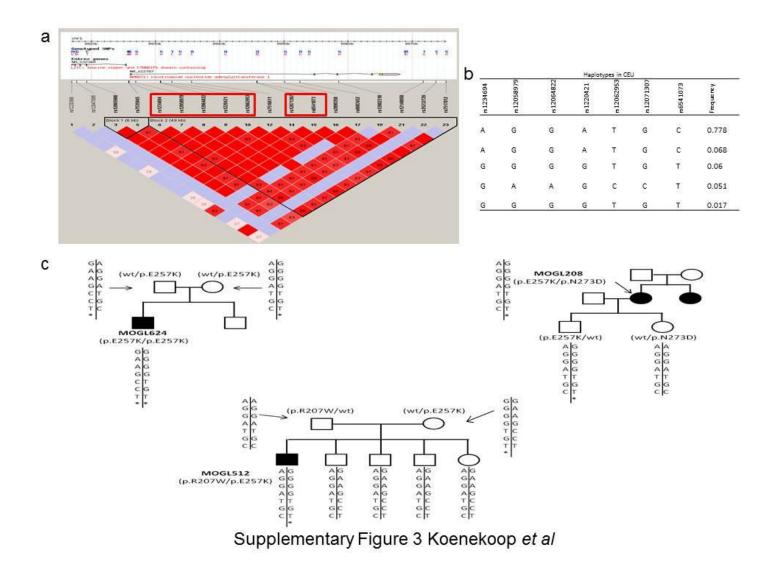
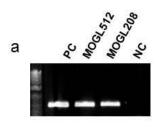

а	p.A13T	p.V67F	p. V98G	p.V151F	p.W169X	p.R207W	p.R237L	p.E257K	p.N273D
H.SAPIENS	VVLLACGSF	YHRVIMAE	TLKVLRH	PKVKLLC	PNLWKSED	WKHRSNIH	GQSIRYLVP	YSSESED	PLORNTA
P. TROGLODYTES	<mark>-</mark> MF	YHRVIMAE	TLKVLRH	PKVKLLC	PNLWKSED	WKHRSNIH	GQSIRYLVP	YSSESED	PLORNTE
C.LUPUS	VVLLACGSF	HHRVIMAE	TAKVLRH	PKVKLLC	PNLWKSED	WQHRNNIH	GQSIRYLVP	YSCESEE	PLORNTA
B. TAURUS	VVLLACGSF	YHRVIMAE	TAKVLRH	PKVKLLC	PNLWKSED	WKHQNNIH	GQSIRYLVP	YSSESEE	PLQRNTT
M.MUSCULUS	VVLLACGSF	HHRIIMAE	TVKVLRY	PKVKLLC	PNLWKMED	WRHQSNIH	GQSIRYLVP	YNTESEG	PLORNAA
R.NORVEGICUS	VVLLACGSF	HHRIIMAE	TVKVLRH	PQVKLLC	PNLWKLED	WKYKNNIH	GQSIRYLVP	YSLESED	PLQKNAS
G.GALLUS	VVLLACGSF	DHRVTMAK	TVKVLRH	PQVKLLC	PNLWKLED	WKYKNNIH	GQSIRYLVP	YSLESED	PLQKNAS
X.TROPICALIS	VVLLATGSF	SHRLAMAN	TVLVLRH	PQVKLLC	PNLWKNED	WKY <mark>K</mark> HMIH	GMSIRYLVP	YNERSEE	PLARNSK
M. DOMESTICA	VVLLACGSF	CHRITMAE	TAKVLRY	PELKLLC	PNLWKLED	WKYRSNIH	GHSIQYLVP	YSSESED	PLQKITE
D.RERIO	LVLLACGSF	KHRLAMAR	TVVTMRY	PQLKLLC	PGLWTDEH	SKHRPSIF	GHSVKYLLP	YTQDSEM	PLTKQVI
D.MELANOGASTER	LVLVACGSF	LDRCAMVK	TQAVLQH	VHLKLLC	PGLWAEAD	TKYQSNIT	GQSVKYLLD	FNFKSRD	S
S.CEREVISIAE	LIIVACGSF	YHRVRMCE	TAKVLDH	VKIMLLA	PHVWADSD	YEHRRNIL	GMSVQYLLP	YINQSE-	PVKQVLD

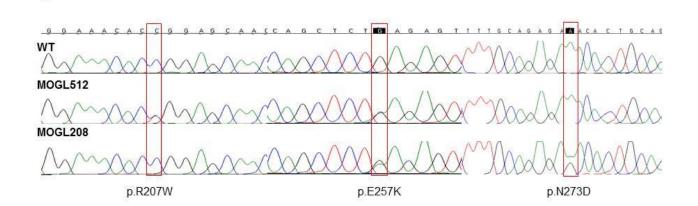
Supplementary Figure 1 Koenekoop et al


Supplementary Figure 1 Summary of *NMNAT1* substitutions. (a) The conservation of mutations across different species. (b) Crystal structure of NMNAT1. All variants found in LCA patients are indicated. (c) PCR experiment with ARMS primers to identify the p. Glu257Lys allele in *NMNAT1*. We developed ARMs primers and show here the WT and mutant alleles. Primers: flanking primers forward: CCCTCATCCTTGAAAAGCAC, reverse: TCCCAAAGTGCTGGGATTAC, allele specific primer: AGCATTCCTGTCTTCACTCTT. Conditions are available upon request.

Supplementary Figure 2 Koenekoop et al


Supplementary Figure 2 Sanger sequencing chromatograms showing all mutations

found in this study.



Supplementary Figure 3 Haplotype analysis. (a) A 49kb block from rs1234694 to rs7517812 covers the NMNAT1 gene in European ancestry population (CEU). To test whether the p. Glu257Lys mutation is in a common haplotype shared by the patients, we selected 7 tagging SNPs near the 5' of p. Glu257Lys for genotyping. The 3' tagging SNPs were not selected because the excess amount of repetitive elements near those tagSNPs would cause non-specific PCR products. rs6541073 is the closest SNP to Glu257Lys , about 19kb away. CEU: Utah residents (CEPH) with Northern and Western European ancestry. (b) The haplotypes and their frequency in CEU population are listed. (c) The mutation p. Glu257Lys is linked with the GGGGTGT haplotype in family 512, 208 and 624. SNP genotype for each genotyped individual

is listed from top to bottom according to the sequential order on the chromosome from 5' end to 3' end. SNPs are phased to each chromosome according to the pedigree information. * represent the p. Glu257Lys mutation. Family 512 and 208 are French Canadian and family 624 is from Saudi Arabia. Family 512, 208 and 624 share the same GGGGTGT haplotype carrying p. Glu257Lys mutation. It is worth to note that there are two haplotypes carrying p. Glu257Lys in family 624 from Saudi Arabia.

b

Supplementary Figure 4 Koenekoop et al

Supplementary Figure 4 *NMNAT1* mutations do not affect transcription. *NMNAT1* transcription is examined in the peripheral blood of patient MOGL 208 and 512. (a) *NMNAT1* mutant alleles are transcribed in patients. RT-PCR was carried out using total RNA extracted

from patient blood samples and the DNA band specific for *NMANT1* is present in both patients as well as positive controls (PC) using placenta RNA. The band is absent in the negative control without RNA template. (b) To further confirm that both alleles are transcribed, RT-PCR bands were purified and sequenced by Sanger sequencing. Sequencing chromatograms of wild type control as well as MOGL208 and MOGL512 are shown. Base pair positions corresponding to mutations carried by these two patients are highlighted by red boxes. Consistent with the genotype of each patient, both p.Arg207Trp and p. Glu257Lys alleles are present in transcripts from MOGL512 and p. Glu257Lys and p.Asn273Asp alleles are present in transcript from MOGL208.

Mutation	Protein Change	Polyphe n	Sift	GERP score	I-Mutant (Kcal/mol)	Mupro (Kcal/mol)	Blosu m
c.37G>A	p.Ala13 Thr	possibly damagin g	affect protein function	3.92	-0.78	-1.02	0
c.199G> T	p.Val67 Phe	possibly damagin g	affect protein function	-0.53	-2.18	-0.93	-1
c.293T> G	p.Val98 Gly	possibly damagin g	affect protein function	4.93	-1.22	-2.22	-3
c.451G> T	p.Val15 1Phe	possibly damagin g	affect protein function	2.04	-2.32	-1	-1
c.507G> A	p.Trp16 9Ter	stop	stop	5.16	N/A	N/A	
c.619C> T	p.Arg20 7Trp	probably damagin g	affect protein function	2.95	-1.16	-1.3	-3
c.710G> T	p.Arg23 7Leu	probably damagin g	affect protein function	3.1	-0.27	-1.03	-2
c.769G> A	p. Glu257L ys	benign	tolerated	5.01	-1.14	-1.49	1

c.817A> G	p.Asn27 3Asp	possibly damagin g	tolerated	3.79	-0.45	-1.23	1
c.838T> C	p. Ter280 Gln	read through	abnormal protein length	-	-	-	-

Supplementary Table 2 RT-PCR primer sequence.

Primer name	Sequence		
Forward primer	tgactgtgatcaccagcagaa		
Reverse primer	cccaaatgggaagtctgaaa		