

Contributions of Body Mass Index and Exercise Habits on Inflammatory Markers: A Cohort Study of Middle Aged Adults Living in the United States

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-002623
Article Type:	Research
Date Submitted by the Author:	21-Jan-2013
Complete List of Authors:	Strohacker, Kelley McCaffery, Jeanne wing, rena
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Immunology (including allergy)
Keywords:	Immunology < BASIC SCIENCES, EPIDEMIOLOGY, Public health < INFECTIOUS DISEASES

1					
2 3	1	Contributions of Body Mass Index and Exercise Habits on Inflammatory Markers: A			
4	2	Cohort Study of Middle Aged Adults Living in the United States			
5 6	3	Conort Study of Minute Agen Annus Erving in the Onited States			
7	4				
8	5				
9	6	Kelley Strohacker, Ph.D. ^a , Rena R. Wing, Ph.D. ^a , and Jeanne M. McCaffery, Ph.D. ^a			
10	7				
11	8				
12 13	9				
14	10	^a The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence			
15	10	RI			
16	12	KI			
17	13				
18	14				
19 20	14				
20	15	<u>Corresponding Author</u>			
22	15	<u>Corresponding Author</u>			
23	16	Jeanne M. McCaffery, Ph.D.			
24	10	Scaline WI. Wiecallery, Th.D.			
25 26	17	Associate Professor of Psychiatry and Human Behavior (Research)			
20	17	Associate Professor of Esychiatry and Human Denavior (Research)			
28	18	The Miriam Hospital Weight Control and Diabetes Research Center			
29	10	The Wintain Hospital Weight Control and Diabetes Research Center			
30	19	196 Richmond Street			
31 32					
33	20	Providence, RI 02904			
34					
35	21	Phone: (401) 793-8010			
36 37					
38	22	Fax: (401) 793-8944			
39					
40	23	Email: JMccaffery@lifespan.org			
41					
42	24				
43 44					
45	25				
46					
47	26	Running Title:			
48					
49 50	27	BMI, Physical Activity and Inflammation			
51					
52	28				
53					
54	29	Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein			
55 56					
56 57	30	Word Count: 3199			
58					
59					
60					

2		
3 4	31	ARTICLE SUMMARY
5		Article focus
6	32	 Systemic inflammation is related to the progression of
7		cardiovascular disease.
8 9	33	 Independent of obesity, physical activity is inversely related to
9 10		
11	34	concentrations of well-established inflammatory biomarkers,
12		such as C-reactive protein (CRP) or interleukin-6 (IL-6).
13	35	• This article evaluates interactive effects of body mass index and
14		physical activity on established inflammatory markers, CRP,
15	36	IL-6, and emerging inflammatory markers, fibrinogen, soluble
16		intracellular adhesion molecule (sICAM)-1, soluble E-selectin,
17 18	37	and IL-6 soluble receptor.
19		
20	38	Key messages
21		 Interactive effects of body mass index and physical activity
22	39	were observed for CRP, such that regular physical activity
23	07	reported by overweight individuals was related to significantly
24	40	lower CRP levels compared to those reported no regular
25 26	10	activity.
27	41	• Independent of BMI, regular physical activity was related to
28	TI	lower IL-6, with a trend for lower fibrinogen
29	42	Physical activity had no independent effect on circulating
30	42	markers related to endothelial inflammation, such as sICAM-1
31	10	or sE-selectin.
32	43	of sE-selectifi.
33 34		Strengths and limitations
35	44	8
36	4 5	• 1255 adults from the National Survey of Midlife Development
37	45	in the United States (MIDUS) Biomarkers Study were
38	16	analyzed. Statistical analyses were adjusted for age, sex,
39	46	smoking, and relevant medication use. A strength of this paper
40 41	. –	is categorizing physical activity levels based on national
41	47	recommendations. This data may be used to determine
43		appropriate levels of physical activity necessary for reducing
44	48	inflammation in overweight and obese adults. However, cross-
45		sectional data is limited, as causal inferences cannot be
46	49	obtained. A second limitation is that the sample was
47		predominantly comprised of non-Hispanic white individuals,
48 49	50	therefore findings may not extend to all ethnicities.
- 50		
51	51	
52		
53	52	
54		
55 56	53	
50 57		
58		
59		
60		

1
~
3
4
5
6
7
ð Q
9 10
11
12
13
14
15 16
10
18
19
2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 10 1 2 3 3 4 5 6 7 8 10 1 2 3 3 4 5 6 7 8 10 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21
22
23
24 25
26
27
28
29
30
31
33
34
35
36
37
38 39
39 40
41
42
43
44
45 46
46 47
48
49
50
51
52
53 54
54 55
56
57
58
59 60
60

60

54	ABSTRACT
55	Objectives. Determine whether body mass index (BMI) and physical activity (PA) above, at or
56	below MET-minute per week (MMW) levels recommended in the 2008 Physical Activity
57	Guidelines interact or have additive effects on interleukin (IL)-6, C-reactive protein (CRP),
58	fibrinogen, IL-6 soluble receptor (sr), soluble (s) E-selectin and soluble intracellular adhesion
59	molecule (sICAM)-1. Design. Archived cohort data (N=1255, age 54.5±11.7y, BMI
60	29.8±6.6kg/m ²) from the National Survey of Midlife Development in the United States (MIDUS)
61	Biomarkers Study were analyzed for concentrations of inflammatory markers using general
62	linear models. MMW was defined as no regular exercise, <500 MMW, 500-1000 MMW, >1000
63	MMW and BMI was defined as <25, 25-29.9, \geq 30 kg/m ² . Analyses were adjusted for age, sex,
64	smoking and relevant medication use. Setting. Respondents reported to three centers to
65	complete questionnaires and provide blood samples. Participants. Participants were eligible if
66	they were currently enrolled in the parent MIDUS study (N=1255, 57% female, 93% non-
67	hispanic white, average age 54.5y). Primary Outcome Measures. Concentration of IL-6, CRP,
68	fibrinogen, IL-6sr, sE-selectin and sICAM. Results. Significant interactions were found
69	between BMI and MMW for CRP and sICAM-1 (P's<0.05). CRP in overweight individuals was
70	similar to obese when no PA was reported, but was similar to normal weight when any level of
71	regular PA was reported. sICAM-1 was differentially lower in obese individuals who reported
72	>1000 MMW compared to obese individuals reporting less exercise. Conclusion. Levels of
73	CRP and sICAM-1 depended on exercise and BMI levels, suggesting that regular exercise may
74	buffer weight-associated elevations in CRP in overweight individuals while higher levels of
75	exercise may be necessary to reduce sICAM-1 or CRP in obese individuals. Trial Registry.
76	N/A.

77 INTRODUCTION

Obesity paired with low physical activity is well known to increase morbidity and mortality related to cardiovascular disease (CVD)(1). It is less clear, however, whether the benefits of higher levels of physical activity differ among normal weight, overweight, and obese individuals. Chronic, low-grade inflammation, marked by elevations in cytokines, acute phase reactants and soluble adhesion molecules, is a developing CVD risk factor(2, 3). Interleukin-6 (IL-6) and, C-reactive protein (CRP) are both considered established inflammatory markers related to CVD(3). Fibrinogen, soluble intracellular adhesion molecule (sICAM-1) and soluble e-selectin (sE-selectin) also have key roles in the progression of CVD and have been associated with elevated risk(4-6). Obesity is strongly associated with greater concentrations of inflammatory markers(7, 8), while physical activity appears to have anti-inflammatory effects(9, 10). It is unclear whether the effects of physical activity depend on the degree of obesity The purpose of our study was to disentangle the relative contributions of BMI and physical activity recorded in MET-minutes per week (MMW) to circulating levels of IL-6, IL-6sr, CRP, sICAM-1 and sE-selectin in middle-aged adults. MMW categories for this study were determined using values put forth by the Physical Activity Guidelines for Americans, which states that total weekly physical activity in the range of 500-1000 MET-minutes (approximately equivalent to 150-300 minutes of moderate or 75-150 minutes of vigorous activity per week) produces substantial health benefits for adults(11). We hypothesized that BMI and MMW at or above the 500-1000 MMW guidelines would interact, such that the impact of MMW on inflammatory markers would differ by degrees of overweight or obesity.

99 MATERIALS AND METHODS

Page 5 of 28

BMJ Open

Design and Sample. This study was a cross-sectional analysis of archived data (BMI, self-reported physical activity and inflammatory biomarker concentrations) from 1255 respondents aged 25 to 74 who provided consent (as approved by The University of Wisconsin Madison Health Sciences Institutional Review Board) and were subsequently enrolled in the National Survey of Midlife Development in the United States (MIDUS) Biomarkers Study(12). The purpose of the Biomarker Project was to add comprehensive biological assessments on a subsample of the parent MIDUS study to further understand age-related differences in physical and mental health. Those who agreed to participate stayed overnight at one of three General Clinical Research Centers: University of California Los Angeles, University of Wisconsin-Madison and Georgetown University. Upon arrival, each respondent provided a detailed medical history (including physical activity levels) and provided all prescription, over-the-counter, and alternative medications to be inventoried by project staff. Following an overnight stay, morning fasting blood samples were obtained. Cohorts were assessed between July 2004 and May 2009 as a follow up to MIDUS I respondents that were previously surveyed by the MacArthur Midlife Research Network between 1995 and 1996. Based on the sample of 1255 participants, 80% power was achieved to detect small effects of 0.08 or greater with alpha level at 0.05 for a two-tailed test(13, 14).

Anthropometrics. Height was measured in centimeters and recorded to the nearest
millimeter. Weight was measured in kilograms and recorded to the nearest decimal place. BMI
was calculated by dividing body mass in kilograms by height in meters squared.

1

1 2		
3 4	122	Categorizing BMI and MMW. BMI categories were organized into 3 groups: normal
5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21	123	weight (BMI \leq 24.9 kg/m ²), overweight (BMI \geq 25-29.9) and obese (BMI \geq 30).
	124	The MMW variable was calculated using data provided in the medical history form. The
	125	form first described 3 types of regular physical activity(12):
	126	Vigorous: Which causes your heart to beat so rapidly you can feel it in your chest
	127	and you perform it long enough to work up a good sweat and breathe heavily (e.g.,
	128	competitive sports, running, vigorous swimming, high intensity aerobics, digging
	129	in the garden, or lifting heavy objects).
22 23	130	Moderate: Which causes your heart rate to increase slightly and you typically
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	131	work up a sweat (e.g., leisurely sports like light tennis, slow or light swimming,
	132	low intensity aerobics or golfing without a power cart, brisk walking, mowing the
	133	lawn with a walking lawnmower).
	134	Light: Which requires little physical effort (e.g., light housekeeping like dusting
	135	or laundry, bowling, archery, easy walking, golfing with a power cart or fishing).
	136	Keeping these definitions in mind, participants were asked if they engaged in regular physical
	137	activity of any type for 20 minutes or more at least 3 times per week (yes or no). If participants
	138	answered "yes", they entered up to 7 types of seasonal and/or non-seasonal exercise or activity
	139	along with the frequency, duration and intensity.
46 47	140	MMW were calculated in a 2-step process. Step 1: subjects who reported no physical
48 49	141	activity (for whom no MMW calculations could be made) were designated as the no regular
50 51 52 53 54 55 56 57 58 59 60	142	exercise group (NRE). Step 2: For subjects who indicated that they performed regular physical
	143	activity, total MMW were calculated by multiplying minutes per week by intensity level (1.1 for
	144	low, 3.0 for moderate and 6.0 for vigorous) and summed across each non-seasonal activity

Page 7 of 28

1 2

BMJ Open

2 3 4	145	reported. Four groups reflecting participation in physical activity and whether or not their
5 6	146	participation was below, at or above USDHHS guidelines were created: NRE (reported no
7 8 9 10 11	147	regular physical activity), below recommended (reported >500 MMW), recommended (reported
	148	500-1000 MMW) and above recommended (reported >1000 MMW).
12 13 14	149	Blood Collection, Processing and Assays. Participants were asked to avoid strenuous
15 16	150	activity the day of blood collection. Venous blood samples were collected in 10 mL serum
17 18	151	separator vacutainers following a 12-h overnight fast and processed at a General Clinical
19 20 21	152	Research Center using standardized procedures. Briefly, following collection, vacutainers were
22 23 24 25	153	allowed to stand 15-30-min (2-h maximum) prior to centrifugation at 4°C for 20-min at 2000-
	154	3000 rpm. Serum samples were frozen and shipped to the MIDUS Biocore Lab and treated
26 27 28	155	and/or analyzed for inflammation markers (IL-6, IL-6sr, CRP, fibrinogen, sE-Selectin and
29 30 31 32 33 4 35 36 37 38 39 40 41 42 34 45 46 47 48 9 50 51 2 53 54	156	sICAM-1).
	157	IL-6 and IL-6sr were assayed in the MIDUS Biocore Laboratory (University of Madison,
	158	Madison WI) using Quantikine® High-sensitivity ELISA kits (cat# HS600B and cat# DR600,
	159	R&D Systems, Minneapolis, MN). Plates were read at 490 and 450 nm, respectively for IL-6
	160	and IL-6sr using a Dynex MRXe plate reader (Magellan Biosciences, Chantilly, VA). Intra-
	161	assay and inter-assay precision (CV%) for IL-6 was approximately 4.1% and 13.0%. CV%
	162	values for IL-6sr were 5.9-5.7% and 2.0%, respectively.
	163	Assays for sICAM-1, sE-Selectin, fibrinogen and CRP were performed at the Laboratory
	164	for Clinical Biochemistry Research (University of Vermont, Burlington, VT). Measurement of
	165	sICAM-1 was completed using an ELISA assay (Parameter-Human sICAM-1 Immunoassay;
	166	R&D Systems). Inter-assay precision for sICAM-1 was 5.0%. Measurement of sE-selectin was
55 56 57	167	completed using a high-sensitivity ELISA assay (Parameter Human sE-Selectin Immunoassay,
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

R&D Systems). Intra-assay and inter-assay precision for sE-selectin was 4.7-5.0% and 5.7-8.8%,
respectively. Fibrinogen was measured using the BNII nephelometer (N Antiserum to Human
Fibrinogen; Dade Behring Inc., Deerfield, IL). Intra-assay and inter-assay precision for
fibrinogen was 2.7% and 2.6%, respectively. CRP was analyzed using a BNII nephelometer
with a particle enhanced immunonepolometric assay. Intra-assay and inter-assay precision for
CRP was 2.3-4.4% and 2.1-5.7%, respectively.

Statistical Analyses. All variables were assessed for normality and non-normal data were log transformed. To determine the relative impact of MMW and BMI on inflammatory markers, general linear models were performed. For each outcome, the categorical MMW and BMI factors were entered as independent factors with an interaction term. If the interaction term was not significant, the interaction term was dropped and the model was re-fit. All analyses presented in the results were adjusted for confounding variables that are known to affect inflammatory status: age, sex, smoking and relevant medications (cholesterol-lowering, corticosteroids, anti-diabetic, antidepressant, hormone replacement and hormonal contraceptive). Race was initially included as a covariate; however, approximately 200 data points were lost in the analyses due to incomplete racial data. As race was not found to be a predictor of our dependent variables, with the exception of sICAM-1, race was excluded as a covariate to increase samples size in all analyses excluding sICAM-1. In an exploratory analysis, we examined whether the relative effects of BMI and MMW on the inflammatory markers differed by sex in 3-way interaction models. As none of the interactions approached statistical significance, sex was included as a covariate in the models. All statistical analyses were performed with SPSS v. 17 (Chicago, IL) and significance was set at P < 0.05.

Page 9 of 28

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

RESULTS

1

BMJ Open

Subject Characteristics. Table 1 presents anthropometric characteristics and plasma

levels of inflammatory biomarkers in all subjects (N=1255). On average, subjects were 92.6%

non-Hispanic white, 56.8% female, middle-aged and overweight. Of all the respondents, 14.9%

were currently smoking, 27.8% were taking cholesterol lowering medication, 12.1% were taking

corticosteroids, 10.4% were taking anti-diabetic medication, 14.2% were taking antidepressant

medication, 7.3% were taking hormone replacement and 2.5% reported contraceptive use. The

1.0% for sICAM-1, 1.0% for IL-6, 1.6% for fibrinogen, 1.2% for sE-selectin, and 1.0% for IL-6sr.

for CRP concentration (F=3.022, P=0.006). In post hoc comparisons, CRP levels were higher in

overweight and obese subjects compared to normal weight subjects among those who reported

no regular exercise (P's<0.001). However, among subjects who reported any amount of regular

exercise (<500, 500-1000 or >1000 MMW), CRP levels were significantly greater only in obese

subjects compared to both normal weight and overweight subjects (P's <0.01). These results

overweight individuals. In obese individuals, CRP tended to be lower in those reporting >1000

MMW compared to those reporting no regular exercise (P=0.053), suggesting the high levels of

We also found main effects of BMI (F=130.873 P<0.001) and MMW (F=11.576,

P<0.001) for CRP. CRP was significantly greater with each increasing BMI category, in a dose-

dependent manner (P's<0.001). Compared to participants who reported no regular exercise,

suggest that regular exercise may mitigate the association between weight and CRP in

activity only may mitigate elevations in CRP levels in obese individuals

CRP (Figure 1, Panel A). We found a significant interaction between BMI and MMW

percentage of participants with missing data for each variable are as follows: 1.6% for CRP,

2
3
3 4 5 6 7
5
6
7
8
g
10
11
12
13
14
15
16
17
18
9 10 11 12 13 14 15 16 17 18 19
20
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 50
50
51
52
53
54
55
56
57
58
59
60

213	CRP was significantly lower in those who reported 500-1000 and >1000 MMW (P's <0.01),
214	with a trend for lower CRP in those who reported <500 MMW of regular exercise (P=0.078).
215	
216	sICAM-1 (Figure 1, Panel B). We found a significant interaction between BMI and
217	MMW for sICAM-1 concentration (F=2.701, P=0.013). Levels of sICAM-1 were significantly
218	lower in obese subjects who reported >1000 MMW compared to obese subjects who reported no
219	regular exercise (P=0.014) and <500 MMW (P=0.026) and tended to be lower than levels in
220	obese subjects who reported 500-1000 MMW (P=0.079), again suggesting that high levels of
221	physical activity could mitigate the increased sICAM-1 associated with obesity. No differences
222	in sICAM-1 by MMW were observed among normal weight or overweight individuals.
223	We also observed a main effect of BMI (F=6.060, P=0.002), such that sICAM-1 levels in
224	obese participants were significantly higher than levels found in both normal weight and
225	overweight participants (P's<0.01). No significant main effect of MMW was found for sICAM-1
226	(F=0.931, P=0.425).
227	IL-6 (Figure 1, Panel C). Both BMI and MMW had independent effects on circulating
228	concentrations of IL-6 (BMI: F=60.150, P<0.001, MMW: F=10.680, P<0.001), with no
229	significant interaction (F=1.21, P=0.297). We found a dose-dependent effect of BMI, such that
230	higher BMI levels were associated with significantly greater IL-6 (P's<0.001). Independent of
231	BMI, IL-6 was significantly lower in subjects who reported regular exercise (<500 MMW, 500-
232	1000 MMW and >1000 MMW) compared to those who reported no regular exercise (P's <0.01)
233	with no difference between levels of MMW.
234	Fibrinogen (Figure 1, Panel D). BMI significantly contributed to circulating levels of
235	fibrinogen (F=42.385, P<0.001), such that dose-dependent increases were observed for all BMI

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 28

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

60

participants reporting >1000 MMW.

DISCUSSION

BMJ Open

levels (P's<0.01). While we observed a trend for lower fibringen with regular physical activity.

similar to that of IL-6, the effect did not reach statistical significance (F=2.187, P=0.088). We

observed no significant interaction between BMI and MMW for fibrinogen (F=1.680, P=0.122).

sE-selectin (F=28.253, P<0.001) with no significant contribution by MMW (F=0.207, P=0.892).

Dose-dependent increases in sE-selectin were also observed across BMI levels (P's<0.01). We

observed no significant interaction between BMI and MMW for sE-selectin (F=0.570, P=0.755).

MMW (F=1.434, P=0.231) or their interaction (F=0.834, P=0.544) were detected for IL-6sr.

physical activity on inflammatory markers related to CVD risk. In the cases of CRP and

sICAM-1, the effects of BMI and MMW were interactive. Regular physical activity appeared to

diminish the effects of higher BMI compared to those who reported no regular physical activity.

We found that BMI was strongly and independently related to greater concentrations of both

established and emerging inflammatory markers that may increase CVD risk. Independent of

BMI, regular physical activity was associated with lower IL-6, with a similar trend for fibrinogen.

These results suggest that, although obesity has a clear impact on inflammation, physical activity

appears to mitigate at least some of this effect. Further, obese individuals may need to perform

levels of physical activity greater than current recommendations for health in order to mitigate

obesity-related inflammation, as trends for lower CRP or sICAM-1 were only apparent in obese

IL-6sr (Figure 1, Panel F). No significant main effects for BMI (F=1.783, P=0.169),

The current study aimed to delineate the interactive and independent impact of BMI and

sE-Selectin (Figure 1, Panel E). BMI significantly contributed to circulating levels of

1	
2 3 4 5 6	
3	2
4	_
5	2
6	2
1	_
8	2
7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24	
10	2
10	
12	2
14	-
15	2
16	2
17	
18	2
19	
20	2
21	_
22	2
23	2
24	_
25 26	2
26	
27	2
20 27 28 29	
29	2
30	2
31 32 33 34 35 36	
32	2
33	
34	2
35	
	2
37 38	2
38	
39	2
40	
41	2
42	
43	2
44	2
45	~
46	2
47	
48	2
49 50	
	2
51 52	
52 53	n
53 54	2
54 55	
55 56	2
56 57	
57 58	
58 59	
~~	

1			
2 3 4	2	5	9
5 6	2	6	0
7 8 9	2	6	1
10 11	2	6	2
12 13 14	2	6	3
15 16	2	6	4
17 18 19	2	6	5
20 21	2	6	6
22 23	2	6	7
24 25 26	2	6	8
26 27 28	2	6	9
29 30	2	7	0
31 32 33	2	7	1
34 35	2	7	2
36 37 38	2	7	3
39 40	2	7	4
41 42 42	2	7	5
43 44 45	2	7	6
46 47	2	7	7
48 49 50	2	7	8
51 52	2	7	9
53 54 55	2	8	0
55 56 57	2	8	1
58 59 60			

261 Low-grade, systemic inflammation is characterized by elevated levels of inflammatory 262 markers, such as cytokines, acute phase proteins or soluble adhesion molecules. IL-6 produced 263 in hypertrophied adipose tissue(15, 16) initiates the acute phase response, marked by the release 264 of hepatic CRP and fibrinogen(17, 18). Inflammatory cytokines (IL-6) and acute phase proteins 265 (CRP, fibrinogen) stimulate the production of chemoattractant proteins and adhesion molecules 266 (sICAM-1 and sE-selectin) in the vasculature, promoting cell accumulation and atherosclerotic 267 plaque formation(19, 20). In epidemiologic studies, higher levels of IL-6 and CRP are 268 associated with increasing numbers clinical risk factors for cardiovascular disease(21-23). 269 Cardiovascular disease risk is also increased with higher levels of cell adhesion molecules(24, 270 25) and acute phase reactants(22, 26, 27). Interactions between BMI and MMW suggest that regular physical activity may be able 271 272 to mitigate the effect of an overweight BMI on CRP. Overweight individuals had CRP levels 273 that were similar to levels observed in obese individuals if they reported no regular exercise 274 (4.05 and 4.83 μ g/mL, respectively). CRP levels greater than 3 μ g/mL are typically associated 275 with high CVD risk(28). In overweight subjects who reported regular physical activity of at least 276 3, 20-minute sessions per week (be it below [<500], within [500-1000] or above [>1000] 277 USDHHS MMW recommendations), CRP levels were lower and not significantly different from 278 CRP levels found in normal weight participants. This suggests that increasing physical activity 279 level to a minimum of 3 days per week, at least 20 minutes per day, may improve CRP profiles 280 among overweight individuals.

1 2	
3 4	282
5 6 7	283
, 8 9	284
10 11	285
12 13 14	286
15 16	287
17 18 19	288
20 21	289
22 23	290
24 25 26	291
27 28	292
29 30	293
31 32 33	294
34 35	295
36 37 38	296
39 40	297
41 42	298
43 44 45	299
46 47	300
48 49 50	301
50 51 52	302
53 54	303
55 56 57	304
58 59	
60	

283 Obese individuals may require a higher level of regular physical activity in order to lower 284 inflammatory markers. While obese subjects also had greater levels of CRP and sICAM-1 285 compared to lean and overweight subjects, those who reported >1000 MMW (above the 286 USDHHS recommendation) had lower levels of sICAM-1 and tended to have lower CRP than 287 obese subjects reporting no regular physical activity. Taken together, we may speculate that 288 while physical activity levels currently recommended for the general population may reduce 289 particular inflammatory makers in overweight populations, obese populations may require 290 greater levels of physical activity above recommended values to reduce inflammatory markers 291 like CRP and sICAM-1.

292 As expected, strong main effects of BMI were observed for CRP, IL-6, fibrinogen, 293 sICAM-1 and sE-selectin, in agreement with previous work(29-32). Independent of BMI effects, 294 our results suggest that physical activity has differentiating independent effects on inflammatory 295 markers. Individuals reporting no regular physical activity had higher levels of IL-6 with a 296 tendency for higher fibringen, compared to those reporting any level of regular physical activity 297 (<500, 500-1000 or >1000 MMW). Similar results have been observed in the MONItoring 298 trends and determinants in CArdiovascular disease (MONICA) study(33), the National Health 299 and Nutrition Examination Survey (NHANES III)(34, 35) and the Multi-Ethnic Study of 300 Atherosclerosis (MESA)(36), such that both increased frequency and intensity of physical 301 activity have been related to lower IL-6 and fibrinogen. While similar, our findings add to prior 302 results by standardizing levels of physical activity by using USDHHS recommendations, rather 303 than general tertiles, quartiles, etc.. However, while the USDHHS reports that meeting these 304 recommendations promotes substantial health benefits(11), the impact on specific inflammatory

markers was not addressed. Our results suggest that, regular physical activity at any level (<500, 500-1000, >1000) appears to be associated with lower levels of IL-6 and possibly fibrinogen, independent of BMI.

Interestingly, in the MIDUS sample, results suggest that regular exercise may have a more profound impact on lowering classical markers of inflammation and less impact on the inflammatory status of the endothelium. Regular physical activity was independently associated with lower levels of IL-6 and CRP, both classical inflammatory markers related to adipose and systemic inflammation(37). However, regular exercise appeared to have no independent impact on markers of endothelial activation, particularly sE-selectin and sICAM-1. Inverse relationships between physical activity and sICAM-1 or sE-selectin have been reported previously, in drug-treated hypertensive men(38). However, cross-sectional reporting of inverse relationships between physical activity and other markers of atherosclerotic activity, particularly carotid arterial wall thickness, has yielded variable results (39-42). Upon reviewing this literature, Thijssen and colleagues suggest that inverse correlations between arterial wall thickness and physical activity were more likely to be found in studies that utilized specifically-designed instruments to assess physical activity, rather that non-specific questionnaires that obtain information about general exercise behavior(43). Therefore, it is possible that a more objective or validated measure of physical activity utilized may have increased the likelihood of observing significant relationships between physical activity and circulating makers of atherosclerotic activity that were independent of BMI.

Several limitations must be addressed. First, the cross-sectional design does not allow us to infer causal relationships. Prospective and interventional designs are necessary to confirm our findings. Second, the use of self-report physical activity data may reduce accuracy compared to

Page 15 of 28

BMJ Open

direct measures of physical activity. However, in addition to being in line with previous studies using self-report physical activity, our findings are also in line with previous studies(44, 45) that demonstrated that higher cardiorespiratory fitness was associated with lower levels of inflammation independent of visceral adiposity or BMI. Furthermore, regular physical activity may have positive health effects independent of fitness, as individuals of similar fitness levels demonstrate reduced risk for coronary heart disease, CVD and stroke with higher levels of physical activity compared to those with lower activity levels and both low physical activity and fitness levels directly increase risk of metabolic disease and type 2 diabetes mellitus(46, 47). Finally, as the sample was predominantly comprised of non-Hispanic white individuals, findings may not extend to all ethnicities. Finally, BMI and physical activity variables are correlated, potentially raising the concern of small sample sizes in specific categories crossing BMI and MMW. However, the minimum category contained 54 individuals (normal weight individuals reporting no exercise).

In summary, our results demonstrate both interactive and independent influences of BMI and levels of physical activity on both established and emerging markers of inflammation. Inflammation is both a consequence of obesity and a mechanism promoting CVD. Regular physical activity appears to mitigate the effects of higher BMI on some inflammatory markers, particularly CRP, which is strongly implicated in CVD. More importantly, while any level of regular physical activity may help reduce inflammation in overweight individuals, similar effects in obese individuals may require levels of physical activity that are greater than currently recommended by the USDHHS for general health. It is important that future research aims to elucidate effective exercise levels that can produce anti-inflammatory effects in overweight and obese individuals.

1 2		
3 4	351	
5 6 7	352	ACKNOWLEDGEMENTS
7 8 9	353	We thank the staff of the Clinical Research Centers at the University of Wisconsin-Madison,
10 11	354	UCLA, and Georgetown University for their effort in conducting the original data collection.
12 13	355	
14 15 16	356	FUNDING
17 18	357	KS was supported through a T32 Training Fellowship (Training in Behavioral and Preventive
19 20 21	358	Medicine; T32 HL076134). The original research was supported by a grant from the National
21 22 23	359	Institute on Aging (P01-AG020166) to conduct a longitudinal follow-up of the MIDUS (Midlife
24 25	360	in the U.S.) Investigation.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	361	
	362	The original study was supported by the John D. and Catherine T. MacArther Foundation
	363	Research Network on Successful Midlife Development and by the following grants: M01-
	364	RR023942 (Georgetown), M01-RR00865 (UCLA) from the General Clinical Research Centers
	365	Program and 1UL1RR025011 (UW) from the Clinical and Translational Science Award (CTSA)
	366	program of the National Center for Research Resources, National Institutes of Health.
	367	
43 44	368	CONFLICTS OF INTEREST
45 46 47	369	The authors declare no conflict of interest.
47 48 49	370	
50 51	371	
52 53 54	372	
55 56	373	
57 58		
59 60		16

1		
2 3 4	374	CONTRIBUTORSHIP
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	375	KS, JMM and RRW each made substantial contributions to the conception and design of the
	376	study, data acquisition, analysis and interpretation, as well as to drafting and revision for
	377	substantial intellectual content. All authors made final approval of the version to be published.
	378	
	379	DATA SHARING STATEMENT
	380	Data and documentation for MIDUS studies are available at the Inter-university Consortium for
20 21	381	Political and Social Research (ICPSR). http://www.icpsr.umich.edu/icpsrweb/landing.jsp
22 23 24	382	
24 25 26	383	
27 28 29 31 32 33 35 37 39 41 42 44 45 47 49 51 23 45 56 78 90	384	REFERENCES
	385	1. Blair SN, Brodney S. Effects of physical inactivity and obesity on morbidity and
	386	mortality: current evidence and research issues. Med Sci Sports Exerc. 1999;31(11 Suppl):S646-
	387	62.
	388	2. Hotamisligil GS. Inflammation and metabolic disorders. <i>Nature</i> . 2006;444(7121):860-7.
	389	3. Koenig W, Khuseyinova N, Baumert J, et al. Increased concentrations of C-reactive
	390	protein and IL-6 but not IL-18 are independently associated with incident coronary events in
	391	middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study,
	392	1984-2002. Arterioscler Thromb Vasc Biol. 2006;26(12):2745-51.
	393	4. Papageorgiou N, Tousoulis D, Siasos G, et al. Is fibrinogen a marker of inflammation in
	394	coronary artery disease? <i>Hellenic J Cardiol</i> . 2010; 51 (1):1-9.

2	
2	
3	
4	
5	
Â	
7	
1	
8	
9	
10	
10	
11	
12	
13	
1/	
45	
15	
16	
17	
18	
40	
19	
20	
21	
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 12 5 10 10 10 10 10 10 10 10 10 10 10 10 10	
~~	
23	
24	
22 23 24 25 26 27 28	
26	
20	
21	
28	
20 29 30	
30	
24	
31	
32 33 34 35 36 37	
33	
34	
25	
30	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
-	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

395 5. Schmidt C, Hulthe J, Fagerberg B. Baseline ICAM-1 and VCAM-1 are increased in

initially healthy middle-aged men who develop cardiovascular disease during 6.6 years of

397 follow-up. *Angiology*. 2009;**60**(1):108-14.

398 6. Demerath E, Towne B, Blangero J, et al. The relationship of soluble ICAM-1, VCAM-1,

399 P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women. *Ann*

400 *Hum Biol*. 2001;**28**(6):664-78.

401 7. Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. *Nat Rev Cardiol*.
402 2009;6(6):399-409.

403 8. Calabro P, Yeh ET. Obesity, inflammation, and vascular disease: the role of the adipose 404 tissue as an endocrine organ. *Subcell Biochem*. 2007;**42**:63-91.

405 9. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein
406 and inflammatory markers: a systematic review. *J Am Coll Cardiol.* 2005;45(10):1563-9.

407 10. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. *J Appl Physiol*. 408 2005;**98**(4):1154-62.

409 11. USDHHS, editor. 2008 Physical Activity Guidelines for Americans. Washington DC 409 410 2008.

411 12. C Ryff DA, JS Ayanian, DS carr, PD Cleary, C Coe, R Davidson, RF Krueger, ME

412 Lachman, NF Marks, DK Mroczek, T Seeman, MM Seltzer, BH Singer, RP Sloan, PA Tun, M

413 Weinstein, D Williams. National Survey of Midlife Development in the United State (MIDUS II),

414 2004-2006. Inter-university Consortium for Political and Social Research (ICPSR) [distrubutor].

415 2011.

416 13. Kraemer H. How Many Subjects? Statistical Power Analysis in Research: SAGE

417 Publications, Inc; 1987.

Page 19 of 28

1

BMJ Open

2			
3 4 5	418	14.	Cohen J. Statistical Power Analysis for the Behavioral Sciences. Second ed: Lawrence
5 6 7	419	Erlbau	im Associates; 1998.
7 8 9	420	15.	Day CP. From fat to inflammation. <i>Gastroenterology</i> . 2006; 130 (1):207-10.
10 11	421	16.	Fain JN, Madan AK, Hiler ML, et al. Comparison of the release of adipokines by adipose
12 13 14	422	tissue,	adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose
14 15 16	423	tissues	s of obese humans. <i>Endocrinology</i> . 2004; 145 (5):2273-82.
17 18	424	17.	Castell JV, Gomez-Lechon MJ, David M, et al. Interleukin-6 is the major regulator of
19 20 21	425	acute j	phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237-9.
22 23	426	18.	Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J.
24 25 26	427	1990;2	265(3):621-36.
26 27 28	428	19.	Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation
29 30	429	and in	nmunity. <i>Nat Rev Immunol</i> . 2006; 6 (10):772-83.
31 32 33	430	20.	Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic
34 35	431	disord	ers linked to obesity. J Am Soc Nephrol. 2004;15(11):2792-800.
36 37	432	21.	Bermudez EA, Rifai N, Buring J, et al. Interrelationships among circulating interleukin-6,
38 39 40	433	C-read	ctive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb
41 42	434	Vasc I	<i>Biol</i> . 2002; 22 (10):1668-73.
43 44	435	22.	Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of
45 46 47	436	inflam	mation in the prediction of cardiovascular disease in women. N Engl J Med.
48 49	437	2000;3	342 (12):836-43.
50 51	438	23.	Ridker PM, Rifai N, Stampfer MJ, et al. Plasma concentration of interleukin-6 and the
52 53 54	439	risk of	future myocardial infarction among apparently healthy men. Circulation.
55 56 57 58 59 60	440	2000;1	101 (15):1767-72.

1	
2	
3	
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
5	
6	
7	
8	
a	
3	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
25	
30	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
56 57	
58	
58 59	
59 60	
00	

441	24. Hwang SJ, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM-1,
442	ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the
443	Atherosclerosis Risk In Communities (ARIC) study. Circulation. 1997;96(12):4219-25.
444	25. Ridker PM, Hennekens CH, Roitman-Johnson B, et al. Plasma concentration of soluble
445	intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy
446	men. Lancet. 1998; 351 (9096):88-92.
447	26. Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin, and the risk of
448	cardiovascular disease in apparently healthy men. N Engl J Med. 1997; 336 (14):973-9.
449	27. Danesh J, Whincup P, Walker M, et al. Low grade inflammation and coronary heart
450	disease: prospective study and updated meta-analyses. BMJ. 2000;321(7255):199-204.
451	28. Bassuk SS, Rifai N, Ridker PM. High-sensitivity C-reactive protein: clinical importance.
452	<i>Curr Probl Cardiol</i> . 2004; 29 (8):439-93.
453	29. Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum
454	concentrations of CRP, TNF-alpha and IL-6. <i>Diabetes Res Clin Pract</i> . 2005;69(1):29-35.
455	30. Bastard JP, Jardel C, Bruckert E, et al. Elevated levels of interleukin 6 are reduced in
456	serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol
457	Metab. 2000; 85 (9):3338-42.
458	31. Ditschuneit HH, Flechtner-Mors M, Adler G. Fibrinogen in obesity before and after
459	weight reduction. <i>Obes Res.</i> 1995; 3 (1):43-8.
460	32. Straczkowski M, Lewczuk P, Dzienis-Straczkowska S, et al. Elevated soluble
461	intercellular adhesion molecule-1 levels in obesity: relationship to insulin resistance and tumor
462	necrosis factor-alpha system activity. Metabolism. 2002;51(1):75-8.

Page 21 of 28

BMJ Open

1 2			
3 4	463	33.	Autenrieth C, Schneider A, Doring A, et al. Association between different domains of
5 6	464	physic	al activity and markers of inflammation. Med Sci Sports Exerc. 2009;41(9):1706-13.
7 8 9	465	34.	Abramson JL, Vaccarino V. Relationship between physical activity and inflammation
10 11	466	among	g apparently healthy middle-aged and older US adults. Arch Intern Med.
12 13 14	467	2002;1	62 (11):1286-92.
14 15 16	468	35.	King DE, Carek P, Mainous AG, 3rd, et al. Inflammatory markers and exercise:
17 18	469	differe	ences related to exercise type. Med Sci Sports Exerc. 2003;35(4):575-81.
19 20 21	470	36.	Majka DS, Chang RW, Vu TH, et al. Physical activity and high-sensitivity C-reactive
22 23	471	proteir	n: the multi-ethnic study of atherosclerosis. Am J Prev Med. 2009; 36 (1):56-62.
24 25	472	37.	Mathieu P, Lemieux I, Despres JP. Obesity, inflammation, and cardiovascular risk. Clin
26 27 28	473	Pharm	nacol Ther. 2010; 87 (4):407-16.
29 30	474	38.	Hjelstuen A, Anderssen SA, Holme I, et al. Markers of inflammation are inversely related
31 32 33	475	to phy	sical activity and fitness in sedentary men with treated hypertension. Am J Hypertens.
33 34 35	476	2006;1	19 (7):669-75; discussion 76-7.
36 37	477	39.	Yamada S, Inaba M, Goto H, et al. Associations between physical activity, peripheral
38 39 40	478	atheros	sclerosis and bone status in healthy Japanese women. Atherosclerosis. 2006;188(1):196-
41 42	479	202.	
43 44 45	480	40.	Juonala M, Viikari JS, Kahonen M, et al. Life-time risk factors and progression of carotid
45 46 47	481	atheros	sclerosis in young adults: the Cardiovascular Risk in Young Finns study. Eur Heart J.
48 49	482	2010;3	31 (14):1745-51.
50 51 52	483	41.	Stensland-Bugge E, Bonaa KH, Joakimsen O. Age and sex differences in the relationship
52 53 54	484	betwee	en inherited and lifestyle risk factors and subclinical carotid atherosclerosis: the Tromso
55 56 57 58 59 60	485	study.	<i>Atherosclerosis</i> . 2001; 154 (2):437-48.

1 2	
3 4	486
5 6 7	487
7 8 9	488
10 11	489
12 13 14	490
15 16	492
17 18	492
19 20 21	493
22 23	494
24 25 26	495
20 27 28	496
29 30	497
31 32 33	498
34 35	499
36 37	500
38 39 40	502
41 42	502
43 44 45	503
45 46 47	504
48 49	505
50 51 52	506
53 54	502
55 56	508
57 58 59	
59 60	

86	42.	Nordstrom CK, Dwyer KM, Merz CN, et al. Leisure time physical activity and early
87	athero	sclerosis: the Los Angeles Atherosclerosis Study. Am J Med. 2003;115(1):19-25.
88	43.	Thijssen DH, Cable NT, Green DJ. Impact of exercise training on arterial wall thickness
89	in hun	nans. <i>Clin Sci (Lond)</i> . 2012; 122 (7):311-22.
ł90	44.	Church TS, Barlow CE, Earnest CP, et al. Associations between cardiorespiratory fitness
91	and C-	-reactive protein in men. Arterioscler Thromb Vasc Biol. 2002;22(11):1869-76.
ł92	45.	Arsenault BJ, Cartier A, Cote M, et al. Body composition, cardiorespiratory fitness, and
ł93	low-gr	rade inflammation in middle-aged men and women. <i>Am J Cardiol</i> . 2009; 104 (2):240-6.
94	46.	Blair SN, Cheng Y, Holder JS. Is physical activity or physical fitness more important in
ł95	definir	ng health benefits? Med Sci Sports Exerc. 2001;33(6 Suppl):S379-99; discussion S419-20.
ł96	47.	Telford RD. Low physical activity and obesity: causes of chronic disease or simply
ł97	predic	tors? Med Sci Sports Exerc. 2007; 39 (8):1233-40.
98		tors? <i>Med Sci Sports Exerc</i> . 2007; 39 (8):1233-40.
99		
500		
501		
502		
503		
504		
505		
506		
507		
508		

3 4	509	
3 4 5 6 7	510	
8 9	511	
10 11	512	
12 13 14	513	
14 15 16	514	
17 18	515	
19 20 21	516	
22 23	517	
24 25 26	518	
20 27 28	519	FIGURE AND TABLE LEGENDS
29 30	520	
31 32 33	521	
34 35	522	Figure 1: Inflammatory Markers. Data from 1255 men and women in MIDUS. Joint
36 37	523	association of BMI category (normal, overweight and obese) and MMW category (no regular
38 39 40	524	exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C),
41 42	525	fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex,
43 44 45	526	smoking and relevant medication use. Error bars represent SEM. BMI=BMI main effect P value,
45 46 47	527	MMW=MMW main effect P value, INT=interaction effect P value.
48 49	528	
50 51 52	529	
52 53 54		
55 56		
57 58		
59 60		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	530	Table 1: Subject Characteristics. BMI = body mass index; CRP = C-reactive protein; IL =
5 6	531	interleukin; IL-6sr = IL-6 soluble receptor; MMW = MET-Minutes per Week; sE-Selectin =
7 8 9	532	soluble E-Selectin; sICAM-1= soluble intracellular adhesion molecule-1.
10 11	533	
12		
13 14		
15		
16 17		
18		
19 20		
20 21		
22		
23 24		
25		
26 27		
28		
29 30		
31		
32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51		
52 53		
54		
55 56		
57		
58 59		
60		

Page 25 of 28

Demographic	Overall N = 1255
Variables	Mean ± SD (N)
Age (years)	54.5 ± 11.7 (1255)
Gender (%)	
Male	43.20 (542)
Female	56.80 (713)
Race (%)	
Non-Hispanic White	92.60 (974)
Hispanic	0.05 (5)
African American	2.60 (27)
Asian/Pacific Islander	0.30 (3)
Native American	1.30 (14)
Other	2.30 (29)
Medication Use (%)	
Cholesterol-Lowering	27.80 (349)
Corticosteroids	12.10 (152)
Anti-Diabetic	10.40 (130)
Antidepressant	14.2 (178)
Hormone Replacement Therapy	7.3 (92)
Oral Contraceptive	2.5 (31)
Currently Smoking	14.90 (187)
BMI (kg/m^2)	29.8 ± 6.6 (1254)
IL-6 (pg/mL)	$3.0 \pm 3.1 (1243)$
IL-6sr (pg/mL)	35184.7 ± 10359.1 (1243)
CRP (µg/mL)	$3.0 \pm 4.8 (1235)$
Fibrinogen (mg/dL)	348.9 ± 87.9 (1235)
sE-Selectin (ng/mL)	43.4 ± 22.7 (1242)
sICAM-1 (ng/mL)	288.6 ± 115.6 (1242)
For peer review only - http://bmj	open.bmj.com/site/about/guidelines.xhtml

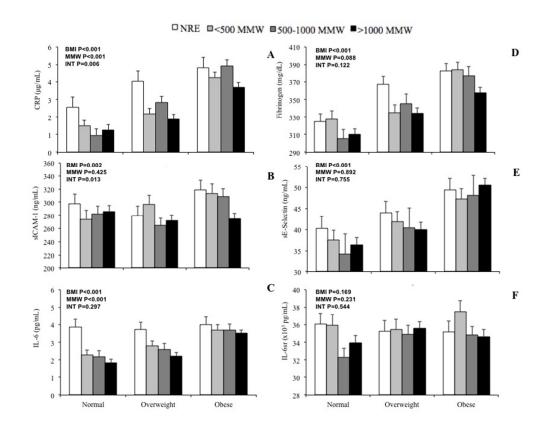


Figure 1: Inflammatory Markers. Data from 1255 men and women in MIDUS. Joint association of BMI category (normal, overweight and obese) and MMW category (no regular exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C), fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex, smoking and relevant medication use. Error bars represent SEM. BMI=BMI main effect P value, MMW=MMW main effect P value, INT=interaction effect P value. 292x229mm (72 x 72 DPI)

 BMJ Open

		Checklist for cohort, case-control, and cross-sectional studies (combined)	
Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any pre-specified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i>—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i>—Give the eligibility criteria, and the sources and methods of selection of participants 	4
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4-7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	4-7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	N/A

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	8
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	8
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/A
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	8-10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	8-10
		(b) Report category boundaries when continuous variables were categorized	8-10
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	14
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Contributions of Body Mass Index and Exercise Habits on Inflammatory Markers: A Cohort Study of Middle Aged Adults Living in the United States

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-002623.R1
Article Type:	Research
Date Submitted by the Author:	18-Mar-2013
Complete List of Authors:	Strohacker, Kelley McCaffery, Jeanne wing, rena
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Immunology (including allergy)
Keywords:	Immunology < BASIC SCIENCES, EPIDEMIOLOGY, Public health < INFECTIOUS DISEASES

1 2		
3	1	Contributions of Body Mass Index and Exercise Habits on Inflammatory Markers: A
4 5	2	Cohort Study of Middle Aged Adults Living in the United States
6	3	
7	4	
8	5	
9 10	6	Kelley Strohacker, Ph.D. ^a , Rena R. Wing, Ph.D. ^a , and Jeanne M. McCaffery, Ph.D. ^a
11	7	
12	8	
13	9	
14 15	10	^a The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence
15 16	11	RI
17	12	
18	13	
19	14	
20 21	1 5	
22	15	Corresponding Author
23	16	Jeanne M. McCaffery, Ph.D.
24	10	Jeanne W. WcCarrery, Fil.D.
25 26	17	Associate Professor of Psychiatry and Human Behavior (Research)
27	17	Associate Professor of Psychiatry and Human Denavior (Research)
28	18	The Miriam Hospital Weight Control and Diabetes Research Center
29		
30 31	19	196 Richmond Street
32		
33	20	Providence, RI 02904
34		
35 36	21	Phone: (401) 793-8010
37		
38	22	Fax: (401) 793-8944
39		
40 41	23	Email: JMccaffery@lifespan.org
42	24	
43	24	
44	25	
45 40	25	
46 47	26	Dunning Title:
48	26	Running Title:
49	27	BMI, Physical Activity and Inflammation
50	21	Divit, Thysical Activity and Inflation
51 52	28	
52 53	20	
54	29	Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein
55	<u> </u>	ity works, with 0.6, inducendular Autosion Workeduc-1, 1 formogen, C-Reactive 1 fotom
56	30	Word Count: 3331
57 58	50	
56 59		
60		

ABSTRACT

Objectives. Determine whether body mass index (BMI) and physical activity (PA) above, at or below MET-minute per week (MMW) levels recommended in the 2008 Physical Activity Guidelines interact or have additive effects on interleukin (IL)-6, C-reactive protein (CRP), fibrinogen, IL-6 soluble receptor (IL-6sr), soluble E-selectin and soluble intracellular adhesion molecule (sICAM)-1. **Design.** Archived cohort data (N=1254, age 54.5±11.7y, BMI 29.8 ± 6.6 kg/m²) from the National Survey of Midlife Development in the United States (MIDUS) Biomarkers Study were analyzed for concentrations of inflammatory markers using general linear models. MMW was defined as no regular exercise, <500 MMW, 500-1000 MMW, >1000 MMW and BMI was defined as <25, 25-29.9, >30 kg/m². Analyses were adjusted for age, sex, smoking and relevant medication use. Setting. Respondents reported to three centers to complete questionnaires and provide blood samples. **Participants.** Participants were men and women currently enrolled in the MIDUS Biomarker Project (N=1254, 93% non-hispanic white, average age 54.5y). Primary Outcome Measures. Concentration of serum IL-6, CRP, fibrinogen, IL-6sr, sE-selectin and sICAM. Results. Significant interactions were found between BMI and MMW for CRP and sICAM-1 (P's<0.05). CRP in overweight individuals was similar to obese when no PA was reported, but was similar to normal weight when any level of regular PA was reported. sICAM-1 was differentially lower in obese individuals who reported >1000 MMW compared to obese individuals reporting less exercise. Conclusion. The association of exercise with CRP and sICAM-1 differed by BMI, suggesting that regular exercise may buffer weight-associated elevations in CRP in overweight individuals while higher levels of exercise may be necessary to reduce sICAM-1 or CRP in obese individuals. Trial Registry. N/A.

BMJ Open

54 INTRODUCTION

Obesity paired with low physical activity is well known to increase morbidity and mortality related to cardiovascular disease (CVD)(1). It is less clear, however, whether the benefits of higher levels of physical activity differ among normal weight, overweight, and obese individuals. Chronic, low-grade inflammation, marked by elevations in cytokines, acute phase reactants and soluble adhesion molecules, is a developing CVD risk factor(2, 3). Circulating Interleukin-6 (IL-6) and, C-reactive protein (CRP) are both considered established inflammatory markers related to CVD(3). Fibrinogen, soluble intracellular adhesion molecule (sICAM-1) and soluble e-selectin (sE-selectin) also have key roles in the progression of CVD and have been associated with elevated risk(4-6). Obesity is strongly associated with greater concentrations of inflammatory markers(7, 8). Further, body fat distribution is also an important factor relating to inflammatory status. Accumulation of fat in visceral depots is more strongly associated with low-grade inflammation compared to accumulation of fat in subcutaneous or hip-region depots(9, 10).

The effects of physical activity on markers of inflammation are more complex and may vary depending on body weight. A number of epidemiological studies have shown an inverse relationship between physical activity and CRP and IL-6, independent of obesity(11-16). Laboratory studies conducted in aerobically trained, typically normal weight, individuals have demonstrated that a single bout of exercise stimulates IL-6 release from skeletal muscle, which promotes anti-inflammatory effects (17-19), as opposed to adipose tissue-derived IL-6 that is associated with pro-inflammatory effects (20). Randomized controlled trials have also been conducted, often in populations that also tend to be overweight or obese, to examine the effects

of aerobic exercise interventions on inflammation and the results are mixed (21). Thus, the contribution of physical activity to inflammation in the context of obesity remains unclear. The purpose of our study was to disentangle the relative contributions of BMI and physical activity recorded in MET-minutes per week (MMW) to circulating levels of IL-6, IL-6sr, CRP, sICAM-1 and sE-selectin in middle-aged adults. MMW categories for this study were determined using values put forth by the Physical Activity Guidelines for Americans, which states that total weekly physical activity in the range of 500-1000 MET-minutes (approximately equivalent to 150-300 minutes of moderate or 75-150 minutes of vigorous activity per week) produces substantial health benefits for adults(22). We hypothesized that BMI and MMW would interact, such that greater MMW reported would lessen the impact of obesity on markers of inflammation.

B MATERIALS AND METHODS

Design and Sample. This study was a cross-sectional analysis of archived data (BMI, self-reported physical activity and inflammatory biomarker concentrations) from 1254 respondents who provided consent (as approved by The University of Wisconsin Madison Health Sciences Institutional Review Board) and were subsequently enrolled in the National Survey of Midlife Development in the United States (MIDUS) Biomarkers Study (23). The Biomarker Project was one of 5 projects within MIDUS II, with the purpose of adding comprehensive biological assessments on a subsample of the MIDUS participants to further understand age-related differences in physical and mental health. Participants were eligible for The Biomarker Project if they were previously enrolled in MIDUS I, which recruited non-institutionalized, English-speaking adults residing in the contiguous United States aged 25-74. The random digit

Page 5 of 55

BMJ Open

dialing sample for the parent study was selected from working telephone banks and a list of all individuals between the ages of 25 and 74 years within each household was generated in order to select a random respondent. Those who agreed to participate in the Biomarker Study stayed overnight at one of three General Clinical Research Centers: University of California Los Angeles, University of Wisconsin-Madison and Georgetown University. Upon arrival, each respondent provided a detailed medical history (including physical activity levels) and provided all prescription, over-the-counter, and alternative medications to be inventoried by project staff. Following an overnight stay, morning fasting blood samples were obtained. Cohorts were assessed between July 2004 and May 2009 as a follow up to MIDUS I respondents that were previously surveyed by the MacArthur Midlife Research Network between 1995 and 1996. Based on the sample of 1254 participants, 80% power was achieved to detect small effects of 0.08 or greater with alpha level at 0.05 for a two-tailed test(24, 25). **Anthropometrics**. Height was measured in centimeters and recorded to the nearest millimeter. A single measure of WC was taken directly on the skin or over a single layer of light, close-fitting clothing at the narrowest point between ribs and the iliac crest in centimeters to the nearest millimeter. Weight was measured in kilograms and BMI was calculated by dividing body mass in kilograms by height in meters squared. BMI categories were organized into 3 groups: normal weight (BMI $\leq 24.9 \text{ kg/m}^2$), overweight (BMI $\geq 25-29.9$) and obese (BMI ≥ 30). Categorizing Physical Activity by MET-Minutes per Week (MMW). The MMW variable was calculated using data provided in the medical history form. The form first described 3 types of regular physical activity(23): Vigorous: Which causes your heart to beat so rapidly you can feel it in your chest and you perform it long enough to work up a good sweat and breathe heavily (e.g.,

1

59 60

1 2		
3 4	122	competitive sports, running, vigorous swimming, high intensity aerobics, digging
5 6 7	123	in the garden, or lifting heavy objects).
7 8 9	124	Moderate: Which causes your heart rate to increase slightly and you typically
10 11	125	work up a sweat (e.g., leisurely sports like light tennis, slow or light swimming,
12 13	126	low intensity aerobics or golfing without a power cart, brisk walking, mowing the
14 15 16	127	lawn with a walking lawnmower).
17 18	128	Light: Which requires little physical effort (e.g., light housekeeping like dusting
19 20 21	129	or laundry, bowling, archery, easy walking, golfing with a power cart or fishing).
22 23	130	Keeping these definitions in mind, participants were asked if they engaged in regular physical
24 25	131	activity of any type for 20 minutes or more at least 3 times per week (yes or no). If participants
26 27 28	132	answered "yes", they entered up to 7 types of seasonal and/or non-seasonal exercise or activity
29 30	133	along with the frequency, duration and intensity.
31 32	134	MMW were calculated in a 2-step process. Step 1: subjects who reported no physical
33 34 35	135	activity (for whom no MMW calculations could be made) were designated as the no regular
36 37	136	exercise group (NRE). Step 2: For subjects who indicated that they performed regular physical
38 39 40	137	activity, total MMW were calculated by multiplying minutes per week by intensity level (1.1 for
40 41 42	138	low, 3.0 for moderate and 6.0 for vigorous) and summed across each non-seasonal activity
43 44	139	reported. Four groups reflecting participation in physical activity and whether or not their
45 46 47	140	participation was below, at or above USDHHS guidelines were created: NRE (reported no
48 49	141	regular physical activity), below recommended (reported <500 MMW), recommended (reported
50 51 52	142	500-1000 MMW) and above recommended (reported >1000 MMW).
52 53 54	143	Blood Collection, Processing and Assays. Participants were asked to avoid strenuous
55 56	144	activity the day of blood collection. Venous blood samples were collected in 10 mL serum
57 58 50		

BMJ Open

separator vacutainers following a 12-h overnight fast and processed at a General Clinical

Research Center using standardized procedures. Blood samples were not collected at any

specific point during the menstrual cycle in female participants. Briefly, following collection,

2	
3	145
4 5	
6 7	146
7 8 9	147
10 11	148
12 13	149
14 15	150
16 17	151
18 19	101
20 21	152
22 23	153
24 25	154
26 27 28	155
29 30	156
31 32	157
33 34 35	158
36 37	159
38 39	160
40	
41 42	161
43 44 45	162
45 46 47	163
48 49	164
50 51	165
52 53	166
54 55	
56	
57	
58 59	
60	

148	vacutainers were allowed to stand 15-30-min (2-h maximum) prior to centrifugation at 4°C for
149	20-min at 2000-3000 rpm. Serum samples were frozen and shipped to the MIDUS Biocore Lab
150	and treated and/or analyzed for inflammation markers (IL-6, IL-6sr, CRP, fibrinogen, sE-
151	Selectin and sICAM-1).
152	IL-6 and IL-6sr were assayed in the MIDUS Biocore Laboratory (University of Madison,
153	Madison WI) using Quantikine® High-sensitivity ELISA kits (cat# HS600B and cat# DR600,
154	R&D Systems, Minneapolis, MN). Plates were read at 490 and 450 nm, respectively for IL-6
155	and IL-6sr using a Dynex MRXe plate reader (Magellan Biosciences, Chantilly, VA). Intra-
156	assay and inter-assay precision (CV%) for IL-6 was approximately 4.1% and 13.0%. CV%
157	values for IL-6sr were 5.9-5.7% and 2.0%, respectively.
158	Assays for sICAM-1, sE-Selectin, fibrinogen and CRP were performed at the Laboratory
159	for Clinical Biochemistry Research (University of Vermont, Burlington, VT). Measurement of
160	sICAM-1 was completed using an ELISA assay (Parameter-Human sICAM-1 Immunoassay;
161	R&D Systems). Inter-assay precision for sICAM-1 was 5.0%. Measurement of sE-selectin was
162	completed using a high-sensitivity ELISA assay (Parameter Human sE-Selectin Immunoassay,
163	R&D Systems). Intra-assay and inter-assay precision for sE-selectin was 4.7-5.0% and 5.7-8.8%,
164	respectively. Fibrinogen was measured using the BNII nephelometer (N Antiserum to Human
165	Fibrinogen; Dade Behring Inc., Deerfield, IL). Intra-assay and inter-assay precision for
166	fibrinogen was 2.7% and 2.6%, respectively. CRP was analyzed using a BNII nephelometer

with a particle enhanced immunonepolometric assay. Intra-assay and inter-assay precision for
CRP was 2.3-4.4% and 2.1-5.7%, respectively.

Statistical Analyses. All variables were assessed for normality and non-normal data were log transformed, which included data for CRP, IL-6, IL-6sr, fibrinogen, sE-selectin and sICAM-1. General Linear Models were performed to determine the relationship of MMW and BMI with the inflammatory markers. For each outcome, the ordinal MMW and BMI factors were entered as independent factors with an interaction term. If the interaction term was not significant, the interaction term was dropped and the model was re-fit for main effects only. Pairwise comparisons were assessed using post hoc univariate analyses with a Bonferroni adjustment for multiple comparisons. Covariates for all models included factors that are known to affect inflammatory status: age, sex, smoking and relevant medications (cholesterol-lowering, corticosteroids, anti-diabetic, antidepressant, hormone replacement and hormonal contraceptive). Race was initially included as a covariate; however, approximately 200 data points were lost in the analyses due to incomplete racial data. As race was not found to be a predictor of our dependent variables, with the exception of sICAM-1, race was excluded as a covariate to increase samples size in all analyses excluding sICAM-1. All statistical analyses were performed with SPSS v. 17 (Chicago, IL) and statistical significance was set $\alpha = 0.05$. In an exploratory analysis, we examined whether the relative effects of BMI and MMW on the inflammatory markers differed by sex in 3-way interaction models. As none of the

interactions approached statistical significance (data not shown), sex was retained as a covariatein the models.

1 2		
3 4	190	RESULTS
5 6 7	191	Subject Characteristics. Table 1 presents anthropometric characteristics and circulating
7 8 9	192	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic
10 11	193	white, 56.8% female, and, on average, middle-aged and overweight. Of all the respondents,
12 13 14	194	14.9% were currently smoked, 27.8% were taking cholesterol lowering medication, 12.1%
15 16	195	corticosteroids, 10.4% anti-diabetic medication, 14.2% antidepressant medication, 7.3%
17 18	196	hormone replacement and 2.5% oral contraceptives. The percentage of participants with missing
19 20 21	197	data for each variable were as follows: 1.6% for CRP, 1.0% for sICAM-1, 1.0% for IL-6, 1.6%
22 23	198	for fibrinogen, 1.2% for sE-selectin, and 1.0% for IL-6sr.
24 25 26	199	CRP (Figure 1, Panel A) . We found a significant interaction between BMI and MMW
27 28	200	for CRP concentration (F=3.022, P=0.006). In post hoc comparisons, CRP levels were higher in
29 30	201	overweight and obese subjects compared to normal weight subjects among those who reported
31 32 33	202	no regular exercise (P's<0.001). However, among subjects who reported any amount of regular
34 35	203	exercise (<500, 500-1000 or >1000 MMW), CRP levels were significantly greater only in obese
36 37	204	subjects compared to both normal weight and overweight subjects (P's <0.01). In obese
38 39 40	205	individuals, CRP tended to be lower in those reporting >1000 MMW compared to those
41 42	206	reporting no regular exercise (P=0.053).
43 44 45	207	We also found main effects of BMI (F=130.873 P<0.001) and MMW (F=11.576,
45 46 47	208	P<0.001) on CRP. CRP was significantly greater with each increasing BMI category, in a dose-
48 49	209	dependent manner (P's<0.001). Compared to participants who reported no regular exercise,
50 51 52	210	CRP was significantly lower in those who reported 500-1000 and >1000 MMW (P's <0.01),
53 54	211	with a trend for lower CRP in those who reported <500 MMW of regular exercise (P=0.078).
55 56 57		
58 59		
60		

sICAM-1 (Figure 1, Panel B). We found a significant interaction between BMI and
MMW for sICAM-1 concentration (F=2.701, P=0.013). Levels of sICAM-1 were significantly
lower in obese subjects who reported >1000 MMW compared to obese subjects who reported no
regular exercise (P=0.014) and <500 MMW (P=0.026) and tended to be lower than levels in
obese subjects who reported 500-1000 MMW (P=0.079). No differences in sICAM-1 by MMW
were observed among normal weight or overweight individuals.

We also observed a main effect of BMI (F=6.060, P=0.002), such that sICAM-1 levels in obese participants were significantly higher than levels found in both normal weight and overweight participants (P's<0.01). No significant main effect of MMW was found for sICAM-1 (F=0.931, P=0.425).

IL-6 (Figure 1, Panel C). Both BMI and MMW had independent effects on circulating
concentrations of IL-6 (BMI: F=60.150, P<0.001, MMW: F=10.680, P<0.001), with no
significant interaction (F=1.21, P=0.297). We found a dose-dependent effect of BMI, such that
higher BMI levels were associated with significantly greater IL-6 (P's<0.001). Independent of
BMI, IL-6 was significantly lower in subjects who reported regular exercise (<500 MMW, 500-
1000 MMW and >1000 MMW) compared to those who reported no regular exercise (P's <0.01)
with no difference between levels of MMW.

Fibrinogen (Figure 1, Panel D). BMI significantly contributed to circulating levels of
fibrinogen (F=42.385, P<0.001), such that dose-dependent increases were observed for all BMI
levels (P's<0.01). While we observed a trend for lower fibrinogen with regular physical activity,
similar to that of IL-6, the effect did not reach statistical significance (F=2.187, P=0.088). We
observed no significant interaction between BMI and MMW for fibrinogen (F=1.680, P=0.122).

Page 11 of 55

1

BMJ Open

1 2		
3 4	234	sE-Selectin (1, Panel E). BMI significantly contributed to circulating levels of sE-
5 6 7	235	selectin (F=28.253, P<0.001) with no significant contribution by MMW (F=0.207, P=0.892).
7 8 9	236	Dose-dependent increases in sE-selectin were also observed across BMI levels (P's<0.01). We
10 11	237	observed no significant interaction between BMI and MMW for sE-selectin (F=0.570, P=0.755).
12 13	238	IL-6sr (Figure 1, Panel F). No significant main effects for BMI (F=1.783, P=0.169),
14 15 16	239	MMW (F=1.434, P=0.231) or their interaction (F=0.834, P=0.544) were detected for IL-6sr.
17 18	240	Waist Circumference (WC) and Inflammatory Markers (Supplemental Figure 1). A
19 20	241	secondary analysis was completed using WC and MMW as independent variables and the
21 22 23	242	complete results of these analyses are located in the supplemental information. Briefly, we
23 24 25	243	found a significant interaction between WC and MMW on sICAM-1. In individuals with an at-
26 27	244	risk WC (\geq 102.0 cm for men and \geq 88.0 cm for women), sICAM-1 was significantly lower in
28 29 30	245	those reporting 1000+ MMW compared to less than 500 MMW and tended to be lower in those
31 32	246	reporting no regular exercise. Overall, main effects were similar to those found for BMI and
33 34	247	MMW analyses. Having an at-risk WC was independently related to higher levels of CRP,
35 36 37	248	sICAM-1, IL-6, fibrinogen and sE-selectin. Independent of WC, any level of regular exercise
38 39	249	was related to lower levels of CRP, IL-6 with a similar tendency for fibrinogen.
40 41	250	
42 43 44	251	DISCUSSION
45 46	252	The current study aimed to determine whether the impact of BMI and MMW on
47 48	253	inflammatory markers varied by level of overweight or obesity. For CRP and s-ICAM-1
49 50 51	254	regular physical activity appeared to diminish the effects of higher BMI compared to those who
52 53	255	reported no regular physical activity. In addition, we found that BMI was strongly and
54 55	256	independently related to greater concentrations of both established and emerging inflammatory
56 57 58	200	marpenaente, related to greater concentrations of cour established and enterging infullimatory
58 59 60		
		11

markers that may increase CVD risk. Independent of BMI, regular physical activity was also
associated with lower IL-6, with a similar trend for fibrinogen. These results suggest that,
although obesity has a clear impact on inflammation, physical activity appears to mitigate at least
some of this effect.

For example, overweight individuals had CRP levels that were similar to levels observed in obese individuals if they reported no regular exercise (4.05 and 4.83 µg/mL, respectively). CRP levels greater than 3 µg/mL are typically associated with high CVD risk(26). In overweight subjects who reported regular physical activity of at least 3, 20-minute sessions per week (be it below [<500], within [500-1000] or above [>1000] USDHHS MMW recommendations), CRP levels were lower and not significantly different from CRP levels found in normal weight participants (). This suggests that increasing physical activity level to a minimum of 3 days per week, at least 20 minutes per day, may improve CRP profiles among overweight individuals. Obese individuals may require a higher level of regular physical activity in order to lower inflammatory markers. While obese subjects also had greater levels of CRP and sICAM-1 compared to lean and overweight subjects, those who reported >1000 MMW (above the USDHHS recommendation) had lower levels of sICAM-1 and tended to have lower CRP than obese subjects reporting no regular physical activity. Taken together, we may speculate that while physical activity levels currently recommended for the general population may reduce particular inflammatory makers in overweight populations, obese populations may require greater levels of physical activity above recommended values to reduce inflammatory markers like CRP and sICAM-1.

As expected, strong main effects of BMI were observed for CRP, IL-6, fibrinogen,
sICAM-1 and sE-selectin, in agreement with previous work (27-30). Independent of BMI effects,

Page 13 of 55

BMJ Open

our results suggest that physical activity has differentiating effects on inflammatory markers. Individuals reporting no regular physical activity had higher levels of IL-6 with a tendency for higher fibringen, compared to those reporting any level of regular physical activity (<500, 500-1000 or >1000 MMW). Similar results have been observed in the MONItoring trends and determinants in CArdiovascular disease (MONICA) study(31), the National Health and Nutrition Examination Survey (NHANES III)(12, 14) and the Multi-Ethnic Study of Atherosclerosis (MESA)(32), such that both increased frequency and intensity of physical activity have been related to lower IL-6 and fibrinogen. Our findings add to these prior results by standardizing levels of physical activity by using USDHHS. Our results suggest that, regular physical activity at any level (<500, 500-1000, >1000) appears to be associated with lower levels of IL-6 and possibly fibrinogen, independent of BMI.

Although IL-6 produced in hypertrophied adipose tissue(33, 34) initiates the acute phase response, marked by the release of hepatic CRP (35, 36), an interaction between BMI and physical activity was detected for CRP, but not IL-6. While IL-6 and CRP were significantly correlated (r=0.514, see Supplemental Table 1), this correlation suggests that IL-6 levels do not fully explain CRP levels at any given moment. Further, CRP is a more stable biomarker, owing to its substantially longer plasma half-life (37), which may improve our ability to detect interaction effects in CRP compared to IL-6.

Interestingly, our results also suggest that regular exercise may have a more profound
impact on lowering classical markers of inflammation and less impact on the inflammatory status
of the endothelium. Regular physical activity has reliably been associated with lower levels of
IL-6 and CRP, both classical inflammatory markers related to adipose and systemic
inflammation(38). However, regular exercise appeared to have no independent impact on

markers of endothelial activation, particularly sE-selectin. Higher levels of exercise were related
to lower sICAM-1 in obese individuals only. In one prior study, inverse relationships between
physical activity and sICAM-1 and sE-selectin were reported in drug-treated hypertensive men
(39). Thus, further research is necessary to understand mechanisms underlying differential
associations of exercise with systemic and endothelial inflammation.

Several limitations must be addressed. First, the cross-sectional design does not allow us to infer causal relationships. Prospective and interventional designs are necessary to confirm our findings. No objective measures of physical activity were available in the MIDUS sample. Therefore, the use of self-report physical activity data may have diminished our ability to detect effects. However, in addition to being in line with previous studies using self-report physical activity, our findings are also in line with previous studies(40, 41) that demonstrated that higher cardiorespiratory fitness, as measured by indirect calorimetry, was associated with lower levels of inflammation independent of visceral adiposity or BMI. Another limitation is that the sample was predominantly comprised of non-Hispanic white individuals, suggesting that findings may not extend to all ethnicities. Finally, BMI and physical activity variables are correlated, potentially raising the concern of small sample sizes in specific groups crossed by BMI and MMW. However, the smallest group for analyses still contained 54 individuals (normal weight individuals reporting no exercise).

In summary, our results demonstrate both interactive and independent influences of BMI and levels of physical activity on both established and emerging markers of inflammation. Inflammation is both a consequence of obesity and a mechanism promoting CVD. Regular physical activity appears to mitigate the effects of higher BMI on some inflammatory markers, particularly CRP, which is strongly implicated in CVD. Importantly, while any level of regular

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	326	physical activity may help reduce inflammation in overweight individuals, similar effects in
5 6 7	327	obese individuals may require levels of physical activity that are greater than currently
8 9	328	recommended by the USDHHS for general health.
10 11 12	329	
12 13 14	330	
15 16	331	
17 18 19	332	
19 20 21	333	
22 23	334	
24 25 26	335	
20 27 28	336	
29 30	337	
31 32 33	338	
34 35	339	
36 37	340	
38 39 40	341	
41 42	342	
43 44 45	343	
46 47	344	
48 49	345	
50 51 52	346	
53 54	347	
55 56	348	
57 58 59 60		
-		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

349 ACKNOWLEDGEMENTS

350 We thank the staff of the Clinical Research Centers at the University of Wisconsin-Madison,

351 UCLA, and Georgetown University for their effort in conducting the original data collection.

353 FUNDING

KS was supported through a T32 Training Fellowship (Training in Behavioral and Preventive
Medicine; T32 HL076134). The original research was supported by a grant from the National
Institute on Aging (P01-AG020166) to conduct a longitudinal follow-up of the MIDUS (Midlife

in the U.S.) Investigation.

359 The original study was supported by the John D. and Catherine T. MacArther Foundation

360 Research Network on Successful Midlife Development and by the following grants: M01-

361 RR023942 (Georgetown), M01-RR00865 (UCLA) from the General Clinical Research Centers

362 Program and 1UL1RR025011 (UW) from the Clinical and Translational Science Award (CTSA)

363 program of the National Center for Research Resources, National Institutes of Health.

- 9 364 1 365
 - **CONFLICTS OF INTEREST**
 - 366 The authors declare no conflict of interest.
- 6 367

CONTRIBUTORSHIP

KS, JMM and RRW each made substantial contributions to the conception and design of the
study, data acquisition, analysis and interpretation, as well as to drafting and revision for
substantial intellectual content. All authors made final approval of the version to be published.

1		
2 3 4	372	
5 6 7	373	DATA SHARING STATEMENT
7 8 9	374	Data and documentation for MIDUS studies are available at the Inter-university Consortium for
10 11	375	Political and Social Research (ICPSR). http://www.icpsr.umich.edu/icpsrweb/landing.jsp
12 13 14	376	
15 16	377	ARTICLE SUMMARY
17 18 19	378	 Article focus Systemic inflammation is related to the progression of
20 21	379	cardiovascular disease.Independent of obesity, physical activity is inversely related to
22 23 24	380	concentrations of well-established inflammatory biomarkers, such as C-reactive protein (CRP) or interleukin-6 (IL-6).
24 25 26	381	• This article evaluates interactive effects of body mass index and physical activity on established inflammatory markers, CRP,
27 28	382	IL-6, and emerging inflammatory markers, fibrinogen, soluble intracellular adhesion molecule (sICAM)-1, soluble E-selectin,
29 30 31	383	and IL-6 soluble receptor.
32 33	384	 Key messages Interactive effects of body mass index and physical activity
34 35	385	were observed for CRP, such that regular physical activity reported by overweight individuals was related to significantly
36 37 38	386	lower CRP levels compared to those reported no regular activity.
39 40	387	 Independent of BMI, regular physical activity was related to lower IL-6, with a trend for lower fibrinogen
41 42 43	388	 Physical activity had no independent effect on circulating markers related to endothelial inflammation, such as sICAM-1
43 44 45	389	or sE-selectin.
46 47	390	 Strengths and limitations 1254 adults from the National Survey of Midlife Development
48 49 50	391	in the United States (MIDUS) Biomarker Project were analyzed. Statistical analyses were adjusted for age, sex,
50 51 52	392	smoking, and relevant medication use. A strength of this paper is categorizing physical activity levels based on national
53 54	393	recommendations. This data may be used to determine appropriate levels of physical activity necessary for reducing
55 56 57	394	inflammation in overweight and obese adults. However, cross- sectional data is limited, as causal inferences cannot be
57 58 59		obtained. A second limitation is that the sample was predominantly comprised of non-Hispanic white individuals,
60		therefore findings may not extend to all ethnicities. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
		r or poor review only internormalization in site about guidelines. Antill

REFERENCES

1. Blair SN, Brodney S. Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues. Med Sci Sports Exerc. 1999;31(11 Suppl):S646-62. Epub 1999/12/11. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-7. 2. Epub 2006/12/15. 3. Koenig W, Khuseyinova N, Baumert J, et al. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. Arterioscler Thromb Vasc Biol. 2006;26(12):2745-51. Epub 2006/09/30. Papageorgiou N, Tousoulis D, Siasos G, et al. Is fibringen a marker of inflammation in 4. coronary artery disease? Hellenic J Cardiol. 2010;51(1):1-9. Epub 2010/02/02. 5. Schmidt C, Hulthe J, Fagerberg B. Baseline ICAM-1 and VCAM-1 are increased in initially healthy middle-aged men who develop cardiovascular disease during 6.6 years of follow-up. Angiology. 2009;60(1):108-14. Epub 2008/05/28. Demerath E, Towne B, Blangero J, et al. The relationship of soluble ICAM-1, VCAM-1, 6. P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann Hum Biol. 2001;28(6):664-78. Epub 2001/12/01. 7. Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol.

414 2009;6(6):399-409. Epub 2009/04/29.

415 8. Calabro P, Yeh ET. Obesity, inflammation, and vascular disease: the role of the adipose
416 tissue as an endocrine organ. Subcell Biochem. 2007;42:63-91. Epub 2007/07/07.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4	417	9.	Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue	
5 6	418	volume	es are cross-sectionally related to markers of inflammation and oxidative stress: the	
7 8 9	419	Framin	ngham Heart Study. Circulation. 2007;116(11):1234-41. Epub 2007/08/22.	
10 11	420	10.	Mathieu P, Poirier P, Pibarot P, et al. Visceral obesity: the link among inflammation,	
12 13 14	421	hyperte	ension, and cardiovascular disease. Hypertension. 2009;53(4):577-84. Epub 2009/02/25	5.
14 15 16	422	11.	Reuben DB, Judd-Hamilton L, Harris TB, et al. The associations between physical	
17 18	423	activity	y and inflammatory markers in high-functioning older persons: MacArthur Studies of	
19 20 21	424	Succes	sful Aging. J Am Geriatr Soc. 2003;51(8):1125-30. Epub 2003/08/02.	
22 23	425	12.	King DE, Carek P, Mainous AG, 3rd, et al. Inflammatory markers and exercise:	
24 25	426	differe	nces related to exercise type. Med Sci Sports Exerc. 2003;35(4):575-81. Epub 2003/04,	/04.
26 27 28	427	13.	Wannamethee SG, Lowe GD, Whincup PH, et al. Physical activity and hemostatic and	b
29 30	428	inflam	matory variables in elderly men. Circulation. 2002;105(15):1785-90. Epub 2002/04/17.	
31 32 33	429	14.	Abramson JL, Vaccarino V. Relationship between physical activity and inflammation	
34 35	430	among	apparently healthy middle-aged and older US adults. Arch Intern Med.	
36 37	431	2002;1	62(11):1286-92. Epub 2002/06/01.	
38 39 40	432	15.	Geffken DF, Cushman M, Burke GL, et al. Association between physical activity and	
40 41 42	433	marker	rs of inflammation in a healthy elderly population. Am J Epidemiol. 2001;153(3):242-5	; 0.
43 44	434	Epub 2	2001/02/07.	
45 46 47	435	16.	Taaffe DR, Harris TB, Ferrucci L, et al. Cross-sectional and prospective relationships	of
48 49	436	interleu	ukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur	r
50 51	437	studies	s of successful aging. J Gerontol A Biol Sci Med Sci. 2000;55(12):M709-15. Epub	
52 53 54	438	2000/1	2/29.	
55 56				
57 58				
59 60				19

2			
3 4	439	17.	Starkie R, Ostrowski SR, Jauffred S, et al. Exercise and IL-6 infusion inhibit endotoxin-
5 6 7	440	induce	d TNF-alpha production in humans. FASEB J. 2003;17(8):884-6. Epub 2003/03/11.
7 8 9	441	18.	Pedersen BK, Steensberg A, Fischer C, et al. Exercise and cytokines with particular focus
10 11	442	on mus	scle-derived IL-6. Exerc Immunol Rev. 2001;7:18-31. Epub 2001/10/03.
12 13	443	19.	Pedersen BK, Steensberg A, Fischer C, et al. The metabolic role of IL-6 produced during
14 15 16	444	exercis	se: is IL-6 an exercise factor? Proc Nutr Soc. 2004;63(2):263-7. Epub 2004/08/06.
17 18	445	20.	Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white
19 20 21	446	adipos	e tissue. Br J Nutr. 2004;92(3):347-55. Epub 2004/10/08.
21 22 23	447	21.	Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic
24 25	448	inflam	mation. Clin Chim Acta. 2010;411(11-12):785-93. Epub 2010/03/02.
26 27 28	449	22.	USDHHS, editor. 2008 Physical Activity Guidelines for Americans. Washington
20 29 30	450	DC200	08.
31 32	451	23.	C Ryff DA, JS Ayanian, DS carr, PD Cleary, C Coe, R Davidson, RF Krueger, ME
33 34 35	452	Lachm	aan, NF Marks, DK Mroczek, T Seeman, MM Seltzer, BH Singer, RP Sloan, PA Tun, M
36 37	453	Weins	tein, D Williams. National Survey of Midlife Development in the United State (MIDUS II),
38 39	454	2004-2	2006. Inter-university Consortium for Political and Social Research (ICPSR) [distrubutor].
40 41 42	455	2011.	
43 44	456	24.	Kraemer H. How Many Subjects? Statistical Power Analysis in Research: SAGE
45 46 47	457	Public	ations, Inc; 1987.
47 48 49	458	25.	Cohen J. Statistical Power Analysis for the Behavioral Sciences. Second ed: Lawrence
50 51	459	Erlbau	m Associates; 1998.
52 53 54	460	26.	Bassuk SS, Rifai N, Ridker PM. High-sensitivity C-reactive protein: clinical importance.
54 55 56 57 58 59 60	461	Curr P	robl Cardiol. 2004;29(8):439-93. Epub 2004/07/20.

1 2			
3 4	462	27.	Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum
5 6 7	463	concer	ntrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract. 2005;69(1):29-35. Epub
8 9	464	2005/0	06/16.
10 11	465	28.	Bastard JP, Jardel C, Bruckert E, et al. Elevated levels of interleukin 6 are reduced in
12 13 14	466	serum	and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol
15 16	467	Metab	. 2000;85(9):3338-42. Epub 2000/09/22.
17 18	468	29.	Ditschuneit HH, Flechtner-Mors M, Adler G. Fibrinogen in obesity before and after
19 20 21	469	weight	reduction. Obes Res. 1995;3(1):43-8. Epub 1995/01/01.
22 23	470	30.	Straczkowski M, Lewczuk P, Dzienis-Straczkowska S, et al. Elevated soluble
24 25 26	471	interce	ellular adhesion molecule-1 levels in obesity: relationship to insulin resistance and tumor
26 27 28	472	necros	is factor-alpha system activity. Metabolism. 2002;51(1):75-8. Epub 2002/01/10.
29 30	473	31.	Autenrieth C, Schneider A, Doring A, et al. Association between different domains of
31 32 33	474	physic	al activity and markers of inflammation. Med Sci Sports Exerc. 2009;41(9):1706-13. Epub
34 35	475	2009/0	08/07.
36 37	476	32.	Majka DS, Chang RW, Vu TH, et al. Physical activity and high-sensitivity C-reactive
38 39 40	477	proteir	n: the multi-ethnic study of atherosclerosis. Am J Prev Med. 2009;36(1):56-62. Epub
41 42	478	2008/1	1/18.
43 44 45	479	33.	Day CP. From fat to inflammation. Gastroenterology. 2006;130(1):207-10. Epub
45 46 47	480	2006/0	01/13.
48 49	481	34.	Fain JN, Madan AK, Hiler ML, et al. Comparison of the release of adipokines by adipose
50 51 52	482	tissue,	adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose
53 54	483	tissues	of obese humans. Endocrinology. 2004;145(5):2273-82. Epub 2004/01/17.
55 56			
57 58			
59 60			

1 2	
2 3 4	484
5 6	485
7 8 9	486
10 11	487
12 13 14	488
14 15 16	489
17 18	490
19 20 21	491
22 23	492
24 25	493
26 27 28	494
29 30	495
31 32	496
33 34 35	497
36 37	498
38 39 40	499
40 41 42	500
43 44	501
45 46 47	502
47 48 49	503
50 51	504
52 53 54	505
55 56	506
57 58	
59 60	

84 35. Castell JV, Gomez-Lechon MJ, David M, et al. Interleukin-6 is the major regulator of 35 acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237-9. Epub 6 1989/01/02. 37 36. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 88 1990;265(3):621-36. Epub 1990/02/01. 9 37. Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of 0 developing type 2 diabetes mellitus. JAMA. 2001;286(3):327-34. Epub 2001/07/24. 1 38. Mathieu P, Lemieux I, Despres JP. Obesity, inflammation, and cardiovascular risk. Clin 2 Pharmacol Ther. 2010;87(4):407-16. Epub 2010/03/05. 3 39. Hjelstuen A, Anderssen SA, Holme I, et al. Markers of inflammation are inversely related 4 to physical activity and fitness in sedentary men with treated hypertension. Am J Hypertens. 5 2006;19(7):669-75; discussion 76-7. Epub 2006/07/04. 6 40. Church TS, Barlow CE, Earnest CP, et al. Associations between cardiorespiratory fitness 7 and C-reactive protein in men. Arterioscler Thromb Vasc Biol. 2002;22(11):1869-76. Epub 8 2002/11/12. 9 41. Arsenault BJ, Cartier A, Cote M, et al. Body composition, cardiorespiratory fitness, and 0 low-grade inflammation in middle-aged men and women. Am J Cardiol. 2009;104(2):240-6. 1 Epub 2009/07/07. 2 3

1 2		
2 3 4	507	FIGURE AND TABLE LEGENDS
5 6 7	508	
8 9	509	
10 11	510	Figure 1: Inflammatory Markers. Data from 1254 men and women in MIDUS. Joint
12 13 14	511	association of BMI category (normal, overweight and obese) and MMW category (no regular
15 16	512	exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C),
17 18	513	fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex,
19 20 21	514	smoking and relevant medication use. The analysis for sICAM-1 was further adjusted for race.
22 23	515	Error bars represent SEM. BMI=BMI main effect P value, MMW=MMW main effect P value,
24 25	516	INT=interaction effect P value.
26 27 28	517	
29 30	518	
31 32	519	Table 1: Subject Characteristics. BMI = body mass index; CRP = C-reactive protein; IL =
33 34 35	520	interleukin; IL-6sr = IL-6 soluble receptor; MMW = MET-Minutes per Week; sE-Selectin =
36 37 38	521	soluble E-Selectin; sICAM-1= soluble intracellular adhesion molecule-1.
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	522	
58 59 60		
		23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Contributions of Body Mass Index and Exercise Habits on Inflammatory Markers: A Cohort Study of Middle Aged Adults Living in the United States Kelley Strohacker, Ph.D. *, Rena R. Wing, Ph.D.*, and Jeanne M. McCaffery, Ph.D.* * The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence RI RI Interview	1		
1 Contributions of Dody Orasi Index and Exercise Frances on Finalmatory Markets, A 2 Cohort Study of Middle Aged Aduits Living in the United States 3 Kelley Strohacker, Ph.D. ^a , Rena R. Wing, Ph.D. ^a , and Jeanne M. McCaffery, Ph.D. ^a 10 ^a The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence R1 11 R1 12 Corresponding Author 13 Io 14 Corresponding Author 15 Corresponding Author 16 Jeanne M. McCaffery, Ph.D. 17 Associate Professor of Psychiatry and Human Behavior (Research) 18 The Miriam Hospital Weight Control and Diabetes Research Center 19 196 Richmond Street 20 Providence, R1 02904 21 Phone: (401) 793-8914 22 Fax: (401) 793-8944 23 Email: JMccaffery@lifespan.org 24 Corresponding Title: 25 Email: JMccaffery@lifespan.org 26 Running Title: 27 BMI, Physical Activity and Inflammation 28 29 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Pr	2		
5 2 Conort Study of Muddle Aged Aduits Living in the United States 7 4 7 4 7 4 7 4 7 4 7 4 8 5 8 Kelley Strohacker, Ph.D. ^a , Rena R. Wing, Ph.D. ^a , and Jeanne M. McCaffery, Ph.D. ^a 10 ^a The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence RI 11 12 12 13 14 14 15 Corresponding Author 16 Jeanne M. McCaffery, Ph.D. 17 Associate Professor of Psychiatry and Human Behavior (Research) 18 The Miriam Hospital Weight Control and Diabetes Research Center 19 196 Richmond Street 20 Providence, RI 02904 21 Phone: (401) 793-8010 22 Fax: (401) 793-8944 23 Email: JMccaffery@lifespan.org 24 25 25 Running Title: 26 Running Title: 27 BMI, Physical Activity and Inflammation 28 29			
6 Kelley Strohacker, Ph.D. ^a , Rena R. Wing, Ph.D. ^a , and Jeanne M. McCaffery, Ph.D. ^a 7 ^a The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence Rl 11 11 12 12 13 14 14 15 15 Corresponding Author 16 Jeanne M. McCaffery, Ph.D. 17 Associate Professor of Psychiatry and Human Behavior (Research) 18 The Miriam Hospital Weight Control and Diabetes Research Center 19 196 Richmond Street 20 Providence, Rl 02904 21 Phone: (401) 793-8010 22 Fax: (401) 793-8944 23 Email: JMccaffery@lifespan.org 24 25 25 Running Title: 27 BMI, Physical Activity and Inflammation 28 29 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 30 Word Count: 3331		2	Cohort Study of Middle Aged Adults Living in the United States
7 4 8 5 8 5 8 5 8 5 8 6 8 7 7 7 7 7 7 7 7 7 7 7 7 8 9 * The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence Rl 11 11 12 11 13 14 14 15 15 Corresponding Author 16 Jeanne M. McCaffery, Ph.D. 17 Associate Professor of Psychiatry and Human Behavior (Research) 18 The Miriam Hospital Weight Control and Diabetes Research Center 19 196 Richmond Street 20 Providence, Rl 02904 21 Phone: (401) 793-8010 22 Fax: (401) 793-8944 23 Email: JMccaffery@lifespan.org 24 25 27 BMI, Physical Activity and Inflammation 28 29 2		3	
8 5 90 6 17 7 18 10 10 * The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence RI 11 11 12 13 13 14 14 14 15 Corresponding Author 16 Jeanne M. McCaffery, Ph.D. 17 Associate Professor of Psychiatry and Human Behavior (Research) 18 The Miriam Hospital Weight Control and Diabetes Research Center 19 196 Richmond Street 20 Providence, RI 02904 21 23 22 Fax: (401) 793-8910 23 Email: JMccaffery@lifespan.org 24 25 25 Running Title: 26 Running Title: 27 BMI, Physical Activity and Inflammation 28 29 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 30 Word Count: 3331			
9 6 Kelley Strohacker, Ph.D. *, Rena R. Wing, Ph.D.*, and Jeanne M. McCaffery, Ph.D.* 11 7 11 7 11 7 11 8 11 11 12 11 13 14 14 11 15 Corresponding Author 16 Jeanne M. McCaffery, Ph.D. 17 Associate Professor of Psychiatry and Human Behavior (Research) 18 The Miriam Hospital Weight Control and Diabetes Research Center 19 196 Richmond Street 20 Providence, RI 02904 21 Phone: (401) 793-8910 22 Fax: (401) 793-8914 23 Email: JMccaffery@lifespan.org 24 25 25 Email: JMccaffery@lifespan.org 26 Running Title: 27 BMI, Physical Activity and Inflammation 28 29 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 30 Word Count: 3331			
 ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰			
11 / 13 9 14 0 15 Corresponding Author 16 Jeanne M. McCaffery, Ph.D. 16 Jeanne M. McCaffery, Ph.D. 17 Associate Professor of Psychiatry and Human Behavior (Research) 18 The Miriam Hospital Weight Control and Diabetes Research Center 19 196 Richmond Street 20 Providence, RI 02904 21 20 22 Fax: (401) 793-8010 23 Email: JMccaffery@lifespan.org 24 23 25 26 Running Title: 27 BMI, Physical Activity and Inflammation 28 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 30 Word Count: 3331			Kelley Stronacker, Ph.D., Rena R. wing, Ph.D., and Jeanne M. McCaffery, Ph.D.
12 8 10 * The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence RI 11 11 12 12 13 14 14 14 15 Corresponding Author 16 Jeanne M. McCaffery, Ph.D. 17 Associate Professor of Psychiatry and Human Bchavior (Research) 18 The Miriam Hospital Weight Control and Diabetes Research Center 19 196 Richmond Street 20 Providence, RI 02904 21 23 22 Fax: (401) 793-8010 33 24 44 25 45 Email: JMccaffery@lifespan.org 44 24 45 Email: JMccaffery@lifespan.org 44 25 45 BMI, Physical Activity and Inflammation 46 24 47 6 48 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 49 30 40 31 41 42 42 Fax: (401) 793-8944 <td></td> <td></td> <td></td>			
 ¹³ 9 ¹³ The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence RI ¹⁴ 12 ¹⁵ Corresponding Author ¹⁶ Jeanne M. McCaffery, Ph.D. ¹⁷ Associate Professor of Psychiatry and Human Behavior (Research) ¹⁸ The Miriam Hospital Weight Control and Diabetes Research Center ¹⁹ 196 Richmond Street ²⁰ 200 Providence, RI 02904 ²¹ 21 ²² Fax: (401) 793-8010 ²³ 21 ²⁴ 24 ²⁵ Email: JMccaffery@lifespan.org ²⁴ 24 ²⁵ BMI, Physical Activity and Inflammation ²⁸ Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein ³⁰ Word Count: 3331 		8	
 ¹⁴ 10 ¹⁴ The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence R1 11 12 13 14 14 15 16 17 16 17 17 18 19 19 196 Richmond Street 20 21 21 22 23 20 24 23 24 24 25 26 27 27 28 27 24 25 26 27 27 28 29 20 21 22 23 24 24 25 26 27 27 28 29 39 30 31 31 32 331 		9	
15 11 RI 17 12 18 13 19 14 22 Fax: (A01) 793-8010 23 2 24 1 25 7 26 17 27 Associate Professor of Psychiatry and Human Behavior (Research) 26 17 27 Associate Professor of Psychiatry and Human Behavior (Research) 28 18 29 19 20 Providence, R1 02904 31 19 32 0 33 20 34 11 35 21 36 21 37 22 38 Email: JMccaffery@lifespan.org 39 24 44 25 45 26 46 27 47 6 48 28 49 29 42 4 43 29 444 29 45		10	^a The Miriam Hospital and the Warren Alpert Medical School of Brown University Providence
16 12 17 13 18 14 19 14 19 14 19 14 11 15 12 15 14 16 15 17 16 Jeanne M. McCaffery, Ph.D. 17 Associate Professor of Psychiatry and Human Behavior (Research) 18 The Miriam Hospital Weight Control and Diabetes Research Center 19 196 Richmond Street 20 Providence, RI 02904 21 Phone: (401) 793-8010 22 Fax: (401) 793-8010 23 Email: JMccaffery@lifespan.org 24 16 25 17 26 Running Title: 27 BMI, Physical Activity and Inflammation 28 16 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 39 17 30 Word Count: 3331			
17 12 18 14 22 15 23 16 24 16 25 17 26 17 27 Associate Professor of Psychiatry and Human Behavior (Research) 28 18 29 19 20 Providence, RI 02904 21 20 22 Fax: (401) 793-8010 23 Email: JMccaffery@lifespan.org 24 23 25 Email: JMccaffery@lifespan.org 24 25 25 BMI, Physical Activity and Inflammation 26 Running Title: 27 BMI, Physical Activity and Inflammation 28 29 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 26 Word Count: 3331			KI
18 13 19 14 21 15 Corresponding Author 23 16 Jeanne M. McCaffery, Ph.D. 24 16 Jeanne M. McCaffery, Ph.D. 25 17 Associate Professor of Psychiatry and Human Behavior (Research) 26 17 Associate Professor of Psychiatry and Human Behavior (Research) 27 18 The Miriam Hospital Weight Control and Diabetes Research Center 28 19 196 Richmond Street 29 19 196 Richmond Street 20 Providence, RI 02904 34 21 Phone: (401) 793-8010 37 22 Fax: (401) 793-8944 40 23 Email: JMccaffery@lifespan.org 41 25 42 26 Running Title: 43 27 BMI, Physical Activity and Inflammation 44 28 45 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 56 30 Word Count: 3331			
19 14 22 15 Corresponding Author 23 16 Jeanne M. McCaffery, Ph.D. 24 16 Jeanne M. McCaffery, Ph.D. 25 17 Associate Professor of Psychiatry and Human Behavior (Research) 26 18 The Miriam Hospital Weight Control and Diabetes Research Center 29 18 The Miriam Hospital Weight Control and Diabetes Research Center 20 Providence, RI 02904 21 Phone: (401) 793-8010 22 Fax: (401) 793-8944 23 Email: JMccaffery@lifespan.org 24 25 25 Running Title: 26 Running Title: 27 BMI, Physical Activity and Inflammation 28 29 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 30 Word Count: 3331			
2115Corresponding Author2216Jeanne M. McCaffery, Ph.D.2416Jeanne M. McCaffery, Ph.D.2517Associate Professor of Psychiatry and Human Behavior (Research)2618The Miriam Hospital Weight Control and Diabetes Research Center2918The Miriam Hospital Weight Control and Diabetes Research Center2919196 Richmond Street20Providence, RI 029043121Phone: (401) 793-80103722Fax: (401) 793-89443823Email: JMccaffery@lifespan.org4423Email: JMccaffery@lifespan.org44254527BMI, Physical Activity and Inflammation5229Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein30Word Count: 3331		14	
2115Corresponding Author2216Jeanne M. McCaffery, Ph.D.2416Jeanne M. McCaffery, Ph.D.2517Associate Professor of Psychiatry and Human Behavior (Research)2618The Miriam Hospital Weight Control and Diabetes Research Center2918The Miriam Hospital Weight Control and Diabetes Research Center2919196 Richmond Street20Providence, RI 029043121Phone: (401) 793-80103722Fax: (401) 793-89443823Email: JMccaffery@lifespan.org4423Email: JMccaffery@lifespan.org44254527BMI, Physical Activity and Inflammation5229Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein30Word Count: 3331	20		
22216Jeanne M. McCaffery, Ph.D.22317Associate Professor of Psychiatry and Human Behavior (Research)22617Associate Professor of Psychiatry and Human Behavior (Research)22718The Miriam Hospital Weight Control and Diabetes Research Center23819196 Richmond Street24920Providence, RI 0290425021Phone: (401) 793-8944261Email: JMccaffery@lifespan.org27224Running Title:273BMI, Physical Activity and Inflammation28429Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein273Word Count: 3331		15	Corresponding Author
2416Jeanle W. McCaffery, Ph.D.2617Associate Professor of Psychiatry and Human Behavior (Research)2718The Miriam Hospital Weight Control and Diabetes Research Center3119196 Richmond Street3320Providence, RI 029043421Phone: (401) 793-80103621Phone: (401) 793-80103722Fax: (401) 793-89443822Email: JMccaffery@lifespan.org4123Email: JMccaffery@lifespan.org422424432544254527BMI, Physical Activity and Inflammation5228542954295529563057Word Count: 3331	22	10	
2417Associate Professor of Psychiatry and Human Behavior (Research)2718The Miriam Hospital Weight Control and Diabetes Research Center2819196 Richmond Street2920Providence, RI 029043421Phone: (401) 793-80103722Fax: (401) 793-89444023Email: JMccaffery@lifespan.org41254224432544254527BMI, Physical Activity and Inflammation522854295429542954305530563057Word Count: 3331	23	16	Joanna M. MaCaffary, Dh.D.
2617Associate Professor of Psychiatry and Human Behavior (Research)2718The Miriam Hospital Weight Control and Diabetes Research Center2918The Miriam Hospital Weight Control and Diabetes Research Center2919196 Richmond Street20Providence, RI 029043621Phone: (401) 793-80103722Fax: (401) 793-89443822Fax: (401) 793-89443923Email: JMccaffery@lifespan.org4123Email: JMccaffery@lifespan.org4224254326Running Title:4425264527BMI, Physical Activity and Inflammation5629Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein30Word Count: 3331	24	10	Jeanne W. Wiccanery, Fil.D.
2718The Miriam Hospital Weight Control and Diabetes Research Center3019196 Richmond Street3220Providence, RI 029043421Phone: (401) 793-80103722Fax: (401) 793-89443023Email: JMccaffery@lifespan.org414425422443244425452546Running Title:4726Running Title:48274927502741BMI, Physical Activity and Inflammation52285429553046Word Count: 3331	25		
2818The Miriam Hospital Weight Control and Diabetes Research Center2919196 Richmond Street3119196 Richmond Street3220Providence, RI 029043421Phone: (401) 793-80103722Fax: (401) 793-89443822Email: JMccaffery@lifespan.org4123Email: JMccaffery@lifespan.org4224432544254726Running Title:4827BMI, Physical Activity and Inflammation51285429Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein30Word Count: 3331		17	Associate Professor of Psychiatry and Human Behavior (Research)
 In the fille fille of the line of the plant of the blocket of the center center center is a second of the blocket of the center center is a second of the blocket of the blocket of the center is a second of the blocket of the center is a second of the blocket of	27		
29 19 196 Richmond Street 31 19 Providence, RI 02904 35 21 Phone: (401) 793-8010 36 22 Fax: (401) 793-8010 37 22 Fax: (401) 793-8944 39 23 Email: JMccaffery@lifespan.org 41 23 Email: JMccaffery@lifespan.org 42 24 24 43 25		18	The Miriam Hospital Weight Control and Diabetes Research Center
31 19 196 Richmond Street 32 20 Providence, RI 02904 34 21 Phone: (401) 793-8010 36 21 Fax: (401) 793-8944 39 22 Fax: (401) 793-8944 30 23 Email: JMccaffery@lifespan.org 41 23 Email: JMccaffery@lifespan.org 42 24			
33 20 Providence, RI 02904 34 Phone: (401) 793-8010 35 21 Phone: (401) 793-8010 37 22 Fax: (401) 793-8944 30 23 Email: JMccaffery@lifespan.org 41 23 Email: JMccaffery@lifespan.org 42 24 24 43 26 Running Title: 44 25 3 45 25 3 46 27 BMI, Physical Activity and Inflammation 51 28 3 54 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 56 30 Word Count: 3331		10	106 Dichmond Street
33 20 Providence, RI 02904 34 21 Phone: (401) 793-8010 36 21 Fax: (401) 793-8944 39 23 Email: JMccaffery@lifespan.org 40 23 Email: JMccaffery@lifespan.org 41 24 24 42 24 24 43 26 Running Title: 44 25 27 45 25 27 46 27 BMI, Physical Activity and Inflammation 51 28 28 53 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 56 30 Word Count: 3331		19	190 Kichillolid Street
34 35 3621Phone: (401) 793-801037 3822Fax: (401) 793-894439 4023Email: JMccaffery@lifespan.org42 43 44 452444 45 4525Running Title:47 48 49 5027BMI, Physical Activity and Inflammation51 52 53 542853 54 5529Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein56 57 5930Word Count: 3331			
35 21 Phone: (401) 793-8010 37 22 Fax: (401) 793-8944 39 23 Email: JMccaffery@lifespan.org 40 23 Email: JMccaffery@lifespan.org 41 24 24 42 24 24 43 25 Running Title: 44 25 3 45 25 BMI, Physical Activity and Inflammation 54 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 55 30 Word Count: 3331		20	Providence, RI 02904
3621Finite: (401) 793-80403722Fax: (401) 793-89443923Email: JMccaffery@lifespan.org4023Email: JMccaffery@lifespan.org412424422543254425452546Running Title:4726Running Title:4827BMI, Physical Activity and Inflammation51285329Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein5630Word Count: 3331			
3622Fax: (401) 793-89443923Email: JMccaffery@lifespan.org4023Email: JMccaffery@lifespan.org422443254425452546Running Title:4726Running Title:4827BMI, Physical Activity and Inflammation51285329Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein5630Word Count: 3331		21	Phone: (401) 793-8010
3822Fax: (401) 793-89443923Email: JMccaffery@lifespan.org4123Email: JMccaffery@lifespan.org4224			
 23 Email: JMccaffery@lifespan.org 24 24 25 26 Running Title: 27 BMI, Physical Activity and Inflammation 28 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 30 Word Count: 3331 		22	F_{ax} : (401) 793-8944
4023Email: JMccaffery@lifespan.org42244325442545264726482792727BMI, Physical Activity and Inflammation5128532954295530563059Word Count: 3331			1 dx. (401) 755-6544
 24 24 25 26 27 BMI, Physical Activity and Inflammation 28 29 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 30 Word Count: 3331 			
42 432444 452546 472647 482649 502727BMI, Physical Activity and Inflammation51 52 5328 5354 552956 57 5930Word Count: 3331		23	Email: JMccaffery@lifespan.org
 ⁴³ ²⁴ ⁴⁴ ⁴⁵ ²⁵ ⁴⁶ ⁴⁷ ²⁶ ^{Running Title:} ⁴⁹ ²⁷ ^{BMI, Physical Activity and Inflammation} ⁵¹ ²⁸ ⁵⁴ ²⁹ Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein ⁵⁶ ³⁰ Word Count: 3331 			
46 4726Running Title:48 49 5027BMI, Physical Activity and Inflammation51 52 52 53 54 552853 54 55 5729Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein56 57 5930Word Count: 3331		24	
46 4726Running Title:48 49 5027BMI, Physical Activity and Inflammation51 52 52 53 54 552853 54 55 5729Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein56 57 5930Word Count: 3331			
46 4726Running Title:48 49 5027BMI, Physical Activity and Inflammation51 52 52 53 54 552853 54 55 5729Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein56 57 5930Word Count: 3331		25	
4726Running Title:484927BMI, Physical Activity and Inflammation5027285329Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein5630Word Count: 333158591000		20	
 ⁴⁸ ⁴⁹ ⁵⁰ ⁵¹ ⁵² ⁵³ ⁵⁴ ⁵⁵ ⁵⁶ ⁵⁶ ⁵⁷ ⁵⁰ ⁵⁶ ⁵⁷ ⁵⁸ ⁵⁹ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁸ ⁵⁹ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁹ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁹ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁸ ⁵⁹ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁷ ⁵⁶ ⁵⁷ ⁵⁶<td></td><td>26</td><td>Denning Titler</td>		26	Denning Titler
 49 27 BMI, Physical Activity and Inflammation 51 28 53 54 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 56 30 Word Count: 3331 		26	Running Title:
 BMI, Physical Activity and Inflammation 28 28 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 30 Word Count: 3331 			
 28 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 30 Word Count: 3331 58 59 		27	BMI, Physical Activity and Inflammation
 52 28 53 54 29 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein 56 30 Word Count: 3331 58 59 			
 Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein Word Count: 3331 Word Count: 3331 		28	
 S4 S5 S6 S7 S0 Word Count: 3331 S8 S9 		20	
55 100 100 100 100 100 100 100 100 100 1		20	Kay Wanday MIDUS Intropollylar Adhasian Malagula 1 Ethningson C. Deseting D. (
56 57 30 Word Count: 3331 58 59		29	Key words: wildlos, infractional Adnesion wolecule-1, florinogen, C-Keactive Protein
57 30 Word Count: 3331 58 59			
58 59		30	Word Count: 3331
59			

1 2 3 4 5
6 7 8
9 10 11 12 13 14 15 16 17
18 19 20 21 22
22 23 24 25 26 27 28 29 20
30 31 32
33 34 35 36 37 38 39
40 41 42 43 44 45
45 46 47 48 49 50
51 52 53 54 55 56
56 57 58 59 60

31	ABSTRACT		
32	Objectives. Determine whether body mass index (BMI) and physical activity (PA) above, at or		
33	below MET-minute per week (MMW) levels recommended in the 2008 Physical Activity		
34	Guidelines interact or have additive effects on interleukin (IL)-6, C-reactive protein (CRP),		
35	fibrinogen, IL-6 soluble receptor (IL-6sr), soluble E-selectin and soluble intracellular adhesion		
36	molecule (sICAM)-1. Design. Archived cohort data (N=1254, age 54.5±11.7y, BMI		
37	29.8±6.6kg/m ²) from the National Survey of Midlife Development in the United States (MIDUS)		
38	Biomarkers Study were analyzed for concentrations of inflammatory markers using general		
39	linear models. MMW was defined as no regular exercise, <500 MMW, 500-1000 MMW, >1000		
40	MMW and BMI was defined as <25, 25-29.9, \geq 30 kg/m ² . Analyses were adjusted for age, sex,		
41	smoking and relevant medication use. Setting. Respondents reported to three centers to		
42	complete questionnaires and provide blood samples. Participants. Participants were men and		
43	women currently enrolled in the MIDUS Biomarker Project (N=1254, 93% non-hispanic white,		
44	average age 54.5y). Primary Outcome Measures. Concentration of serum IL-6, CRP,		
45	fibrinogen, IL-6sr, sE-selectin and sICAM. Results. Significant interactions were found		
46	between BMI and MMW for CRP and sICAM-1 (P's<0.05). CRP in overweight individuals was		
47	similar to obese when no PA was reported, but was similar to normal weight when any level of		
48	regular PA was reported. sICAM-1 was differentially lower in obese individuals who reported		
49	>1000 MMW compared to obese individuals reporting less exercise. Conclusion. The		
50	association of exercise with CRP and sICAM-1 differed by BMI, suggesting that regular exercise		
51	may buffer weight-associated elevations in CRP in overweight individuals while higher levels of		
52	exercise may be necessary to reduce sICAM-1 or CRP in obese individuals. Trial Registry.		
53	N/A.		

INTRODUCTION

Obesity paired with low physical activity is well known to increase morbidity and mortality related to cardiovascular disease (CVD)(1). It is less clear, however, whether the benefits of higher levels of physical activity differ among normal weight, overweight, and obese individuals. Chronic, low-grade inflammation, marked by elevations in cytokines, acute phase reactants and soluble adhesion molecules, is a developing CVD risk factor(2, 3). Circulating Interleukin-6 (IL-6) and, C-reactive protein (CRP) are both considered established inflammatory markers related to CVD(3). Fibrinogen, soluble intracellular adhesion molecule (sICAM-1) and soluble e-selectin (sE-selectin) also have key roles in the progression of CVD and have been associated with elevated risk(4-6). Obesity is strongly associated with greater concentrations of inflammatory markers(7, 8). Further, body fat distribution is also an important factor relating to inflammatory status. Accumulation of fat in visceral depots is more strongly associated with low-grade inflammation compared to accumulation of fat in subcutaneous or hip-region depots(9, 10). The effects of physical activity on markers of inflammation are more complex and may vary depending on body weight. A number of epidemiological studies have shown an inverse relationship between physical activity and CRP and IL-6, independent of obesity(11-16). Laboratory studies conducted in aerobically trained, typically normal weight, individuals have demonstrated that a single bout of exercise stimulates IL-6 release from skeletal muscle, which promotes anti-inflammatory effects (17-19), as opposed to adipose tissue-derived IL-6 that is associated with pro-inflammatory effects (20). Randomized controlled trials have also been conducted, often in populations that also tend to be overweight or obese, to examine the effects

Page 27 of 55

1

BMJ Open

2
~
4
5
3 4 5 6
7
7
8
9
10
11
12
13
14
15
16
8 9 10 11 12 13 14 15 16 17 18
18
10
19 20
20
21 22 23
22
22 23 24 25 26 27 28
24
25
26
27
28
29
30
31
31 32 33 34 35 36 37 38 39
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

76	of aerobic exercise interventions on inflammation and the results are mixed (21). Thus, the
77	contribution of physical activity to inflammation in the context of obesity remains unclear.
78	The purpose of our study was to disentangle the relative contributions of BMI and
79	physical activity recorded in MET-minutes per week (MMW) to circulating levels of IL-6, IL-6sr,
80	CRP, sICAM-1 and sE-selectin in middle-aged adults. MMW categories for this study were
81	determined using values put forth by the Physical Activity Guidelines for Americans, which
82	states that total weekly physical activity in the range of 500-1000 MET-minutes (approximately
83	equivalent to 150-300 minutes of moderate or 75-150 minutes of vigorous activity per week)
84	produces substantial health benefits for adults(22). We hypothesized that BMI and MMW would
85	interact, such that greater MMW reported would lessen the impact of obesity on markers of
86	inflammation.
87	
00	

88 MATERIALS AND METHODS

89 **Design and Sample**. This study was a cross-sectional analysis of archived data (BMI, 90 self-reported physical activity and inflammatory biomarker concentrations) from 1254 91 respondents who provided consent (as approved by The University of Wisconsin Madison Health 92 Sciences Institutional Review Board) and were subsequently enrolled in the National Survey of 93 Midlife Development in the United States (MIDUS) Biomarkers Study (23). The Biomarker 94 Project was one of 5 projects within MIDUS II, with the purpose of adding comprehensive 95 biological assessments on a subsample of the MIDUS participants to further understand age-96 related differences in physical and mental health. Participants were eligible for The Biomarker 97 Project if they were previously enrolled in MIDUS I, which recruited non-institutionalized, 98 English-speaking adults residing in the contiguous United States aged 25-74. The random digit

99	dialing sample for the parent study was selected from working telephone banks and a list of all		
100	individuals between the ages of 25 and 74 years within each household was generated in order to		
101	select a random respondent. Those who agreed to participate in the Biomarker Study stayed		
102	overnight at one of three General Clinical Research Centers: University of California Los		
103	Angeles, University of Wisconsin-Madison and Georgetown University. Upon arrival, each		
104	respondent provided a detailed medical history (including physical activity levels) and provided		
105	all prescription, over-the-counter, and alternative medications to be inventoried by project staff.		
106	Following an overnight stay, morning fasting blood samples were obtained. Cohorts were		
107	assessed between July 2004 and May 2009 as a follow up to MIDUS I respondents that were		
108	previously surveyed by the MacArthur Midlife Research Network between 1995 and 1996.		
109	Based on the sample of 1254 participants, 80% power was achieved to detect small effects of		
110	0.08 or greater with alpha level at 0.05 for a two-tailed test(24, 25).		
111	Anthropometrics. Height was measured in centimeters and recorded to the nearest		
112	millimeter. A single measure of WC was taken directly on the skin or over a single layer of light,		
113	close-fitting clothing at the narrowest point between ribs and the iliac crest in centimeters to the		
114	nearest millimeter. Weight was measured in kilograms and BMI was calculated by dividing		
115	body mass in kilograms by height in meters squared. BMI categories were organized into 3		
116	groups: normal weight (BMI \leq 24.9 kg/m ²), overweight (BMI \geq 25-29.9) and obese (BMI \geq 30).		
117	Categorizing Physical Activity by MET-Minutes per Week (MMW).		
118	The MMW variable was calculated using data provided in the medical history form. The		
119	form first described 3 types of regular physical activity(23):		
120	Vigorous: Which causes your heart to beat so rapidly you can feel it in your chest		
121	and you perform it long enough to work up a good sweat and breathe heavily (e.g.,		

BMJ Open

1				
2 3 4	122	competitive sports, running, vigorous swimming, high intensity aerobics, digging		
$\begin{array}{c} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 29 \\ 30 \\ 12 \\ 33 \\ 34 \\ 56 \\ 7 \\ 8 \\ 9 \\ 0 \end{array}$	123	in the garden, or lifting heavy objects).		
	124	Moderate: Which causes your heart rate to increase slightly and you typically		
	125	work up a sweat (e.g., leisurely sports like light tennis, slow or light swimming,		
	126	low intensity aerobics or golfing without a power cart, brisk walking, mowing the		
	127	lawn with a walking lawnmower).		
	128	Light: Which requires little physical effort (e.g., light housekeeping like dusting		
	129	or laundry, bowling, archery, easy walking, golfing with a power cart or fishing).		
	130	Keeping these definitions in mind, participants were asked if they engaged in regular physical		
	131	activity of any type for 20 minutes or more at least 3 times per week (yes or no). If participants		
	132	answered "yes", they entered up to 7 types of seasonal and/or non-seasonal exercise or activity		
	133	along with the frequency, duration and intensity.		
	134	MMW were calculated in a 2-step process. Step 1: subjects who reported no physical		
	135	activity (for whom no MMW calculations could be made) were designated as the no regular		
	136	exercise group (NRE). Step 2: For subjects who indicated that they performed regular physical		
	137	activity, total MMW were calculated by multiplying minutes per week by intensity level (1.1 for		
41 42	138	low, 3.0 for moderate and 6.0 for vigorous) and summed across each non-seasonal activity		
43 44 45	139	reported. Four groups reflecting participation in physical activity and whether or not their		
45 46 47	140	participation was below, at or above USDHHS guidelines were created: NRE (reported no		
48 49	141	regular physical activity), below recommended (reported <500 MMW), recommended (reported		
50 51 52	142	500-1000 MMW) and above recommended (reported >1000 MMW).		
52 53 54	143	Blood Collection, Processing and Assays. Participants were asked to avoid strenuous		
55 56 57 58	144	activity the day of blood collection. Venous blood samples were collected in 10 mL serum		

145	separator vacutainers following a 12-h overnight fast and processed at a General Clinical
146	Research Center using standardized procedures. Blood samples were not collected at any
147	specific point during the menstrual cycle in female participants. Briefly, following collection,
148	vacutainers were allowed to stand 15-30-min (2-h maximum) prior to centrifugation at 4°C for
149	20-min at 2000-3000 rpm. Serum samples were frozen and shipped to the MIDUS Biocore Lab
150	and treated and/or analyzed for inflammation markers (IL-6, IL-6sr, CRP, fibrinogen, sE-
151	Selectin and sICAM-1).
152	IL-6 and IL-6sr were assayed in the MIDUS Biocore Laboratory (University of Madison,
153	Madison WI) using Quantikine® High-sensitivity ELISA kits (cat# HS600B and cat# DR600,
154	R&D Systems, Minneapolis, MN). Plates were read at 490 and 450 nm, respectively for IL-6
155	and IL-6sr using a Dynex MRXe plate reader (Magellan Biosciences, Chantilly, VA). Intra-
156	assay and inter-assay precision (CV%) for IL-6 was approximately 4.1% and 13.0%. CV%
157	values for IL-6sr were 5.9-5.7% and 2.0%, respectively.
158	Assays for sICAM-1, sE-Selectin, fibrinogen and CRP were performed at the Laboratory
159	for Clinical Biochemistry Research (University of Vermont, Burlington, VT). Measurement of
160	sICAM-1 was completed using an ELISA assay (Parameter-Human sICAM-1 Immunoassay;
161	R&D Systems). Inter-assay precision for sICAM-1 was 5.0%. Measurement of sE-selectin was
162	completed using a high-sensitivity ELISA assay (Parameter Human sE-Selectin Immunoassay,
163	R&D Systems). Intra-assay and inter-assay precision for sE-selectin was 4.7-5.0% and 5.7-8.8%,
164	respectively. Fibrinogen was measured using the BNII nephelometer (N Antiserum to Human
165	Fibrinogen; Dade Behring Inc., Deerfield, IL). Intra-assay and inter-assay precision for
166	fibrinogen was 2.7% and 2.6%, respectively. CRP was analyzed using a BNII nephelometer

BMJ Open

1 2				
3 4	167	with a particle enhanced immunonepolometric assay. Intra-assay and inter-assay precision for		
5 6 7	168	CRP was 2.3-4.4% and 2.1-5.7%, respectively.		
8 9	169	Statistical Analyses. All variables were assessed for normality and non-normal data		
10 11 12 13 14	170	were log transformed, which included data for CRP, IL-6, IL-6sr, fibrinogen, sE-selectin and		
	171	sICAM-1. General Linear Models were performed to determine the relationship of MMW and		
15 16	172	BMI with the inflammatory markers. For each outcome, the ordinal MMW and BMI factors		
17 18 19	173	were entered as independent factors with an interaction term. If the interaction term was not		
20 21	174	significant, the interaction term was dropped and the model was re-fit for main effects only.		
22 23	175	Pairwise comparisons were assessed using post hoc univariate analyses with a Bonferroni		
24 25	176	adjustment for multiple comparisons. Covariates for all models included factors that are known		
26 27 28	177	to affect inflammatory status: age, sex, smoking and relevant medications (cholesterol-lowering,		
29 30	178	corticosteroids, anti-diabetic, antidepressant, hormone replacement and hormonal contraceptive).		
31 32 33	179	Race was initially included as a covariate; however, approximately 200 data points were lost in		
34 35	180	the analyses due to incomplete racial data. As race was not found to be a predictor of our		
36 37	181	dependent variables, with the exception of sICAM-1, race was excluded as a covariate to		
38 39 40	182	increase samples size in all analyses excluding sICAM-1. All statistical analyses were		
41 42	183	performed with SPSS v. 17 (Chicago, IL) and statistical significance was set $\alpha = 0.05$.		
43 44 45	184	In an exploratory analysis, we examined whether the relative effects of BMI and MMW		
46 47	185	on the inflammatory markers differed by sex in 3-way interaction models. As none of the		
48 49	186	interactions approached statistical significance (data not shown), sex was retained as a covariate		
50 51 52	187	in the models.		
53 54	188			
55 56 57	189			
57 58 59				
60		8		

3	
4 5	
5 6	
7 8 9 10	
8	
9 10	
11	
12 13	
14	
15	
16 17	
13 14 15 16 17 18 19 20	
19	
20 21	
22	
23 24	
21 22 23 24 25 26	
26	
27 28	
29	
30 21	
26 27 28 29 30 31 32 33	
32 33 34 35 36 37 38 39	
34 35	
36	
37	
30 39	
40	
41 42	
43	
44 45	
45 46	
47	
48 49	
50	
51	
52 53	
54	
55 56	
57	
58	
59 60	

190 **RESULTS**

1 2

191	Subject Characteristics. Table 1 presents anthropometric characteristics and circulating
192	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic
193	white, 56.8% female, and, on average, middle-aged and overweight. Of all the respondents,
194	14.9% were currently smoked, 27.8% were taking cholesterol lowering medication, 12.1%
195	corticosteroids, 10.4% anti-diabetic medication, 14.2% antidepressant medication, 7.3%
196	hormone replacement and 2.5% oral contraceptives. The percentage of participants with missing
197	data for each variable were as follows: 1.6% for CRP, 1.0% for sICAM-1, 1.0% for IL-6, 1.6%
198	for fibrinogen, 1.2% for sE-selectin, and 1.0% for IL-6sr.
199	CRP (Figure 1, Panel A) . We found a significant interaction between BMI and MMW
200	for CRP concentration (F=3.022, P=0.006). In post hoc comparisons, CRP levels were higher in
201	overweight and obese subjects compared to normal weight subjects among those who reported
202	no regular exercise (P's<0.001). However, among subjects who reported any amount of regular
203	exercise (<500, 500-1000 or >1000 MMW), CRP levels were significantly greater only in obese
204	subjects compared to both normal weight and overweight subjects (P's <0.01). In obese
205	individuals, CRP tended to be lower in those reporting >1000 MMW compared to those
206	reporting no regular exercise (P=0.053).
207	We also found main effects of BMI (F=130.873 P<0.001) and MMW (F=11.576,
208	P<0.001) on CRP. CRP was significantly greater with each increasing BMI category, in a dose-
209	dependent manner (P's<0.001). Compared to participants who reported no regular exercise,

- 210 CRP was significantly lower in those who reported 500-1000 and >1000 MMW (P's <0.01),
- 211 with a trend for lower CRP in those who reported <500 MMW of regular exercise (P=0.078).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

-	212	sICAM-1 (Figure 1, Panel B). We found a significant interaction between BMI and
; ;	213	MMW for sICAM-1 concentration (F=2.701, P=0.013). Levels of sICAM-1 were significantly
;	214	lower in obese subjects who reported >1000 MMW compared to obese subjects who reported no
0 1 2 3 4 5 6	215	regular exercise (P=0.014) and <500 MMW (P=0.026) and tended to be lower than levels in
	216	obese subjects who reported 500-1000 MMW (P=0.079). No differences in sICAM-1 by MMW
	217	were observed among normal weight or overweight individuals.
7 8	218	We also observed a main effect of BMI (F=6.060, P=0.002), such that sICAM-1 levels in

obese participants were significantly higher than levels found in both normal weight and
overweight participants (P's<0.01). No significant main effect of MMW was found for sICAM-1
(F=0.931, P=0.425).

IL-6 (Figure 1, Panel C). Both BMI and MMW had independent effects on circulating
concentrations of IL-6 (BMI: F=60.150, P<0.001, MMW: F=10.680, P<0.001), with no
significant interaction (F=1.21, P=0.297). We found a dose-dependent effect of BMI, such that
higher BMI levels were associated with significantly greater IL-6 (P's<0.001). Independent of
BMI, IL-6 was significantly lower in subjects who reported regular exercise (<500 MMW, 500-
1000 MMW and >1000 MMW) compared to those who reported no regular exercise (P's <0.01)
with no difference between levels of MMW.

Fibrinogen (Figure 1, Panel D). BMI significantly contributed to circulating levels of
fibrinogen (F=42.385, P<0.001), such that dose-dependent increases were observed for all BMI
levels (P's<0.01). While we observed a trend for lower fibrinogen with regular physical activity,
similar to that of IL-6, the effect did not reach statistical significance (F=2.187, P=0.088). We
observed no significant interaction between BMI and MMW for fibrinogen (F=1.680, P=0.122).

BMJ Open

1 2	
3 4	2
5 6 7	2
8 9	2
10 11	2
12 13 14	2
15 16	2
17 18 10	2
19 20 21	2
22 23	2
20 21 22 23 24 25 26 27 28	2
27 28	2
29	2
30 31 32 33	2
34 35	2
36 37 38	2
39 40	2
41 42	2
43 44 45	2
46 47	2
48 49 50	2
50 51 52	2
53 54	2
55 56 57	2
58 59	
60	

1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

234	sE-Selectin (1, Panel E). BMI significantly contributed to circulating levels of sE-
235	selectin (F=28.253, P<0.001) with no significant contribution by MMW (F=0.207, P=0.892).
236	Dose-dependent increases in sE-selectin were also observed across BMI levels (P's<0.01). We
237	observed no significant interaction between BMI and MMW for sE-selectin (F=0.570, P=0.755).
238	IL-6sr (Figure 1, Panel F). No significant main effects for BMI (F=1.783, P=0.169),
239	MMW (F=1.434, P=0.231) or their interaction (F=0.834, P=0.544) were detected for IL-6sr.
240	Waist Circumference (WC) and Inflammatory Markers (Supplemental Figure 1). A
241	secondary analysis was completed using WC and MMW as independent variables and the
242	complete results of these analyses are located in the supplemental information. Briefly, we
243	found a significant interaction between WC and MMW on sICAM-1. In individuals with an at-
244	risk WC (\geq 102.0 cm for men and \geq 88.0 cm for women), sICAM-1 was significantly lower in
245	those reporting 1000+ MMW compared to less than 500 MMW and tended to be lower in those
246	reporting no regular exercise. Overall, main effects were similar to those found for BMI and
247	MMW analyses. Having an at-risk WC was independently related to higher levels of CRP,
248	sICAM-1, IL-6, fibrinogen and sE-selectin. Independent of WC, any level of regular exercise
249	was related to lower levels of CRP, IL-6 with a similar tendency for fibrinogen.
250	DISCUSSION

The current study aimed to determine whether the impact of BMI and MMW on
inflammatory markers varied by level of overweight or obesity. For CRP and s-ICAM-1
regular physical activity appeared to diminish the effects of higher BMI compared to those who
reported no regular physical activity. In addition, we found that BMI was strongly and
independently related to greater concentrations of both established and emerging inflammatory

Page 35 of 55

1

BMJ Open

2	
3	
4	
5	
3 4 5 6 7	
ю	
7	
8	
9	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
13	
20	
22	
23	
24	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

markers that may increase CVD risk. Independent of BMI, regular physical activity was also
associated with lower IL-6, with a similar trend for fibrinogen. These results suggest that,
although obesity has a clear impact on inflammation, physical activity appears to mitigate at least
some of this effect.

261 For example, overweight individuals had CRP levels that were similar to levels observed 262 in obese individuals if they reported no regular exercise (4.05 and 4.83 µg/mL, respectively). 263 CRP levels greater than 3 µg/mL are typically associated with high CVD risk(26). In overweight 264 subjects who reported regular physical activity of at least 3, 20-minute sessions per week (be it 265 below [<500], within [500-1000] or above [>1000] USDHHS MMW recommendations), CRP 266 levels were lower and not significantly different from CRP levels found in normal weight 267 participants (). This suggests that increasing physical activity level to a minimum of 3 days per 268 week, at least 20 minutes per day, may improve CRP profiles among overweight individuals. 269 Obese individuals may require a higher level of regular physical activity in order to lower 270 inflammatory markers. While obese subjects also had greater levels of CRP and sICAM-1 271 compared to lean and overweight subjects, those who reported >1000 MMW (above the 272 USDHHS recommendation) had lower levels of sICAM-1 and tended to have lower CRP than 273 obese subjects reporting no regular physical activity. Taken together, we may speculate that 274 while physical activity levels currently recommended for the general population may reduce 275 particular inflammatory makers in overweight populations, obese populations may require 276 greater levels of physical activity above recommended values to reduce inflammatory markers 277 like CRP and sICAM-1.

As expected, strong main effects of BMI were observed for CRP, IL-6, fibrinogen,
sICAM-1 and sE-selectin, in agreement with previous work (27-30). Independent of BMI effects,

280	our results suggest that physical activity has differentiating effects on inflammatory markers.
281	Individuals reporting no regular physical activity had higher levels of IL-6 with a tendency for
282	higher fibrinogen, compared to those reporting any level of regular physical activity (<500, 500-
283	1000 or >1000 MMW). Similar results have been observed in the MONItoring trends and
284	determinants in CArdiovascular disease (MONICA) study(31), the National Health and Nutrition
285	Examination Survey (NHANES III)(12, 14) and the Multi-Ethnic Study of Atherosclerosis
286	(MESA)(32), such that both increased frequency and intensity of physical activity have been
287	related to lower IL-6 and fibrinogen. Our findings add to these prior results by standardizing
288	levels of physical activity by using USDHHS. Our results suggest that, regular physical activity
289	at any level (<500, 500-1000, >1000) appears to be associated with lower levels of IL-6 and
290	possibly fibrinogen, independent of BMI.
291	Although IL-6 produced in hypertrophied adipose tissue(33, 34) initiates the acute phase
292	response, marked by the release of hepatic CRP (35, 36), an interaction between BMI and
293	physical activity was detected for CRP, but not IL-6. While IL-6 and CRP were significantly
294	correlated (r=0.514, see Supplemental Table 1), this correlation suggests that IL-6 levels do not
295	fully explain CRP levels at any given moment. Further, CRP is a more stable biomarker, owing
296	to its substantially longer plasma half-life (37), which may improve our ability to detect
297	interaction effects in CRP compared to IL-6.
298	Interestingly, our results also suggest that regular exercise may have a more profound
299	impact on lowering classical markers of inflammation and less impact on the inflammatory status
200	

- of the endothelium. Regular physical activity has reliably been associated with lower levels of
- IL-6 and CRP, both classical inflammatory markers related to adipose and systemic
- inflammation(38). However, regular exercise appeared to have no independent impact on

Page 37 of 55

1

BMJ Open

1		
2 3 4	303	markers of endothelial activation, particularly sE-selectin. Higher levels of exercise were related
$5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 23 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 23 \ 4 \ 5 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 $	304	to lower sICAM-1 in obese individuals only. In one prior study, inverse relationships between
	305	physical activity and sICAM-1 and sE-selectin were reported in drug-treated hypertensive men
	306	(39). Thus, further research is necessary to understand mechanisms underlying differential
	307	associations of exercise with systemic and endothelial inflammation.
	308	Several limitations must be addressed. First, the cross-sectional design does not allow us
	309	to infer causal relationships. Prospective and interventional designs are necessary to confirm our
	310	findings. No objective measures of physical activity were available in the MIDUS sample.
	311	Therefore, the use of self-report physical activity data may have diminished our ability to detect
	312	effects. However, in addition to being in line with previous studies using self-report physical
	313	activity, our findings are also in line with previous studies(40, 41) that demonstrated that higher
	314	cardiorespiratory fitness, as measured by indirect calorimetry, was associated with lower levels
	315	of inflammation independent of visceral adiposity or BMI. Another limitation is that the sample
	316	was predominantly comprised of non-Hispanic white individuals, suggesting that findings may
	317	not extend to all ethnicities. Finally, BMI and physical activity variables are correlated,
	318	potentially raising the concern of small sample sizes in specific groups crossed by BMI and
	319	MMW. However, the smallest group for analyses still contained 54 individuals (normal weight
	320	individuals reporting no exercise).
	321	In summary, our results demonstrate both interactive and independent influences of BMI
	322	and levels of physical activity on both established and emerging markers of inflammation.
	323	Inflammation is both a consequence of obesity and a mechanism promoting CVD. Regular
	324	physical activity appears to mitigate the effects of higher BMI on some inflammatory markers,
54 55	325	particularly CRP, which is strongly implicated in CVD. Importantly, while any level of regular
56 57 58		
59 60		
		11

1	
3 4	326
5 6 7	327
7 8 9	328
10 11	329
12 13 14	330
14 15 16	331
17 18	332
19 20 21	333
22 23	334
24 25	335
26 27 28	336
29 30	337
31 32	338
33 34 35	339
36 37	340
38 39 40	341
40 41 42	342
43 44	343
45 46 47	344
48 49	345
50 51 52	346
52 53 54	347
55 56	348
57 58	
59 60	

physical activity may help reduce inflammation in overweight individuals, similar effects in
obese individuals may require levels of physical activity that are greater than currently

recommended by the USDHHS for general health. r. Page 39 of 55

349

350

351

ACKNOWLEDGEMENTS

BMJ Open

We thank the staff of the Clinical Research Centers at the University of Wisconsin-Madison,

UCLA, and Georgetown University for their effort in conducting the original data collection.

1
2
3
4
5
5
6
7
8
à
10
10
11
12
13
10
14
15
16
17
10
10
19
20
2 3 4 5 6 7 8 9 10 1 12 3 4 15 16 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3 3 4 5 6 7 8 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
22
22
23
24
25
26
20
27
28
29
20
30
31
32
33
24
34
35
36
37
20
30
39
40
41
42
+2
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58
оо 59
5 U

60

352 353 FUNDING 354 KS was supported through a T32 Training Fellowship (Training in Behavioral and Preventive 355 Medicine; T32 HL076134). The original research was supported by a grant from the National 356 Institute on Aging (P01-AG020166) to conduct a longitudinal follow-up of the MIDUS (Midlife 357 in the U.S.) Investigation. 358 359 The original study was supported by the John D. and Catherine T. MacArther Foundation 360 Research Network on Successful Midlife Development and by the following grants: M01-361 RR023942 (Georgetown), M01-RR00865 (UCLA) from the General Clinical Research Centers 362 Program and 1UL1RR025011 (UW) from the Clinical and Translational Science Award (CTSA) 363 program of the National Center for Research Resources, National Institutes of Health. 364 365 **CONFLICTS OF INTEREST** 366 The authors declare no conflict of interest. 367 368 CONTRIBUTORSHIP 369 KS, JMM and RRW each made substantial contributions to the conception and design of the 370 study, data acquisition, analysis and interpretation, as well as to drafting and revision for

371 substantial intellectual content. All authors made final approval of the version to be published.

1		
2 3	272	
4	372	
5 6 7	373	DATA SHARING STATEMENT
8 9	374	Data and documentation for MIDUS studies are available at the Inter-university Consortium for
10 11 12	375	Political and Social Research (ICPSR). http://www.icpsr.umich.edu/icpsrweb/landing.jsp
12 13 14	376	
15 16	377	ARTICLE SUMMARY
17 18 19	378	 Article focus Systemic inflammation is related to the progression of
20 21	379	cardiovascular disease.Independent of obesity, physical activity is inversely related to
22 23	380	concentrations of well-established inflammatory biomarkers, such as C-reactive protein (CRP) or interleukin-6 (IL-6).
24 25 26	381	 This article evaluates interactive effects of body mass index and physical activity on established inflammatory markers, CRP,
27 28	382	IL-6, and emerging inflammatory markers, fibrinogen, soluble intracellular adhesion molecule (sICAM)-1, soluble E-selectin,
29 30	383	and IL-6 soluble receptor.
31 32 33	384	 Key messages Interactive effects of body mass index and physical activity
34 35	385	were observed for CRP, such that regular physical activity reported by overweight individuals was related to significantly
36 37 38	386	lower CRP levels compared to those reported no regular activity.
39 40	387	 Independent of BMI, regular physical activity was related to lower IL-6, with a trend for lower fibrinogen
41 42	388	 Physical activity had no independent effect on circulating markers related to endothelial inflammation, such as sICAM-1
43 44 45	389	or sE-selectin.
46 47	390	 Strengths and limitations 1254 adults from the National Survey of Midlife Development
48 49 50	391	in the United States (MIDUS) Biomarker Project were analyzed. Statistical analyses were adjusted for age, sex,
50 51 52	392	smoking, and relevant medication use. A strength of this paper is categorizing physical activity levels based on national
53 54	393	recommendations. This data may be used to determine appropriate levels of physical activity necessary for reducing
55 56 57	394	inflammation in overweight and obese adults. However, cross- sectional data is limited, as causal inferences cannot be
57 58		obtained. A second limitation is that the sample was
59		predominantly comprised of non-Hispanic white individuals,
60		therefore findings may not extend to all ethnicities.
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4	395	REFERENCES		
5 6 7	396	1. E	Blair SN, Brodney S. Effects of physical inactivity and obesity on morbidity and	
7 8 9	397	mortality	y: current evidence and research issues. Med Sci Sports Exerc. 1999;31(11 Suppl):S646-	
10 11	398	62. Epub	b 1999/12/11.	
12 13	399	2. H	Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-7.	
14 15 16	400	Epub 20	06/12/15.	
17 18	401	3. K	Koenig W, Khuseyinova N, Baumert J, et al. Increased concentrations of C-reactive	
19 20 21	402	protein a	and IL-6 but not IL-18 are independently associated with incident coronary events in	
22 23	403	middle-a	aged men and women: results from the MONICA/KORA Augsburg case-cohort study,	
24 25	404	1984-20	02. Arterioscler Thromb Vasc Biol. 2006;26(12):2745-51. Epub 2006/09/30.	
26 27 28	405	4. P	Papageorgiou N, Tousoulis D, Siasos G, et al. Is fibrinogen a marker of inflammation in	
29 30	406	coronary	y artery disease? Hellenic J Cardiol. 2010;51(1):1-9. Epub 2010/02/02.	
31 32	407	5. S	Schmidt C, Hulthe J, Fagerberg B. Baseline ICAM-1 and VCAM-1 are increased in	
33 34 35	408	initially	healthy middle-aged men who develop cardiovascular disease during 6.6 years of	
36 37	409	follow-u	ıp. Angiology. 2009;60(1):108-14. Epub 2008/05/28.	
38 39	410	6. I	Demerath E, Towne B, Blangero J, et al. The relationship of soluble ICAM-1, VCAM-1,	
40 41 42	411	P-selecti	in and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann	
43 44	412	Hum Bio	ol. 2001;28(6):664-78. Epub 2001/12/01.	
45 46 47	413	7. F	Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol.	
48 49	414	2009;6(6	6):399-409. Epub 2009/04/29.	
50 51	415	8. 0	Calabro P, Yeh ET. Obesity, inflammation, and vascular disease: the role of the adipose	
52 53 54	416	tissue as	an endocrine organ. Subcell Biochem. 2007;42:63-91. Epub 2007/07/07.	
55 56				
57 58				
59 60				

2				
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 1\\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	417	9. Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue		
	418	volumes are cross-sectionally related to markers of inflammation and oxidative stress: the		
	419	Framingham Heart Study. Circulation. 2007;116(11):1234-41. Epub 2007/08/22.		
	420	10. Mathieu P, Poirier P, Pibarot P, et al. Visceral obesity: the link among inflammation,		
	421	hypertension, and cardiovascular disease. Hypertension. 2009;53(4):577-84. Epub 2009/02/25.		
	422	11. Reuben DB, Judd-Hamilton L, Harris TB, et al. The associations between physical		
	423	activity and inflammatory markers in high-functioning older persons: MacArthur Studies of		
	424	Successful Aging. J Am Geriatr Soc. 2003;51(8):1125-30. Epub 2003/08/02.		
	425	12. King DE, Carek P, Mainous AG, 3rd, et al. Inflammatory markers and exercise:		
	426	differences related to exercise type. Med Sci Sports Exerc. 2003;35(4):575-81. Epub 2003/04/04.		
	427	13. Wannamethee SG, Lowe GD, Whincup PH, et al. Physical activity and hemostatic and		
	428	inflammatory variables in elderly men. Circulation. 2002;105(15):1785-90. Epub 2002/04/17.		
	429	14. Abramson JL, Vaccarino V. Relationship between physical activity and inflammation		
	430	among apparently healthy middle-aged and older US adults. Arch Intern Med.		
	431	2002;162(11):1286-92. Epub 2002/06/01.		
	432	15. Geffken DF, Cushman M, Burke GL, et al. Association between physical activity and		
	433	markers of inflammation in a healthy elderly population. Am J Epidemiol. 2001;153(3):242-50.		
	434	Epub 2001/02/07.		
	435	16. Taaffe DR, Harris TB, Ferrucci L, et al. Cross-sectional and prospective relationships of		
	436	interleukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur		
	437	studies of successful aging. J Gerontol A Biol Sci Med Sci. 2000;55(12):M709-15. Epub		
52 53	438	2000/12/29.		
54 55				
56 57				
58 59				

1 2			
3 4	439	17.	Starkie R, Ostrowski SR, Jauffred S, et al. Exercise and IL-6 infusion inhibit endotoxin-
5 6	440	induce	d TNF-alpha production in humans. FASEB J. 2003;17(8):884-6. Epub 2003/03/11.
7 8 9	441	18.	Pedersen BK, Steensberg A, Fischer C, et al. Exercise and cytokines with particular focus
10 11	442	on mus	scle-derived IL-6. Exerc Immunol Rev. 2001;7:18-31. Epub 2001/10/03.
12 13	443	19.	Pedersen BK, Steensberg A, Fischer C, et al. The metabolic role of IL-6 produced during
14 15 16	444	exercis	se: is IL-6 an exercise factor? Proc Nutr Soc. 2004;63(2):263-7. Epub 2004/08/06.
17 18	445	20.	Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white
19 20	446	adipos	e tissue. Br J Nutr. 2004;92(3):347-55. Epub 2004/10/08.
21 22 23	447	21.	Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic
24 25	448	inflam	mation. Clin Chim Acta. 2010;411(11-12):785-93. Epub 2010/03/02.
26 27 28	449	22.	USDHHS, editor. 2008 Physical Activity Guidelines for Americans. Washington
20 29 30	450	DC200	08.
31 32	451	23.	C Ryff DA, JS Ayanian, DS carr, PD Cleary, C Coe, R Davidson, RF Krueger, ME
33 34 35	452	Lachm	an, NF Marks, DK Mroczek, T Seeman, MM Seltzer, BH Singer, RP Sloan, PA Tun, M
36 37	453	Weins	tein, D Williams. National Survey of Midlife Development in the United State (MIDUS II),
38 39	454	2004-2	2006. Inter-university Consortium for Political and Social Research (ICPSR) [distrubutor].
40 41 42	455	2011.	
43 44	456	24.	Kraemer H. How Many Subjects? Statistical Power Analysis in Research: SAGE
45 46 47	457	Public	ations, Inc; 1987.
47 48 49	458	25.	Cohen J. Statistical Power Analysis for the Behavioral Sciences. Second ed: Lawrence
50 51	459	Erlbau	m Associates; 1998.
52 53 54	460	26.	Bassuk SS, Rifai N, Ridker PM. High-sensitivity C-reactive protein: clinical importance.
55 56 57 58 59 60	461	Curr P	robl Cardiol. 2004;29(8):439-93. Epub 2004/07/20.

1

2			
3 4	462	27.	Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum
5 6 7	463	concer	ntrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract. 2005;69(1):29-35. Epub
7 8 9	464	2005/0	06/16.
10 11	465	28.	Bastard JP, Jardel C, Bruckert E, et al. Elevated levels of interleukin 6 are reduced in
12 13 14	466	serum	and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol
14 15 16	467	Metab	. 2000;85(9):3338-42. Epub 2000/09/22.
17 18	468	29.	Ditschuneit HH, Flechtner-Mors M, Adler G. Fibrinogen in obesity before and after
19 20 21	469	weight	t reduction. Obes Res. 1995;3(1):43-8. Epub 1995/01/01.
22 23	470	30.	Straczkowski M, Lewczuk P, Dzienis-Straczkowska S, et al. Elevated soluble
24 25	471	interce	ellular adhesion molecule-1 levels in obesity: relationship to insulin resistance and tumor
26 27 28	472	necros	is factor-alpha system activity. Metabolism. 2002;51(1):75-8. Epub 2002/01/10.
29 30	473	31.	Autenrieth C, Schneider A, Doring A, et al. Association between different domains of
31 32	474	physic	al activity and markers of inflammation. Med Sci Sports Exerc. 2009;41(9):1706-13. Epub
33 34 35	475	2009/0	08/07.
36 37	476	32.	Majka DS, Chang RW, Vu TH, et al. Physical activity and high-sensitivity C-reactive
38 39	477	protein	n: the multi-ethnic study of atherosclerosis. Am J Prev Med. 2009;36(1):56-62. Epub
40 41 42	478	2008/1	11/18.
43 44	479	33.	Day CP. From fat to inflammation. Gastroenterology. 2006;130(1):207-10. Epub
45 46 47	480	2006/0	01/13.
47 48 49	481	34.	Fain JN, Madan AK, Hiler ML, et al. Comparison of the release of adipokines by adipose
50 51	482	tissue,	adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose
52 53 54	483	tissues	s of obese humans. Endocrinology. 2004;145(5):2273-82. Epub 2004/01/17.
55 56			
57			
59			
57 58			

Page 45 of 55

1

BMJ Open

2						
3 4	484	35.	Castell JV, Gomez-Lechon MJ, David M, et al. Interleukin-6 is the major regulator of			
5 6	485	acute	phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237-9. Epu			
7 8 9	486	1989/	39/01/02.			
10 11	487	36.	Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem			
12 13	488	1990;	265(3):621-36. Epub 1990/02/01.			
14 15 16	489	37.	Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of			
17 18	490	devel	oping type 2 diabetes mellitus. JAMA. 2001;286(3):327-34. Epub 2001/07/24.			
19 20 21	491	38.	Mathieu P, Lemieux I, Despres JP. Obesity, inflammation, and cardiovascular risk. Clin			
21 22 23	492	Pharn	nacol Ther. 2010;87(4):407-16. Epub 2010/03/05.			
24 25	493	39.	Hjelstuen A, Anderssen SA, Holme I, et al. Markers of inflammation are inversely related			
26 27 28	494	to phy	vsical activity and fitness in sedentary men with treated hypertension. Am J Hypertens.			
29 30	495	2006;	19(7):669-75; discussion 76-7. Epub 2006/07/04.			
31 32 22	496	40.	Church TS, Barlow CE, Earnest CP, et al. Associations between cardiorespiratory fitnes			
33 34 35	497	and C	2-reactive protein in men. Arterioscler Thromb Vasc Biol. 2002;22(11):1869-76. Epub			
36 37	498	2002/	/11/12.			
38 39 40	499	41.	Arsenault BJ, Cartier A, Cote M, et al. Body composition, cardiorespiratory fitness, and			
40 41 42	500	low-g	grade inflammation in middle-aged men and women. Am J Cardiol. 2009;104(2):240-6.			
43 44	501	Epub	2009/07/07.			
45 46 47	502					
48 49	503					
50 51 52	504					
52 53 54	505					
55 56 57	506					
58 59						
60			2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			
			i or peer review only - nith windohen only steranout Anonth Anonthe System			

1		
2 3 4	507	FIGURE AND TABLE LEGENDS
5 6 7	508	
8 9	509	
10 11	510	Figure 1: Inflammatory Markers. Data from 1254 men and women in MIDUS. Joint
12 13 14	511	association of BMI category (normal, overweight and obese) and MMW category (no regular
15 16	512	exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C),
17 18 19	513	fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex,
20 21	514	smoking and relevant medication use. The analysis for sICAM-1 was further adjusted for race.
22 23	515	Error bars represent SEM. BMI=BMI main effect P value, MMW=MMW main effect P value,
24 25 26	516	INT=interaction effect P value.
27 28	517	
29 30	518	
31 32 33	519	Table 1: Subject Characteristics. BMI = body mass index; CRP = C-reactive protein; IL =
34 35	520	interleukin; IL-6sr = IL-6 soluble receptor; MMW = MET-Minutes per Week; sE-Selectin =
36 37 28	521	soluble E-Selectin; sICAM-1= soluble intracellular adhesion molecule-1.
38 39 40	522	
41 42		
43		
44 45		
46		
47 48		
49		
50		
51 52		
53		
54		
55 56		
57		
58 59		
60		22

 BMJ Open

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any pre-specified hypotheses	3
Methods	•		
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	4
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4-7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	4-7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	7
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	N/A

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	8
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	8
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/A
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	8-10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	8-10
		(b) Report category boundaries when continuous variables were categorized	8-10
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	14
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information	1		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Demographic	BMI < 25	BMI 25-29.9	BMI ≥30	Overall
	N=298	N=440	N=516	N = 1254
Variables]	Mean ±SD	
Age (years)	54.6 ± 12.8	56.4 ± 11.7	54.6 ± 11.2	54.5 ± 11.7
Gender (%)				
Male	31.2	52.7	42.1	43.20
Female	68.8	47.3	57.9	56.80
Race (%)				
Non-Hispanic White	94.0	94.0	90.3	92.60
Hispanic	0.4	0.8	0.3	0.05
African American	1.9	1.6	4.0	2.60
Asian/Pacific Islander	0.7	0.3	0.0	0.30
Native American	1.1	0.8	2.0	1.30
Other	1.9	2.6	3.5	2.30
Medication Use (%)				
Cholesterol-Lowering	13.1	32.3	32.6	27.80
Corticosteroids	12.8	12.5	11.4	12.10
Anti-Diabetic	4.7	8.4	15.3	10.40
Antidepressant	14.4	13.4	16.9	14.2
Hormone Replacement Therapy	9.4	8.6	5.0	7.3
Oral Contraceptive	3.7	3.4	1.0	2.5
Currently Smoking	17.8	14.1	14.0	14.90
BMI (kg/m ²)	22.7 ± 1.8	27.4 ± 1.4	35.9 ± 5.7	29.8 ± 6.6
IL-6 (pg/mL)	2.4 ± 3.1	2.7 ± 2.48	3.7 ± 3.2	3.0 ± 3.1
IL-6sr (pg/mL)	34473.1 ± 10861.9	35337.4 ± 10065.1	35475.7 ± 10325.7	35184.7 ± 10359.1
CRP (µg/mL)	1.5 ± 2.5	2.5 ± 4.0	4.4 ± 5.9	3.0 ± 4.8
Fibrinogen (mg/dL)	315.8 ± 75.9	343.2 ± 82.1	373 ± 92.1	348.9 ± 87.9
sE-Selectin (ng/mL)	36.9 ±19.6	41.2 ± 20.6	49.1 ± 24.7	43.4 ± 22.7
sICAM-1 (ng/mL)	284.8 ± 122.0	276.2 ± 99.9	301.4 ± 123.1	288.6 ± 115.6

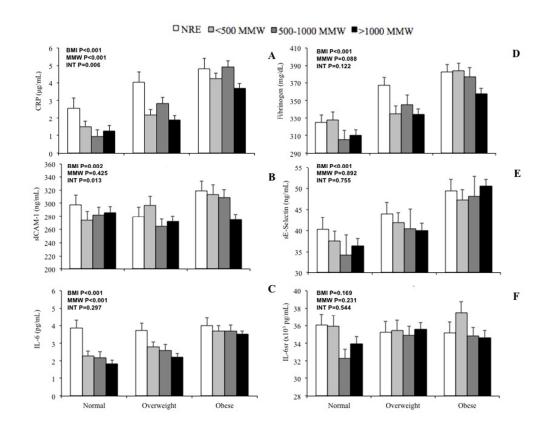


Figure 1: Inflammatory Markers. Data from 1255 men and women in MIDUS. Joint association of BMI category (normal, overweight and obese) and MMW category (no regular exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C), fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex, smoking and relevant medication use. Error bars represent SEM. BMI=BMI main effect P value, MMW=MMW main effect P value, INT=interaction effect P value. 292x229mm (72 x 72 DPI)

BMJ Open

Waist Circumference (WC) and MET-Minutes per Week (MMW)

CRP (Supplementary Figure 1, panel A). We found no significant interaction effect between WC and MMW for CRP (F=1.426, P=0.234). We found significant main effects for WC (F=159.669, P<0.001) and MMW (F=9.766, P<0.001) on circulating CRP. CRP levels were lower in participants who reported a normal waist circumference and any level of regular exercise (<500, 500-1000, and >1000 MMW), compared to those with an at-risk waist circumference (P's<0.001) and those no regular exercise (P's<0.05).

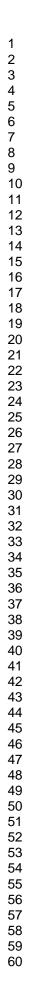
sICAM-1 (Supplementary Figure 1, panel B). We found a significant interaction effect between WC and MMW for sICAM-1 (F=4.846, P=0.002). While sICAM-1 levels were not significantly difference across MMW categories in individuals with a normal WC (P's>0.05), in individuals with an at-risk WC, sICAM-1 was significantly lower in those reporting 1000+ MMW compared to less than 500 MMW (P=0.007) and tended to be lower in those reporting no regular exercise (P=0.072). Similar to BMI, waist circumference independently contributed to sICAM-1 (F=26.841,, P<0.001), such that values were greater in subjects with an at-risk WC compared to those with a normal WC (P <0.001). No effect of MMW was observed (F=1.055, P=0.367) for sICAM-1.

IL-6 (Supplementary Figure 1, panel C). We found no significant interaction effect between WC and MMW for IL-6 (F=1.282, P=0.217). We found significant main effects for waist circumference (F=84.441, P<0.001) and MMW (F=10.255, P<0.001), such that IL-6 levels were lower in participants who reported an normal waist circumference and any level of regular exercise (<500, 500-1000, and >1000 MMW), compared to those with an at risk waist circumference (P's<0.001) and those reporting no regular exercise (P's<0.05).

Fibrinogen (Supplementary Figure 1, panel D). We found no significant interaction effect between WC and MMW for fibrinogen (F=2.019, P=0.110). Waist circumference also impacted fibrinogen (F=38.960, P<0.001), such that values were greater in subjects with an atrisk waist circumference compared to those with a normal waist circumference (P's <0.001). The effect of MMW on fibrinogen bordered on statistical significance (F=2.245, P=0.081), such that values were lower with in individuals who reported greater MMW.

sE-Selectin (Supplementary Figure 1, panel E). We found no significant interaction between WC and MMW for sE-Selectin (F=0.041, P=0.989). Waist circumference also independently contributed to sE-selectin (F=40.967, P<0.001), such that values were greater in subjects with an at-risk waist circumference compared to those with a normal waist circumference (P <0.001). No effect of MMW was observed for sE-selectin (F=0.172, P=0.916).

IL-6sr (Supplementary Figure 1, panel F). We found no significant interaction effect between WC and MMW for IL-6sr (F=0.769, P=0.511). Like BMI, we found no main effects for waist circumference (F=3.505, P=0.061) or MMW on IL-6sr (F=1.158, P=0.325).


Interrelationship of Inflammatory Markers. Correlations between all inflammatory markers are shown in Supplementary Table 1.

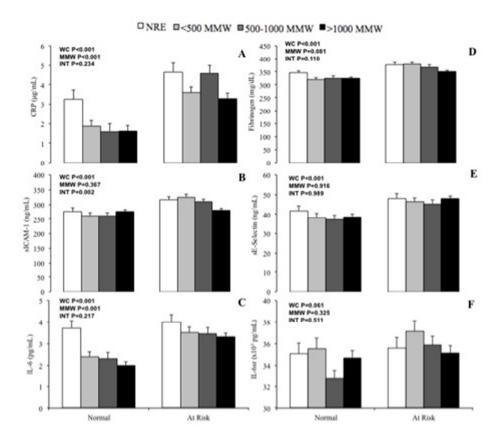

BMJ Open

Figure Legend

Supplemental Figure 1. Waist Circumference (WC), MET Minutes per Week (MMW) and Inflammatory Markers. Data from 1255 men and women in MIDUS. Joint association of WC category (normal [$(\geq 102.0 \text{ cm for men and } \geq 88.0 \text{ cm for women}$], at risk [(>102.0 cm for men and >88.0 cm for women]) and MMW category (no regular exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C), fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex, smoking and relevant medication use. Error bars represent SEM. WC=WC main effect, MMW=MMW main effect,

INT=interaction effect.

Supplemental Figure 1. Waist Circumference (WC), MET Minutes per Week (MMW) and Inflammatory Markers. Data from 1255 men and women in MIDUS. Joint association of WC category (normal [(≥102.0 cm for men and ≥88.0 cm for women], at risk [(>102.0 cm for men and >88.0 cm for women]) and MMW category (no regular exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C), fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex, smoking and relevant medication use. Error bars represent SEM. WC=WC main effect, MMW=MMW main effect,

INT=interaction effect. 165x147mm (72 x 72 DPI)

	IL-6	IL-6sr	Fibrinogen	CRP	sE-Selectin
IL-6					
IL-6sr	0.037				
Fibrinogen	0.417**	0.017			
CRP	0.514**	0.053	0.513**		
sE-Selectin	0.213**	0.035	0.104**	0.156**	
sICAM-1	0.134**	0.140**	0.092**	0.144**	0.041

Supplemental Table 1. Correlations of Inflammatory Biomarkers. IL-6 = Interleukin-6, IL-6sr = IL-6 soluble receptor, CRP = C-reactive protein, sE-Selectin = soluble E-Selectin and sICAM-1 = soluble intracellular adhesion molecule – 1. * denotes significance at $p \le 0.05$, ** denotes significance at $p \le 0.001$.

Contributions of Body Mass Index and Exercise Habits on Inflammatory Markers: A Cohort Study of Middle Aged Adults Living in the United States

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-002623.R2
Article Type:	Research
Date Submitted by the Author:	08-Apr-2013
Complete List of Authors:	Strohacker, Kelley McCaffery, Jeanne wing, rena
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Immunology (including allergy)
Keywords:	Immunology < BASIC SCIENCES, EPIDEMIOLOGY, Public health < INFECTIOUS DISEASES

1		
2 3	1	Contributions of Doda Money Indon and Francisco Holite on Inflammations Manhama A
4	1 2	Contributions of Body Mass Index and Exercise Habits on Inflammatory Markers: A
5	2	Cohort Study of Middle Aged Adults Living in the United States
6		
7 0	4	
8 9	5	
10	6	Kelley Strohacker, Ph.D. ^a , Rena R. Wing, Ph.D. ^a , and Jeanne M. McCaffery, Ph.D. ^a
11	7	
12	8	
13	9	
14	10	^a The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence
15	11	RI
16	12	
17	13	
18	14	
19 20	11	
20 21	15	Corresponding Author
22	15	Corresponding Author
23	10	Looma M. McCofferry Dh.D.
24	16	Jeanne M. McCaffery, Ph.D.
25	4 17	
26	17	Associate Professor of Psychiatry and Human Behavior (Research)
27 29	10	
28 29	18	The Miriam Hospital Weight Control and Diabetes Research Center
30		
31	19	196 Richmond Street
32		
33	20	Providence, RI 02904
34		
35 36	21	Phone: (401) 793-8010
37		
38	22	Fax: (401) 793-8944
39		
40	23	Email: JMccaffery@lifespan.org
41		
42	24	
43		
44 45	25	
45 46	20	
40 47	26	Running Title:
48	20	Running Thie.
49	27	
50	27	BMI, Physical Activity and Inflammation
51		
52	28	
53		
54 55	29	Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein
55 56		
50 57	30	Word Count: 3931
58		
59		
60		

31

2
3
4
-
2 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 3 4 5 6 7 8 9 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
6
7
~
8
9
10
10
11
12
12
13
14
15
16
10
17
18
10
19
20
21
22
22
23
24
25
25
26
27
21
28
29
30
50
31
32
33
55
34
35
36
30
37
38
30
59
40
41
42
43
44
45
46
40 47 48
18
40
49
50
50 51 52 53 54 55
51
52
53
51
54
55
56
57
57
58
56 57 58 59
00

ARTICLE SUMMARY	32
Article focus	
• Systemic inflammation is related to the progression of	33
cardiovascular disease.	.34
• Independent of obesity, physical activity is inversely related	tð 1
such as C-reactive protein (CRP) or interleukin-6 (IL-6)	35
• This article evaluates interactive effects of body mass index	and
physical activity on established inflammatory markers, CRP.	36
IL-6, and emerging inflammatory markers, fibrinogen, solub	, 10
intropollular adhagian malagula (aICAM) 1. galubla E. galagt	.37
intracellular adhesion molecule (sICAM)-1, soluble E-select	ш,
and IL-6 soluble receptor.	38
Key messages	39
• Interactive effects of body mass index and physical activity	
were observed for CRP, such that regular physical activity	.40
reported by overweight individuals was related to significant lower CRP levels compared to those reported no regular	lŷ
lower extra levels compared to those reported no regular	41
activity.	••
• Independent of BMI, regular physical activity was related to	42
lower IL-6, with a trend for lower fibrinogen	14
• Physical activity had no independent effect on circulating	12
 Physical activity had no independent effect on circulating markers related to endothelial inflammation, such as sICAM or sE-selectin 	-1
or sE-selectin.	44
	44
Strengths and limitations	45
• 1254 adults from the National Survey of Midlife Developme	
in the United States (MIDUS) Biomarker Project were	46
analyzed. Statistical analyses were adjusted for age, sex,	40
smoking, and relevant medication use. A strength of this pa	n ar -
is categorizing physical activity levels based on national	41/
recommendations. This data may be used to determine	10
appropriate levels of physical activity necessary for reducing	48
inflammation in overweight and obese adults. However, cro	
sectional data is limited, as causal inferences cannot be	×49
obtained. A second limitation is that the sample was	50
predominantly comprised of non-Hispanic white individuals	
therefore findings may not extend to all ethnicities.	51
	52

BMJ Open

1		
2 3 4	54	
5 6 7	55	ABSTRACT
7 8 9	56	Objectives. Determine whether body mass index (BMI) and physical activity (PA) above, at or
10 11	57	below MET-minute per week (MMW) levels recommended in the 2008 Physical Activity
12 13	58	Guidelines interact or have additive effects on interleukin (IL)-6, C-reactive protein (CRP),
14 15 16	59	fibrinogen, IL-6 soluble receptor (IL-6sr), soluble E-selectin and soluble intracellular adhesion
17 18	60	molecule (sICAM)-1.
19 20 21	61	Design. Archived cohort data (N=1254, age 54.5±11.7y, BMI 29.8±6.6kg/m ²) from the
21 22 23	62	National Survey of Midlife Development in the United States (MIDUS) Biomarkers Study were
24 25	63	analyzed for concentrations of inflammatory markers using general linear models. MMW was
26 27 28	64	defined as no regular exercise, <500 MMW, 500-1000 MMW, >1000 MMW and BMI was
29 30	65	defined as <25, 25-29.9, \geq 30 kg/m ² . Analyses were adjusted for age, sex, smoking and relevant
31 32	66	medication use.
33 34 35	67	Setting. Respondents reported to three centers to complete questionnaires and provide blood
36 37	68	samples.
38 39 40	69	Participants. Participants were men and women currently enrolled in the MIDUS Biomarker
40 41 42	70	Project (N=1254, 93% non-hispanic white, average age 54.5y).
43 44	71	Primary Outcome Measures. Concentration of serum IL-6, CRP, fibrinogen, IL-6sr, sE-
45 46 47	72	selectin and sICAM.
48 49	73	Results. Significant interactions were found between BMI and MMW for CRP and sICAM-1
50 51	74	(P's<0.05). CRP in overweight individuals was similar to obese when no PA was reported, but
52 53 54	75	was similar to normal weight when any level of regular PA was reported. sICAM-1 was
55 56		
57 58 59		
60		

differentially lower in obese individuals who reported >1000 MMW compared to obese
individuals reporting less exercise.

Conclusion. The association of exercise with CRP and sICAM-1 differed by BMI, suggesting
that regular exercise may buffer weight-associated elevations in CRP in overweight individuals
while higher levels of exercise may be necessary to reduce sICAM-1 or CRP in obese
individuals.

82 Trial Registry. N/A.

84 INTRODUCTION

Obesity paired with low physical activity is well known to increase morbidity and mortality related to cardiovascular disease (CVD)(1). It is less clear, however, whether the benefits of higher levels of physical activity differ among normal weight, overweight, and obese individuals. Chronic, low-grade inflammation, marked by elevations in cytokines, acute phase reactants and soluble adhesion molecules, is a developing CVD risk factor(2, 3). Circulating Interleukin-6 (IL-6) and, C-reactive protein (CRP) are both considered established inflammatory markers related to CVD(3). Fibrinogen, soluble intracellular adhesion molecule (sICAM-1) and soluble e-selectin (sE-selectin) also have key roles in the progression of CVD and have been associated with elevated risk(4-6). Obesity is strongly associated with greater concentrations of inflammatory markers(7, 8). Further, body fat distribution is also an important factor relating to inflammatory status. Accumulation of fat in visceral depots is more strongly associated with low-grade inflammation compared to accumulation of fat in subcutaneous or hip-region depots(9, 10).

Page 5 of 56

BMJ Open

The effects of physical activity on markers of inflammation are more complex and may vary depending on body weight. A number of epidemiological studies have shown an inverse relationship between physical activity and CRP and IL-6, independent of obesity(11-16). Laboratory studies conducted in aerobically trained, typically normal weight, individuals have demonstrated that a single bout of exercise stimulates IL-6 release from skeletal muscle, which promotes anti-inflammatory effects (17-19), as opposed to adipose tissue-derived IL-6 that is associated with pro-inflammatory effects (20). Randomized controlled trials have also been conducted, often in populations that also tend to be overweight or obese, to examine the effects of aerobic exercise interventions on inflammation and the results are mixed (21). Thus, the contribution of physical activity to inflammation in the context of obesity remains unclear. The purpose of our study was to disentangle the relative contributions of BMI and physical activity recorded in MET-minutes per week (MMW) to circulating levels of IL-6, IL-6sr, CRP, sICAM-1 and sE-selectin in middle-aged adults. MMW categories for this study were determined using values put forth by the Physical Activity Guidelines for Americans, which states that total weekly physical activity in the range of 500-1000 MET-minutes (approximately equivalent to 150-300 minutes of moderate or 75-150 minutes of vigorous activity per week) produces substantial health benefits for adults(22). We hypothesized that BMI and MMW would interact, such that greater MMW reported would lessen the impact of obesity on markers of inflammation.

118 MATERIALS AND METHODS

Design and Sample. This study was a cross-sectional analysis of archived data (BMI,
 self-reported physical activity and inflammatory biomarker concentrations) from 1254

2
3
4
5
6
7
8
9
10
11
12
14
15
16
17
18
19
20
2 3 4 5 6 7 8 9 10 112 13 14 15 16 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
22
23
24
25
26
27
28
29
30 24
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 50
50
52
53
54
50 51 52 53 54 55 56 57
56
57
58
59
60

1

121 respondents who provided consent (as approved by The University of Wisconsin Madison Health 122 Sciences Institutional Review Board) and were subsequently enrolled in the National Survey of 123 Midlife Development in the United States (MIDUS) Biomarkers Study (23). The Biomarker 124 Project was one of 5 projects within MIDUS II, with the purpose of adding comprehensive 125 biological assessments on a subsample of the MIDUS participants to further understand age-126 related differences in physical and mental health. Participants were eligible for The Biomarker 127 Project if they were previously enrolled in MIDUS and MIDUS II, which recruited non-128 institutionalized, English-speaking adults residing in the contiguous United States aged 25-74. 129 Exclusion criteria included non-participation in MIDUS and MIDUS II and unwillingness to 130 travel to specified sites for biomarker assessment. The random digit dialing sample for the 131 parent study was selected from working telephone banks and a list of all individuals between the 132 ages of 25 and 74 years within each household was generated in order to select a random respondent. Those who agreed to participate in the Biomarker Study stayed overnight at one of 133 134 three General Clinical Research Centers: University of California Los Angeles, University of 135 Wisconsin-Madison and Georgetown University. Upon arrival, each respondent provided a 136 detailed medical history (including physical activity levels) and provided all prescription, over-137 the-counter, and alternative medications to be inventoried by project staff. Following an 138 overnight stay, morning fasting blood samples were obtained. Cohorts were assessed between 139 July 2004 and May 2009 as a follow up to MIDUS I respondents that were previously surveyed 140 by the MacArthur Midlife Research Network between 1995 and 1996. Based on the MIDUS 141 Biomarker Project sample of 1254 participants, 80% power was estimated to detect small effect 142 sizes (delta=0.08 and higher) with an alpha level at 0.05 for a two-tailed test (24, 25).

BMJ Open

143	Anthropometrics. Height was measured in centimeters and recorded to the nearest
144	millimeter. A single measure of WC was taken directly on the skin or over a single layer of light,
145	close-fitting clothing at the narrowest point between ribs and the iliac crest in centimeters to the
146	nearest millimeter. Weight was measured in kilograms and BMI was calculated by dividing
147	body mass in kilograms by height in meters squared. BMI categories were organized into 3
148	groups: normal weight (BMI $\leq 24.9 \text{ kg/m}^2$), overweight (BMI $\geq 25-29.9$) and obese (BMI ≥ 30).
149	Categorizing Physical Activity by MET-Minutes per Week (MMW).
150	The MMW variable was calculated using data provided in the medical history form. The
151	form first described 3 types of regular physical activity(23):
152	Vigorous: Which causes your heart to beat so rapidly you can feel it in your chest
153	and you perform it long enough to work up a good sweat and breathe heavily (e.g.,
154	competitive sports, running, vigorous swimming, high intensity aerobics, digging
155	in the garden, or lifting heavy objects).
156	Moderate: Which causes your heart rate to increase slightly and you typically
157	work up a sweat (e.g., leisurely sports like light tennis, slow or light swimming,
158	low intensity aerobics or golfing without a power cart, brisk walking, mowing the
159	lawn with a walking lawnmower).
160	Light: Which requires little physical effort (e.g., light housekeeping like dusting
161	or laundry, bowling, archery, easy walking, golfing with a power cart or fishing).
162	Keeping these definitions in mind, participants were asked if they engaged in regular physical
163	activity of any type for 20 minutes or more at least 3 times per week (yes or no). If participants
164	answered "yes", they entered up to 7 types of seasonal and/or non-seasonal exercise or activity
165	along with the frequency, duration and intensity.
	144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 157 158 159 160 161 162 163 164

2	
3	
2 3 4 5 6 7 8 9 10 11 2 3 4 15 6 7 8 9 10 11 2 13 14 15 16 17 18 9 19 10 10 10 10 10 10 10 10 10 10 10 10 10	
5	
6	
0	
1	
8	
9	
10	
44	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	
21	
22	
23	
24	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
44	
45	
46	
47	
48	
49	
50	
51	
51	
49 50 51 52 53	
53	
54 55 56	
55	
56	
50	
5/	
57 58	
59 60	
60	

1

166 MMW were calculated in a 2-step process. Step 1: subjects who reported no physical 167 activity (for whom no MMW calculations could be made) were designated as the no regular 168 exercise group (NRE). Step 2: For subjects who indicated that they performed regular physical 169 activity, total MMW were calculated by multiplying minutes per week by intensity level (1.1 for 170 low, 3.0 for moderate and 6.0 for vigorous) and summed across each non-seasonal activity 171 reported. Four groups reflecting participation in physical activity and whether or not their 172 participation was below, at or above USDHHS guidelines were created: NRE (reported no 173 regular physical activity), below recommended (reported <500 MMW), recommended (reported 174 500-1000 MMW) and above recommended (reported >1000 MMW). 175 **Blood Collection, Processing and Assays.** Participants were asked to avoid strenuous

176 activity the day of blood collection. Venous blood samples were collected in 10 mL serum 177 separator vacutainers following a 12-h overnight fast and processed at a General Clinical 178 Research Center using standardized procedures. Blood samples were not collected at any 179 specific point during the menstrual cycle in female participants. Briefly, following collection, 180 vacutainers were allowed to stand 15-30-min (2-h maximum) prior to centrifugation at 4°C for 181 20-min at 2000-3000 rpm. Serum samples were frozen and shipped to the MIDUS Biocore Lab 182 and treated and/or analyzed for inflammation markers (IL-6, IL-6sr, CRP, fibrinogen, sE-183 Selectin and sICAM-1).

IL-6 and IL-6sr were assayed in the MIDUS Biocore Laboratory (University of Madison,
Madison WI) using Quantikine® High-sensitivity ELISA kits (cat# HS600B and cat# DR600,
R&D Systems, Minneapolis, MN). Plates were read at 490 and 450 nm, respectively for IL-6
and IL-6sr using a Dynex MRXe plate reader (Magellan Biosciences, Chantilly, VA). Intra-

Page 9 of 56

BMJ Open

2 3 4 5 6 7 8 9	188	assay and inter-assay precision (CV%) for IL-6 was approximately 4.1% and 13.0%. CV%
	189	values for IL-6sr were 5.9-5.7% and 2.0%, respectively.
	190	Assays for sICAM-1, sE-Selectin, fibrinogen and CRP were performed at the Laboratory
10 11	191	for Clinical Biochemistry Research (University of Vermont, Burlington, VT). Measurement of
12 13 14	192	sICAM-1 was completed using an ELISA assay (Parameter-Human sICAM-1 Immunoassay;
14 15 16	193	R&D Systems). Inter-assay precision for sICAM-1 was 5.0%. Measurement of sE-selectin was
17 18	194	completed using a high-sensitivity ELISA assay (Parameter Human sE-Selectin Immunoassay,
19 20 21	195	R&D Systems). Intra-assay and inter-assay precision for sE-selectin was 4.7-5.0% and 5.7-8.8%,
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	196	respectively. Fibrinogen was measured using the BNII nephelometer (N Antiserum to Human
	197	Fibrinogen; Dade Behring Inc., Deerfield, IL). Intra-assay and inter-assay precision for
	198	fibrinogen was 2.7% and 2.6%, respectively. CRP was analyzed using a BNII nephelometer
	199	with a particle enhanced immunonepolometric assay. Intra-assay and inter-assay precision for
	200	CRP was 2.3-4.4% and 2.1-5.7%, respectively.
	201	Statistical Analyses. All variables were assessed for normality and non-normal data
	202	were log transformed, which included data for CRP, IL-6, IL-6sr, fibrinogen, sE-selectin and
	203	sICAM-1. General Linear Models were performed to determine the relationship of MMW and
40 41 42	204	BMI with the inflammatory markers. For each outcome, the ordinal MMW and BMI factors
43 44	205	were entered as independent factors with an interaction term. If the interaction term was not
45 46	206	significant, the interaction term was dropped and the model was re-fit for main effects only.
47 48 49 50 51 52 53 54	207	Pairwise comparisons were assessed using post hoc univariate analyses with a Bonferroni
	208	adjustment for multiple comparisons. Covariates for all models included factors that are known
	209	to affect inflammatory status: age, sex, smoking and relevant medications (cholesterol-lowering,
55 56 57 58	210	corticosteroids, anti-diabetic, antidepressant, hormone replacement and hormonal contraceptive).

211	Race was initially included as a covariate; however, approximately 200 data points were lost in
212	the analyses due to incomplete racial data. As race was not found to be a predictor of our
213	dependent variables, with the exception of sICAM-1, race was excluded as a covariate to
214	increase samples size in all analyses excluding sICAM-1. All statistical analyses were
215	performed with SPSS v. 17 (Chicago, IL) and statistical significance was set $\alpha = 0.05$.
216	In an exploratory analysis, we examined whether the relative effects of BMI and MMW
217	on the inflammatory markers differed by sex in 3-way interaction models. As none of the
218	interactions approached statistical significance (data not shown), sex was retained as a covariate
219	in the models.
220	
221	
222	RESULTS
223	Subject Characteristics. Table 1 presents anthropometric characteristics and circulating
224	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic
224 225	
	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic
225	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic white, 56.8% female, and, on average, middle-aged and overweight. Of all the respondents,
225 226	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic white, 56.8% female, and, on average, middle-aged and overweight. Of all the respondents, 14.9% were currently smoked, 27.8% were taking cholesterol lowering medication, 12.1%
225 226 227	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic white, 56.8% female, and, on average, middle-aged and overweight. Of all the respondents, 14.9% were currently smoked, 27.8% were taking cholesterol lowering medication, 12.1% corticosteroids, 10.4% anti-diabetic medication, 14.2% antidepressant medication, 7.3%
225 226 227 228	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic white, 56.8% female, and, on average, middle-aged and overweight. Of all the respondents, 14.9% were currently smoked, 27.8% were taking cholesterol lowering medication, 12.1% corticosteroids, 10.4% anti-diabetic medication, 14.2% antidepressant medication, 7.3% hormone replacement and 2.5% oral contraceptives. The percentage of participants with missing
225 226 227 228 229	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic white, 56.8% female, and, on average, middle-aged and overweight. Of all the respondents, 14.9% were currently smoked, 27.8% were taking cholesterol lowering medication, 12.1% corticosteroids, 10.4% anti-diabetic medication, 14.2% antidepressant medication, 7.3% hormone replacement and 2.5% oral contraceptives. The percentage of participants with missing data for each variable were as follows: 1.6% for CRP, 1.0% for sICAM-1, 1.0% for IL-6, 1.6%
225 226 227 228 229 230	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic white, 56.8% female, and, on average, middle-aged and overweight. Of all the respondents, 14.9% were currently smoked, 27.8% were taking cholesterol lowering medication, 12.1% corticosteroids, 10.4% anti-diabetic medication, 14.2% antidepressant medication, 7.3% hormone replacement and 2.5% oral contraceptives. The percentage of participants with missing data for each variable were as follows: 1.6% for CRP, 1.0% for sICAM-1, 1.0% for IL-6, 1.6% for fibrinogen, 1.2% for sE-selectin, and 1.0% for IL-6sr.

Page 11 of 56

1

60

BMJ Open

1 2		
3 4	234	no regular exercise (P's<0.001). However, among subjects who reported any amount of regular
5 6 7	235	exercise (<500, 500-1000 or >1000 MMW), CRP levels were significantly greater only in obese
7 8 9	236	subjects compared to both normal weight and overweight subjects (P's <0.01). In obese
10 11	237	individuals, CRP tended to be lower in those reporting >1000 MMW compared to those
12 13 14	238	reporting no regular exercise (P=0.053).
14 15 16	239	We also found main effects of BMI (F=130.873 P<0.001) and MMW (F=11.576,
17 18	240	P<0.001) on CRP. CRP was significantly greater with each increasing BMI category, in a dose-
19 20 21	241	dependent manner (P's<0.001). Compared to participants who reported no regular exercise,
22 23	242	CRP was significantly lower in those who reported 500-1000 and >1000 MMW (P's <0.01),
24 25	243	with a trend for lower CRP in those who reported <500 MMW of regular exercise (P=0.078).
26 27 28	244	sICAM-1 (Figure 1, Panel B). We found a significant interaction between BMI and
29 30	245	MMW for sICAM-1 concentration (F=2.701, P=0.013). Levels of sICAM-1 were significantly
31 32	246	lower in obese subjects who reported >1000 MMW compared to obese subjects who reported no
33 34 35	247	regular exercise (P=0.014) and <500 MMW (P=0.026) and tended to be lower than levels in
36 37	248	obese subjects who reported 500-1000 MMW (P=0.079). No differences in sICAM-1 by MMW
38 39 40	249	were observed among normal weight or overweight individuals.
40 41 42	250	We also observed a main effect of BMI (F=6.060, P=0.002), such that sICAM-1 levels in
43 44	251	obese participants were significantly higher than levels found in both normal weight and
45 46 47	252	overweight participants (P's<0.01). No significant main effect of MMW was found for sICAM-1
48 49	253	(F=0.931, P=0.425).
50 51	254	IL-6 (Figure 1, Panel C). Both BMI and MMW had independent effects on circulating
52 53 54	255	concentrations of IL-6 (BMI: F=60.150, P<0.001, MMW: F=10.680, P<0.001), with no
55 56 57 58 59	256	significant interaction (F=1.21, P=0.297). We found a dose-dependent effect of BMI, such that
60		

higher BMI levels were associated with significantly greater IL-6 (P's<0.001). Independent of BMI, IL-6 was significantly lower in subjects who reported regular exercise (<500 MMW, 500-1000 MMW and \geq 1000 MMW) compared to those who reported no regular exercise (P's \leq 0.01) with no difference between levels of MMW. Fibrinogen (Figure 1, Panel D). BMI significantly contributed to circulating levels of fibrinogen (F=42.385, P<0.001), such that dose-dependent increases were observed for all BMI levels (P's<0.01). While we observed a trend for lower fibrinogen with regular physical activity, similar to that of IL-6, the effect did not reach statistical significance (F=2.187, P=0.088). We observed no significant interaction between BMI and MMW for fibrinogen (F=1.680, P=0.122). sE-Selectin (1, Panel E). BMI significantly contributed to circulating levels of sE-selectin (F=28.253, P<0.001) with no significant contribution by MMW (F=0.207, P=0.892). Dose-dependent increases in sE-selectin were also observed across BMI levels (P's<0.01). We observed no significant interaction between BMI and MMW for sE-selectin (F=0.570, P=0.755). **IL-6sr (Figure 1, Panel F)**. No significant main effects for BMI (F=1.783, P=0.169), MMW (F=1.434, P=0.231) or their interaction (F=0.834, P=0.544) were detected for IL-6sr. Waist Circumference (WC) and Inflammatory Markers (Supplemental Figure 1). A secondary analysis was completed using WC and MMW as independent variables and the complete results of these analyses are located in the supplemental information. Briefly, we found a significant interaction between WC and MMW on sICAM-1. In individuals with an at-risk WC (≥ 102.0 cm for men and ≥ 88.0 cm for women), sICAM-1 was significantly lower in those reporting 1000+ MMW compared to less than 500 MMW and tended to be lower in those reporting no regular exercise. Overall, main effects were similar to those found for BMI and MMW analyses. Having an at-risk WC was independently related to higher levels of CRP,

BMJ Open

2
2
3
4
5
6
6 7
1
8
9
10
10
9 10 11 12
12
13
13 14
45
15
16
17
18
17 18 19
19
20
21 22 23 24
22
23
23
24
25
26
25 26 27
28
28
29 30
30
31
22
32
33 34 35
34
35
36
36 37
37
38
39
40
40
42
42 43
44
45
40
46
47
48
49
50
51
52
53
54
55
56
57
58
59
03

60

sICAM-1, IL-6, fibrinogen and sE-selectin. Independent of WC, any level of regular exercise
was related to lower levels of CRP, IL-6 with a similar tendency for fibrinogen.

- 282
- 283 DISCUSSION

284 The current study aimed to determine whether the impact of BMI and MMW on 285 inflammatory markers varied by level of overweight or obesity. For CRP and s-ICAM-1 286 regular physical activity appeared to diminish the effects of higher BMI compared to those who 287 reported no regular physical activity. In addition, we found that BMI was strongly and 288 independently related to greater concentrations of both established and emerging inflammatory 289 markers that may increase CVD risk. Independent of BMI, regular physical activity was also 290 associated with lower IL-6, with a similar trend for fibrinogen. These results suggest that, 291 although obesity has a clear impact on inflammation, physical activity appears to mitigate at least 292 some of this effect.

293 For example, overweight individuals had CRP levels that were similar to levels observed 294 in obese individuals if they reported no regular exercise (4.05 and 4.83 μ g/mL, respectively). 295 CRP levels greater than 3 µg/mL are typically associated with high CVD risk(26). In overweight 296 subjects who reported regular physical activity of at least 3, 20-minute sessions per week (be it 297 below [<500], within [500-1000] or above [>1000] USDHHS MMW recommendations), CRP 298 levels were lower and not significantly different from CRP levels found in normal weight 299 participants (). This suggests that increasing physical activity level to a minimum of 3 days per 300 week, at least 20 minutes per day, may improve CRP profiles among overweight individuals. 301 Obese individuals may require a higher level of regular physical activity in order to lower 302 inflammatory markers. While obese subjects also had greater levels of CRP and sICAM-1

compared to lean and overweight subjects, those who reported >1000 MMW (above the
USDHHS recommendation) had lower levels of sICAM-1 and tended to have lower CRP than
obese subjects reporting no regular physical activity. Taken together, we may speculate that
while physical activity levels currently recommended for the general population may reduce
particular inflammatory makers in overweight populations, obese populations may require
greater levels of physical activity above recommended values to reduce inflammatory markers
like CRP and sICAM-1.

As expected, strong main effects of BMI were observed for CRP, IL-6, fibrinogen, sICAM-1 and sE-selectin, in agreement with previous work (27-30). Independent of BMI effects, our results suggest that physical activity has differentiating effects on inflammatory markers. Individuals reporting no regular physical activity had higher levels of IL-6 with a tendency for higher fibringen, compared to those reporting any level of regular physical activity (<500, 500-1000 or >1000 MMW). Similar results have been observed in the MONItoring trends and determinants in CArdiovascular disease (MONICA) study(31), the National Health and Nutrition Examination Survey (NHANES III)(12, 14) and the Multi-Ethnic Study of Atherosclerosis (MESA)(32), such that both increased frequency and intensity of physical activity have been related to lower IL-6 and fibrinogen. Our findings add to these prior results by standardizing levels of physical activity by using USDHHS. Our results suggest that, regular physical activity at any level (<500, 500-1000, >1000) appears to be associated with lower levels of IL-6 and possibly fibrinogen, independent of BMI.

Although IL-6 produced in hypertrophied adipose tissue(33, 34) initiates the acute phase
response, marked by the release of hepatic CRP (35, 36), an interaction between BMI and
physical activity was detected for CRP, but not IL-6. While IL-6 and CRP were significantly

Page 15 of 56

BMJ Open

006	
326	correlated (r=0.514, see Supplemental Table 1), this correlation suggests that IL-6 levels do not
327	fully explain CRP levels at any given moment. Further, CRP is a more stable biomarker, owing
328	to its substantially longer plasma half-life (37), which may improve our ability to detect
329	interaction effects in CRP compared to IL-6.
330	Interestingly, our results also suggest that regular exercise may have a more profound
331	impact on lowering classical markers of inflammation and less impact on the inflammatory status
332	of the endothelium. Regular physical activity has reliably been associated with lower levels of
333	IL-6 and CRP, both classical inflammatory markers related to adipose and systemic
334	inflammation(38). However, regular exercise appeared to have no independent impact on
335	markers of endothelial activation, particularly sE-selectin. Higher levels of exercise were related
336	to lower sICAM-1 in obese individuals only. In one prior study, inverse relationships between
337	physical activity and sICAM-1 and sE-selectin were reported in drug-treated hypertensive men
338	(39). Thus, further research is necessary to understand mechanisms underlying differential
339	associations of exercise with systemic and endothelial inflammation.
340	Several limitations must be addressed. First, the cross-sectional design does not allow us
341	to infer causal relationships. Prospective and interventional designs are necessary to confirm our
342	findings. No objective measures of physical activity were available in the MIDUS sample.
343	Therefore, the use of self-report physical activity data may have diminished our ability to detect
344	effects. However, in addition to being in line with previous studies using self-report physical
345	activity, our findings are also in line with previous studies(40, 41) that demonstrated that higher
346	cardiorespiratory fitness, as measured by indirect calorimetry, was associated with lower levels
347	of inflammation independent of visceral adiposity or BMI. Another limitation is that the sample
348	was predominantly comprised of non-Hispanic white individuals, suggesting that findings may
	 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

349	not extend to all ethnicities. Finally, BMI and physical activity variables are correlated,
350	potentially raising the concern of small sample sizes in specific groups crossed by BMI and
351	MMW. However, the smallest group for analyses still contained 54 individuals (normal weight
352	individuals reporting no exercise).
353	In summary, our results demonstrate both interactive and independent influences of BMI
354	and levels of physical activity on both established and emerging markers of inflammation.
355	Inflammation is both a consequence of obesity and a mechanism promoting CVD. Regular
356	physical activity appears to mitigate the effects of higher BMI on some inflammatory markers,
357	particularly CRP, which is strongly implicated in CVD. Importantly, while any level of regular
358	physical activity may help reduce inflammation in overweight individuals, similar effects in
359	obese individuals may require levels of physical activity that are greater than currently
360	recommended by the USDHHS for general health.
361	
362	
363	
364	
365	
366	
367	
368	
369	
370	
371	

1		
2 3		
3	372	
4		
5 6	373	
7		
8	374	
8 9	0.1	
10	375	
11	070	
12 13	376	
14	570	
15	377	
16	577	
17	378	
18	570	
19 20	379	
20 21	579	
22	380	
23	300	
24	381	ACKNOWLEDGEMENTS
25	301	
26 27	202	We then I the staff of the Clinical Descent Contant at the University of Wisconsin Medican
28	382	We thank the staff of the Clinical Research Centers at the University of Wisconsin-Madison,
29	202	UCIA and Coonseterry University for their offert in conducting the emisinal data collection
30	383	UCLA, and Georgetown University for their effort in conducting the original data collection.
31	204	
32	384	
33 34	205	
35	385	FUNDING
36	207	
37	386	KS was supported through a T32 Training Fellowship (Training in Behavioral and Preventive
38	207	
39	387	Medicine; T32 HL076134). The original research was supported by a grant from the National
40 41	200	
42	388	Institute on Aging (P01-AG020166) to conduct a longitudinal follow-up of the MIDUS (Midlife
43	200	
44	389	in the U.S.) Investigation.
45	000	
46	390	
47 48	0.04	
49	391	The original study was supported by the John D. and Catherine T. MacArther Foundation
50		
51	392	Research Network on Successful Midlife Development and by the following grants: M01-
52	000	
53 54	393	RR023942 (Georgetown), M01-RR00865 (UCLA) from the General Clinical Research Centers
54 55		
56		
57		
58		
59		
60		

Page 18 of 56

2 3	204						
3 4 5	394	Program and 1UL1RR025011 (UW) from the Clinical and Translational Science Award (CTSA)					
5 6 7	395	program of the National Center for Research Resources, National Institutes of Health.					
8 9	396						
10 11	397	CONFLICTS OF INTEREST					
12 13 14	398	The authors declare no conflict of interest.					
15 16	399						
17 18	400	CONTRIBUTORSHIP					
19 20 21	401	KS, JMM and RRW each made substantial contributions to the conception and design of the					
22 23	402	study, data acquisition, analysis and interpretation, as well as to drafting and revision for					
24 25	403	substantial intellectual content. All authors made final approval of the version to be published.					
26 27 28	404	DATA SHARING STATEMENT					
29 30	405	Data and documentation for MIDUS studies are available at the Inter-university Consortium for					
31 32 33	406	Political and Social Research (ICPSR). http://www.icpsr.umich.edu/icpsrweb/landing.jsp					
34 35	407						
36 37	408						
38 39 40	409						
41 42	410						
43 44	411						
45 46 47	412						
47 48 49	413						
50 51	414						
52 53 54	415						
55 56	416						
57 58 50							
59 60							

1

1										
2 3	417									
4	417	7								
5 6 7	418									
8 9	419									
10 11 12	420									
13 14	421									
15 16 17	422									
18 19	423									
20 21 22	424									
22 23 24	425									
25 26	426									
27 28	427	REFERENCES								
29 30 31 32 33 34 35 36 37 38	428	1. Blair SN, Brodney S. Effects of physical inactivity and obesity on morbidity and								
	429	mortality: current evidence and research issues. Med Sci Sports Exerc. 1999;31(11 Suppl):S646-								
	430	62. Epub 1999/12/11.								
	431	2. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-7.								
39 40	432	Epub 2006/12/15.								
41 42 43	433	3. Koenig W, Khuseyinova N, Baumert J, et al. Increased concentrations of C-reactive								
44 45	434	protein and IL-6 but not IL-18 are independently associated with incident coronary events in								
46 47 48	435	middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study,								
49 50	436	1984-2002. Arterioscler Thromb Vasc Biol. 2006;26(12):2745-51. Epub 2006/09/30.								
51 52	437	4. Papageorgiou N, Tousoulis D, Siasos G, et al. Is fibrinogen a marker of inflammation in								
53 54 55 56 57 58 59 60	438	coronary artery disease? Hellenic J Cardiol. 2010;51(1):1-9. Epub 2010/02/02.								
		10								

2								
3 4	439	5.	Schmidt C, Hulthe J, Fagerberg B. Baseline ICAM-1 and VCAM-1 are increased in					
5 6 7	440	initially healthy middle-aged men who develop cardiovascular disease during 6.6 years of						
7 8 9	441	follow-up. Angiology. 2009;60(1):108-14. Epub 2008/05/28.						
10 11	442	6.	Demerath E, Towne B, Blangero J, et al. The relationship of soluble ICAM-1, VCAM-1,					
12 13	443	ctin and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann						
14 15 16	444	Hum Biol. 2001;28(6):664-78. Epub 2001/12/01.						
17 18	445	7.	Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol.					
19 20	446	2009;6	5(6):399-409. Epub 2009/04/29.					
21 22 23	447	8.	Calabro P, Yeh ET. Obesity, inflammation, and vascular disease: the role of the adipose					
24 25	448	as an endocrine organ. Subcell Biochem. 2007;42:63-91. Epub 2007/07/07.						
26 27	449	9.	Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue					
28 29 30	450	volumes are cross-sectionally related to markers of inflammation and oxidative stress: the						
31 32	451	Framingham Heart Study. Circulation. 2007;116(11):1234-41. Epub 2007/08/22.						
33 34 35	452	10.	Mathieu P, Poirier P, Pibarot P, et al. Visceral obesity: the link among inflammation,					
36 37	453	hypertension, and cardiovascular disease. Hypertension. 2009;53(4):577-84. Epub 2009/02						
38 39	454	11.	Reuben DB, Judd-Hamilton L, Harris TB, et al. The associations between physical					
40 41 42	455	activit	y and inflammatory markers in high-functioning older persons: MacArthur Studies of					
43 44	456	Successful Aging. J Am Geriatr Soc. 2003;51(8):1125-30. Epub 2003/08/02.						
45 46	457	12.	King DE, Carek P, Mainous AG, 3rd, et al. Inflammatory markers and exercise:					
47 48 49	458	differe	ences related to exercise type. Med Sci Sports Exerc. 2003;35(4):575-81. Epub 2003/04/04.					
50 51	459	13.	Wannamethee SG, Lowe GD, Whincup PH, et al. Physical activity and hemostatic and					
52 53	460	inflammatory variables in elderly men. Circulation. 2002;105(15):1785-90. Epub 2002/04						
54 55								
56 57								
58 59								

1

BMJ Open

2	
3 4	461
5 6	462
7 8	463
9 10 11	464
12 13	465
14 15	466
16 17	
18	467
19 20 21	468
21 22 23	469
24 25	470
26 27	471
28 29 30	472
30 31 32	473
33 34	474
35	4/4
36 37	475
38 39	476
40 41 42	477
43 44	478
45 46	479
47 48 49	480
50 51	481
52	
53 54	482
55	
56 57	
58	
59	

60

14. Abramson JL, Vaccarino V. Relationship between physical activity and inflammation 62 among apparently healthy middle-aged and older US adults. Arch Intern Med. 63 2002;162(11):1286-92. Epub 2002/06/01. 64 15. Geffken DF, Cushman M, Burke GL, et al. Association between physical activity and 65 markers of inflammation in a healthy elderly population. Am J Epidemiol. 2001;153(3):242-50. 66 Epub 2001/02/07. 67 16. Taaffe DR, Harris TB, Ferrucci L, et al. Cross-sectional and prospective relationships of 68 interleukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur 69 studies of successful aging. J Gerontol A Biol Sci Med Sci. 2000;55(12):M709-15. Epub 70 2000/12/29. 71 Starkie R, Ostrowski SR, Jauffred S, et al. Exercise and IL-6 infusion inhibit endotoxin-17. 72 induced TNF-alpha production in humans. FASEB J. 2003;17(8):884-6. Epub 2003/03/11. 73 18. Pedersen BK, Steensberg A, Fischer C, et al. Exercise and cytokines with particular focus 74 on muscle-derived IL-6. Exerc Immunol Rev. 2001;7:18-31. Epub 2001/10/03. 75 19. Pedersen BK, Steensberg A, Fischer C, et al. The metabolic role of IL-6 produced during 76 exercise: is IL-6 an exercise factor? Proc Nutr Soc. 2004;63(2):263-7. Epub 2004/08/06. 77 Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white 20. 78 adipose tissue. Br J Nutr. 2004;92(3):347-55. Epub 2004/10/08. 79 21. Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic 80 inflammation. Clin Chim Acta. 2010;411(11-12):785-93. Epub 2010/03/02. 22. 81 USDHHS, editor. 2008 Physical Activity Guidelines for Americans. Washington 32 DC2008.

2						
3 4 5 6	483	23.	C Ryff DA, JS Ayanian, DS carr, et al. National Survey of Midlife Development in the			
	484	United State (MIDUS II), 2004-2006. Inter-university Consortium for Political and Social				
7 8 9	485	Research (ICPSR) [distrubutor]. 2011.				
10 11	486	24.	Kraemer H. How Many Subjects? Statistical Power Analysis in Research: SAGE			
12 13 14	487	Publications, Inc; 1987.				
$\begin{array}{c} 15 \\ 16 \\ 17 \\ 18 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 35 \\ 36 \\ 37 \\ 38 \\ 90 \\ 41 \\ 42 \\ 43 \\ 44 \end{array}$	488	25.	Cohen J. Statistical Power Analysis for the Behavioral Sciences. Second ed: Lawrence			
	489	Erlbaum Associates; 1998.				
	490	26.	Bassuk SS, Rifai N, Ridker PM. High-sensitivity C-reactive protein: clinical importance.			
	491	Curr Probl Cardiol. 2004;29(8):439-93. Epub 2004/07/20.				
	492	27.	Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum			
	493	concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract. 2005;69(1):29-35. Epub				
	494	2005/06/16.				
	495	28.	Bastard JP, Jardel C, Bruckert E, et al. Elevated levels of interleukin 6 are reduced in			
	496	serum	and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol			
	497	Metab	. 2000;85(9):3338-42. Epub 2000/09/22.			
	498	29.	Ditschuneit HH, Flechtner-Mors M, Adler G. Fibrinogen in obesity before and after			
	499	weight	t reduction. Obes Res. 1995;3(1):43-8. Epub 1995/01/01.			
	500	30.	Straczkowski M, Lewczuk P, Dzienis-Straczkowska S, et al. Elevated soluble			
45 46 47	501	interce	ellular adhesion molecule-1 levels in obesity: relationship to insulin resistance and tumor			
48 49	502	necros	is factor-alpha system activity. Metabolism. 2002;51(1):75-8. Epub 2002/01/10.			
50 51	503	31.	Autenrieth C, Schneider A, Doring A, et al. Association between different domains of			
52 53 54	504	physic	al activity and markers of inflammation. Med Sci Sports Exerc. 2009;41(9):1706-13. Epub			
55 56 57 58 59	505	2009/0	08/07.			

BMJ Open

2					
3 4	506	32.	Majka DS, Chang RW, Vu TH, et al. Physical activity and high-sensitivity C-reactive		
5 6 7	507	protein: the multi-ethnic study of atherosclerosis. Am J Prev Med. 2009;36(1):56-62. Epub			
7 8 9	508	2008/1	1/18.		
10 11	509	33.	Day CP. From fat to inflammation. Gastroenterology. 2006;130(1):207-10. Epub		
12 13	510	2006/0	01/13.		
14 15 16	511	34.	Fain JN, Madan AK, Hiler ML, et al. Comparison of the release of adipokines by adipose		
17 18	512	tissue,	adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose		
19 20 21	513	tissues	of obese humans. Endocrinology. 2004;145(5):2273-82. Epub 2004/01/17.		
21 22 23	514	35.	Castell JV, Gomez-Lechon MJ, David M, et al. Interleukin-6 is the major regulator of		
24 25	515	acute p	bhase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237-9. Epub		
26 27 28	516	1989/0	01/02.		
29 30	517	36.	Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J.		
31 32	518	1990;2	265(3):621-36. Epub 1990/02/01.		
33 34 35	519	37.	Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of		
36 37	520	develo	ping type 2 diabetes mellitus. JAMA. 2001;286(3):327-34. Epub 2001/07/24.		
38 39 40	521	38.	Mathieu P, Lemieux I, Despres JP. Obesity, inflammation, and cardiovascular risk. Clin		
40 41 42	522	Pharm	acol Ther. 2010;87(4):407-16. Epub 2010/03/05.		
43 44	523	39.	Hjelstuen A, Anderssen SA, Holme I, et al. Markers of inflammation are inversely related		
45 46 47	524	to phy	sical activity and fitness in sedentary men with treated hypertension. Am J Hypertens.		
48 49	525	2006;1	9(7):669-75; discussion 76-7. Epub 2006/07/04.		
50 51	526	40.	Church TS, Barlow CE, Earnest CP, et al. Associations between cardiorespiratory fitness		
52 53 54	527	and C-	reactive protein in men. Arterioscler Thromb Vasc Biol. 2002;22(11):1869-76. Epub		
55 56 57 58 59 60	528	2002/1	1/12.		

529	41.	Arsenault BJ, Cartier A, Cote M, et al. Body composition, cardiorespiratory fitness, and
530	low-g	rade inflammation in middle-aged men and women. Am J Cardiol. 2009;104(2):240-6.
531	Epub 2	2009/07/07.
532		
533		
534		
535		
536		
537	FIGU	RE AND TABLE LEGENDS
538		
539		
540	Figur	e 1: Inflammatory Markers. Data from 1254 men and women in MIDUS. Joint
541	associ	ation of BMI category (normal, overweight and obese) and MMW category (no regular
542	exerci	se, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C),
543	fibring	ogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex,
544	smoki	ng and relevant medication use. The analysis for sICAM-1 was further adjusted for race.
545	Error	bars represent SEM. BMI=BMI main effect P value, MMW=MMW main effect P value,
546	INT=i	nteraction effect P value.
547		
548		
549	Table	1: Subject Characteristics. BMI = body mass index; CRP = C-reactive protein; IL =
550	interle	eukin; IL-6sr = IL-6 soluble receptor; MMW = MET-Minutes per Week; sE-Selectin =
551	solubl	e E-Selectin; sICAM-1= soluble intracellular adhesion molecule-1.
	 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 	530 low-gi 531 Epub 532 Figur 533 Jasso 536 FIGU 537 FIGU 538 Jasso 539 Saso 540 Figur 541 associ 542 exerci 543 fibring 544 smoki 545 Error 546 INT=i 547 Jasso 548 Table 550 interlet

Demographic	BMI < 25 N=298	BMI 25-29.9 N=440	BMI ≥30 N=516	Overall N = 1254
Variables	Mean ± SD			
Age (years)	54.6 ± 12.8	56.4 ± 11.7	54.6 ± 11.2	54.5 ± 11.7
Gender (%)				
Male	31.2	52.7	42.1	43.20
Female	68.8	47.3	57.9	56.80
Race (%)				
Non-Hispanic White	94.0	94.0	90.3	92.60
Hispanic	0.4	0.8	0.3	0.05
African American	1.9	1.6	4.0	2.60
Asian/Pacific Islander	0.7	0.3	0.0	0.30
Native American	1.1	0.8	2.0	1.30
Other	1.9	2.6	3.5	2.30
Medication Use (%)				
Cholesterol-Lowering	13.1	32.3	32.6	27.80
Corticosteroids	12.8	12.5	11.4	12.10
Anti-Diabetic	4.7	8.4	15.3	10.40
Antidepressant	14.4	13.4	16.9	14.2
Hormone Replacement Therapy	9.4	8.6	5.0	7.3
Oral Contraceptive	3.7	3.4	1.0	2.5
Currently Smoking	17.8	14.1	14.0	14.90
BMI (kg/m^2)	22.7 ± 1.8	27.4 ± 1.4	35.9 ± 5.7	29.8 ± 6.6
IL-6 (pg/mL)	2.4 ± 3.1	2.7 ± 2.48	3.7 ± 3.2	3.0 ± 3.1
IL-6sr (pg/mL)	34473.1 ± 10861.9	35337.4 ± 10065.1	35475.7 ± 10325.7	35184.7 ± 10359.1
CRP (µg/mL)	1.5 ± 2.5	2.5 ± 4.0	4.4 ± 5.9	3.0 ± 4.8
Fibrinogen (mg/dL)	315.8 ± 75.9	343.2 ± 82.1	373 ± 92.1	348.9 ± 87.9
sE-Selectin (ng/mL)	36.9 ±19.6	41.2 ± 20.6	49.1 ± 24.7	43.4 ± 22.7
sICAM-1 (ng/mL)	284.8 ± 122.0	276.2 ± 99.9	301.4 ± 123.1	288.6 ± 115.6

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3 4	1	Contributions of Body Mass Index and Exercise Habits on Inflammatory Markers: A
5	2	Cohort Study of Middle Aged Adults Living in the United States
6	3	
7	4	
8	5	
9		
10	6	Kelley Strohacker, Ph.D. ^a , Rena R. Wing, Ph.D. ^a , and Jeanne M. McCaffery, Ph.D. ^a
11	7	
12	8	
13	9	
14	10	^a The Miriam Hospital and the Warren Alpert Medical School of Brown University, Providence
15	11	RI
16	12	NI NI
17		
18	13	
19	14	
20		
21	15	<u>Corresponding Author</u>
22		
23	16	Jeanne M. McCaffery, Ph.D.
24	10	seame with wice affer y, Thilds.
25	4 17	
26	17	Associate Professor of Psychiatry and Human Behavior (Research)
27		
28	18	The Miriam Hospital Weight Control and Diabetes Research Center
29		
30	19	196 Richmond Street
31		
32	20	Dravidance DL 02004
33	20	Providence, RI 02904
34 35		
36	21	Phone: (401) 793-8010
30 37		
38	22	Fax: (401) 793-8944
39		
40	23	Email: JMccaffery@lifespan.org
41	23	Eman. Sweedner y@mespan.org
42	0.4	
43	24	
44		
45	25	
46		
47	26	Running Title:
48	20	Tomming Thio.
49	27	DMI Develoal Activity and Inflammation
50	27	BMI, Physical Activity and Inflammation
51		
52	28	
53		
54	29	Key Words: MIDUS, Intracellular Adhesion Molecule-1, Fibrinogen, C-Reactive Protein
55	-	v ,
56	30	Word Count: 3931
57	50	
58		
59		
60		

ABSTRACT

BMJ Open

1 2 3 4 5 6 7
8 9
10 11 12 13 14 15 16 17 18
 19 20 21 22 23 24 25 26 27 28 29 30
31
32 33 34 35 36 37 38
39 40 41 42 43 44
45 46 47 48 49 50
51 52 53 54 55 56
57 58 59 60

51	ADGIRACI
32	Objectives. Determine whether body mass index (BMI) and physical activity (PA) above, at or
33	below MET-minute per week (MMW) levels recommended in the 2008 Physical Activity
34	Guidelines interact or have additive effects on interleukin (IL)-6, C-reactive protein (CRP),
35	fibrinogen, IL-6 soluble receptor (IL-6sr), soluble E-selectin and soluble intracellular adhesion
36	molecule (sICAM)-1. Design. Archived cohort data (N=1254, age 54.5±11.7y, BMI
37	29.8±6.6kg/m ²) from the National Survey of Midlife Development in the United States (MIDUS)
38	Biomarkers Study were analyzed for concentrations of inflammatory markers using general
39	linear models. MMW was defined as no regular exercise, <500 MMW, 500-1000 MMW, >1000
40	MMW and BMI was defined as <25, 25-29.9, \geq 30 kg/m ² . Analyses were adjusted for age, sex,
41	smoking and relevant medication use. Setting. Respondents reported to three centers to
42	complete questionnaires and provide blood samples. Participants. Participants were men and
43	women currently enrolled in the MIDUS Biomarker Project (N=1254, 93% non-hispanic white,
44	average age 54.5y). Primary Outcome Measures. Concentration of serum IL-6, CRP,
45	fibrinogen, IL-6sr, sE-selectin and sICAM. Results. Significant interactions were found
46	between BMI and MMW for CRP and sICAM-1 (P's<0.05). CRP in overweight individuals was
47	similar to obese when no PA was reported, but was similar to normal weight when any level of
48	regular PA was reported. sICAM-1 was differentially lower in obese individuals who reported
49	>1000 MMW compared to obese individuals reporting less exercise. Conclusion. The
50	association of exercise with CRP and sICAM-1 differed by BMI, suggesting that regular exercise
51	may buffer weight-associated elevations in CRP in overweight individuals while higher levels of
52	exercise may be necessary to reduce sICAM-1 or CRP in obese individuals. Trial Registry.
53	N/A.

54 INTRODUCTION

Obesity paired with low physical activity is well known to increase morbidity and mortality related to cardiovascular disease (CVD)(1). It is less clear, however, whether the benefits of higher levels of physical activity differ among normal weight, overweight, and obese individuals. Chronic, low-grade inflammation, marked by elevations in cytokines, acute phase reactants and soluble adhesion molecules, is a developing CVD risk factor(2, 3). Circulating Interleukin-6 (IL-6) and, C-reactive protein (CRP) are both considered established inflammatory markers related to CVD(3). Fibrinogen, soluble intracellular adhesion molecule (sICAM-1) and soluble e-selectin (sE-selectin) also have key roles in the progression of CVD and have been associated with elevated risk(4-6). Obesity is strongly associated with greater concentrations of inflammatory markers(7, 8). Further, body fat distribution is also an important factor relating to inflammatory status. Accumulation of fat in visceral depots is more strongly associated with low-grade inflammation compared to accumulation of fat in subcutaneous or hip-region depots(9, 10).

The effects of physical activity on markers of inflammation are more complex and may vary depending on body weight. A number of epidemiological studies have shown an inverse relationship between physical activity and CRP and IL-6, independent of obesity(11-16). Laboratory studies conducted in aerobically trained, typically normal weight, individuals have demonstrated that a single bout of exercise stimulates IL-6 release from skeletal muscle, which promotes anti-inflammatory effects (17-19), as opposed to adipose tissue-derived IL-6 that is associated with pro-inflammatory effects (20). Randomized controlled trials have also been conducted, often in populations that also tend to be overweight or obese, to examine the effects

Page 29 of 56

BMJ Open

76	of aerobic exercise interventions on inflammation and the results are mixed (21). Thus, the
77	contribution of physical activity to inflammation in the context of obesity remains unclear.
78	The purpose of our study was to disentangle the relative contributions of BMI and
79	physical activity recorded in MET-minutes per week (MMW) to circulating levels of IL-6, IL-6sr,
80	CRP, sICAM-1 and sE-selectin in middle-aged adults. MMW categories for this study were
81	determined using values put forth by the Physical Activity Guidelines for Americans, which
82	states that total weekly physical activity in the range of 500-1000 MET-minutes (approximately
83	equivalent to 150-300 minutes of moderate or 75-150 minutes of vigorous activity per week)
84	produces substantial health benefits for adults(22). We hypothesized that BMI and MMW would
85	interact, such that greater MMW reported would lessen the impact of obesity on markers of
86	inflammation.

88 MATERIALS AND METHODS

Design and Sample. This study was a cross-sectional analysis of archived data (BMI, self-reported physical activity and inflammatory biomarker concentrations) from 1254 respondents who provided consent (as approved by The University of Wisconsin Madison Health Sciences Institutional Review Board) and were subsequently enrolled in the National Survey of Midlife Development in the United States (MIDUS) Biomarkers Study (23). The Biomarker Project was one of 5 projects within MIDUS II, with the purpose of adding comprehensive biological assessments on a subsample of the MIDUS participants to further understand age-related differences in physical and mental health. Participants were eligible for The Biomarker Project if they were previously enrolled in MIDUS and MIDUS II, which recruited non-institutionalized, English-speaking adults residing in the contiguous United States aged 25-74.

99	Exclusion criteria included non-participation in MIDUS and MIDUS II and unwillingness to
100	travel to specified sites for biomarker assessment. The random digit dialing sample for the
101	parent study was selected from working telephone banks and a list of all individuals between the
102	ages of 25 and 74 years within each household was generated in order to select a random
103	respondent. Those who agreed to participate in the Biomarker Study stayed overnight at one of
104	three General Clinical Research Centers: University of California Los Angeles, University of
105	Wisconsin-Madison and Georgetown University. Upon arrival, each respondent provided a
106	detailed medical history (including physical activity levels) and provided all prescription, over-
107	the-counter, and alternative medications to be inventoried by project staff. Following an
108	overnight stay, morning fasting blood samples were obtained. Cohorts were assessed between
109	July 2004 and May 2009 as a follow up to MIDUS I respondents that were previously surveyed
110	by the MacArthur Midlife Research Network between 1995 and 1996. Based on the MIDUS
111	Biomarker Project sample of 1254 participants, 80% power was estimated to detect small effect
112	sizes (delta=0.08 and higher) with an alpha level at 0.05 for a two-tailed test (24, 25).
113	Anthropometrics. Height was measured in centimeters and recorded to the nearest
114	millimeter. A single measure of WC was taken directly on the skin or over a single layer of light,
115	close-fitting clothing at the narrowest point between ribs and the iliac crest in centimeters to the
116	nearest millimeter. Weight was measured in kilograms and BMI was calculated by dividing
117	body mass in kilograms by height in meters squared. BMI categories were organized into 3
118	groups: normal weight (BMI \leq 24.9 kg/m ²), overweight (BMI \geq 25-29.9) and obese (BMI \geq 30).
119	Categorizing Physical Activity by MET-Minutes per Week (MMW).
120	The MMW variable was calculated using data provided in the medical history form. The
121	form first described 3 types of regular physical activity(23):

1		
2 3 4	122	Vigorous: Which causes your heart to beat so rapidly you can feel it in your chest
5 6 7	123	and you perform it long enough to work up a good sweat and breathe heavily (e.g.,
7 8 9	124	competitive sports, running, vigorous swimming, high intensity aerobics, digging
10 11	125	in the garden, or lifting heavy objects).
12 13 14	126	<i>Moderate: Which causes your heart rate to increase slightly and you typically</i>
15 16	127	work up a sweat (e.g., leisurely sports like light tennis, slow or light swimming,
17 18	128	low intensity aerobics or golfing without a power cart, brisk walking, mowing the
19 20 21	129	lawn with a walking lawnmower).
22 23	130	Light: Which requires little physical effort (e.g., light housekeeping like dusting
24 25 26	131	or laundry, bowling, archery, easy walking, golfing with a power cart or fishing).
20 27 28	132	Keeping these definitions in mind, participants were asked if they engaged in regular physical
29 30	133	activity of any type for 20 minutes or more at least 3 times per week (yes or no). If participants
31 32 33	134	answered "yes", they entered up to 7 types of seasonal and/or non-seasonal exercise or activity
34 35	135	along with the frequency, duration and intensity.
36 37	136	MMW were calculated in a 2-step process. Step 1: subjects who reported no physical
38 39 40	137	activity (for whom no MMW calculations could be made) were designated as the no regular
41 42	138	exercise group (NRE). Step 2: For subjects who indicated that they performed regular physical
43 44	139	activity, total MMW were calculated by multiplying minutes per week by intensity level (1.1 for
45 46 47	140	low, 3.0 for moderate and 6.0 for vigorous) and summed across each non-seasonal activity
48 49	141	reported. Four groups reflecting participation in physical activity and whether or not their
50 51 52	142	participation was below, at or above USDHHS guidelines were created: NRE (reported no
52 53 54	143	regular physical activity), below recommended (reported <500 MMW), recommended (reported
55 56 57 58	144	500-1000 MMW) and above recommended (reported >1000 MMW).

1 2	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	
5 6	
7 8	
9 10	
11 12 13	
14 15	
16 17	
18 19 20 21 22 23 24 25 26 27 28	
20 21	
22 23 24	
25 26	
27 28	
29 30	
28 29 30 31 32 33 34 35 36 37 38	
33 34 35	
36 37	
39	
40 41	
42 43 44	
45 46	
47 48	
49 50	
51 52 53	
53 54 55	
56 57	
58 59	
60	

145	Blood Collection, Processing and Assays. Participants were asked to avoid strenuous
146	activity the day of blood collection. Venous blood samples were collected in 10 mL serum
147	separator vacutainers following a 12-h overnight fast and processed at a General Clinical
148	Research Center using standardized procedures. Blood samples were not collected at any
149	specific point during the menstrual cycle in female participants. Briefly, following collection,
150	vacutainers were allowed to stand 15-30-min (2-h maximum) prior to centrifugation at 4°C for
151	20-min at 2000-3000 rpm. Serum samples were frozen and shipped to the MIDUS Biocore Lab
152	and treated and/or analyzed for inflammation markers (IL-6, IL-6sr, CRP, fibrinogen, sE-
153	Selectin and sICAM-1).
154	IL-6 and IL-6sr were assayed in the MIDUS Biocore Laboratory (University of Madison,
155	Madison WI) using Quantikine® High-sensitivity ELISA kits (cat# HS600B and cat# DR600,
156	R&D Systems, Minneapolis, MN). Plates were read at 490 and 450 nm, respectively for IL-6
157	and IL-6sr using a Dynex MRXe plate reader (Magellan Biosciences, Chantilly, VA). Intra-
158	assay and inter-assay precision (CV%) for IL-6 was approximately 4.1% and 13.0%. CV%

159 values for IL-6sr were 5.9-5.7% and 2.0%, respectively.

160 Assays for sICAM-1, sE-Selectin, fibrinogen and CRP were performed at the Laboratory 161 for Clinical Biochemistry Research (University of Vermont, Burlington, VT). Measurement of 162 sICAM-1 was completed using an ELISA assay (Parameter-Human sICAM-1 Immunoassay; 163 R&D Systems). Inter-assay precision for sICAM-1 was 5.0%. Measurement of sE-selectin was 164 completed using a high-sensitivity ELISA assay (Parameter Human sE-Selectin Immunoassay, 165 R&D Systems). Intra-assay and inter-assay precision for sE-selectin was 4.7-5.0% and 5.7-8.8%, 166 respectively. Fibrinogen was measured using the BNII nephelometer (N Antiserum to Human 167 Fibrinogen; Dade Behring Inc., Deerfield, IL). Intra-assay and inter-assay precision for

Page 33 of 56

1

BMJ Open

2	
3	168
4	
5	169
6 7	107
8	170
9	170
10	
11	171
12	
13	172
14	
15	173
16	
17	174
18	1,1
19 20	175
20	1/5
22	4 17 (
23	176
24	
25	177
26	
27	178
28	
29	179
30	
31	180
32 33	100
34	181
35	101
36	100
37	182
38	
39	183
40	
41	184
42	
43 44	185
44 45	
46	186
47	100
48	107
49	187
50	
51	188
52	
53	189
54 55	
55 56	190
56 57	
58	
59	

fibringen was 2.7% and 2.6%, respectively. CRP was analyzed using a BNII nephelometer 168 169 with a particle enhanced immunonepolometric assay. Intra-assay and inter-assay precision for 170 CRP was 2.3-4.4% and 2.1-5.7%, respectively.

Statistical Analyses. All variables were assessed for normality and non-normal data 172 were log transformed, which included data for CRP, IL-6, IL-6sr, fibrinogen, sE-selectin and 173 sICAM-1. General Linear Models were performed to determine the relationship of MMW and 174 BMI with the inflammatory markers. For each outcome, the ordinal MMW and BMI factors 175 were entered as independent factors with an interaction term. If the interaction term was not 176 significant, the interaction term was dropped and the model was re-fit for main effects only. 177 Pairwise comparisons were assessed using post hoc univariate analyses with a Bonferroni 178 adjustment for multiple comparisons. Covariates for all models included factors that are known 179 to affect inflammatory status: age, sex, smoking and relevant medications (cholesterol-lowering, 180 corticosteroids, anti-diabetic, antidepressant, hormone replacement and hormonal contraceptive). 181 Race was initially included as a covariate; however, approximately 200 data points were lost in 182 the analyses due to incomplete racial data. As race was not found to be a predictor of our 183 dependent variables, with the exception of sICAM-1, race was excluded as a covariate to 184 increase samples size in all analyses excluding sICAM-1. All statistical analyses were 185 performed with SPSS v. 17 (Chicago, IL) and statistical significance was set $\alpha = 0.05$. 186 In an exploratory analysis, we examined whether the relative effects of BMI and MMW 187 on the inflammatory markers differed by sex in 3-way interaction models. As none of the 188 interactions approached statistical significance (data not shown), sex was retained as a covariate 189 in the models.

60

1				
2 3 4	191			
4 5 6	192	RESULTS		
7 8 9 10 11 23 14 15 16 17 8 9 10 11 23 24 25 26 27 8 9 30 12 33 45 36 37 8 9 40	193	Subject Characteristics. Table 1 presents anthropometric characteristics and circulating		
	194	levels of inflammatory biomarkers in all subjects (N=1254). Subjects were 92.6% non-Hispanic		
	195	white, 56.8% female, and, on average, middle-aged and overweight. Of all the respondents,		
	196	14.9% were currently smoked, 27.8% were taking cholesterol lowering medication, 12.1%		
	197	corticosteroids, 10.4% anti-diabetic medication, 14.2% antidepressant medication, 7.3%		
	198	hormone replacement and 2.5% oral contraceptives. The percentage of participants with missing		
	199	data for each variable were as follows: 1.6% for CRP, 1.0% for sICAM-1, 1.0% for IL-6, 1.6%		
	200	for fibrinogen, 1.2% for sE-selectin, and 1.0% for IL-6sr.		
	201	CRP (Figure 1, Panel A) . We found a significant interaction between BMI and MMW		
	202	for CRP concentration (F=3.022, P=0.006). In post hoc comparisons, CRP levels were higher in		
	203	overweight and obese subjects compared to normal weight subjects among those who reported		
	204	no regular exercise (P's<0.001). However, among subjects who reported any amount of regular		
	205	exercise (<500, 500-1000 or >1000 MMW), CRP levels were significantly greater only in obese		
	206	subjects compared to both normal weight and overweight subjects (P's <0.01). In obese		
41 42	207	individuals, CRP tended to be lower in those reporting >1000 MMW compared to those		
43 44 45	208	reporting no regular exercise (P=0.053).		
46 47	209	We also found main effects of BMI (F=130.873 P<0.001) and MMW (F=11.576,		
48 49	210	P<0.001) on CRP. CRP was significantly greater with each increasing BMI category, in a dose-		
50 51 52	211	dependent manner (P's<0.001). Compared to participants who reported no regular exercise,		
53 54	212	CRP was significantly lower in those who reported 500-1000 and >1000 MMW (P's <0.01),		
55 56 57 58 59 60	213	with a trend for lower CRP in those who reported <500 MMW of regular exercise (P=0.078).		

BMJ Open

3 4	214	sICAM-1 (Figure 1, Panel B). We found a significant interaction between BMI and
5 6 7	215	MMW for sICAM-1 concentration (F=2.701, P=0.013). Levels of sICAM-1 were significantly
7 8 9	216	lower in obese subjects who reported >1000 MMW compared to obese subjects who reported no
10 11	217	regular exercise (P=0.014) and <500 MMW (P=0.026) and tended to be lower than levels in
12 13 14 15 16 17 18 19 20 21	218	obese subjects who reported 500-1000 MMW (P=0.079). No differences in sICAM-1 by MMW
	219	were observed among normal weight or overweight individuals.
	220	We also observed a main effect of BMI (F=6.060, P=0.002), such that sICAM-1 levels in
	221	obese participants were significantly higher than levels found in both normal weight and
22	222	overweight participants (P's<0.01). No significant main effect of MMW was found for sICAM-1

(F=0.931, P=0.425).

IL-6 (Figure 1, Panel C). Both BMI and MMW had independent effects on circulating concentrations of IL-6 (BMI: F=60.150, P<0.001, MMW: F=10.680, P<0.001), with no significant interaction (F=1.21, P=0.297). We found a dose-dependent effect of BMI, such that higher BMI levels were associated with significantly greater IL-6 (P's<0.001). Independent of BMI, IL-6 was significantly lower in subjects who reported regular exercise (<500 MMW, 500-1000 MMW and >1000 MMW) compared to those who reported no regular exercise (P's <0.01) with no difference between levels of MMW.

Fibrinogen (Figure 1, Panel D). BMI significantly contributed to circulating levels of fibrinogen (F=42.385, P<0.001), such that dose-dependent increases were observed for all BMI levels (P's<0.01). While we observed a trend for lower fibringen with regular physical activity, similar to that of IL-6, the effect did not reach statistical significance (F=2.187, P=0.088). We observed no significant interaction between BMI and MMW for fibrinogen (F=1.680, P=0.122).

1

60

2		
3 4	236	sE-Selectin (1, Panel E). BMI significantly contributed to circulating levels of sE-
5 6 7 8 9 10 11 12 13 14 15 16 17 18	237	selectin (F=28.253, P<0.001) with no significant contribution by MMW (F=0.207, P=0.892).
	238	Dose-dependent increases in sE-selectin were also observed across BMI levels (P's<0.01). We
	239	observed no significant interaction between BMI and MMW for sE-selectin (F=0.570, P=0.755).
	240	IL-6sr (Figure 1, Panel F). No significant main effects for BMI (F=1.783, P=0.169),
	241	MMW (F=1.434, P=0.231) or their interaction (F=0.834, P=0.544) were detected for IL-6sr.
	242	Waist Circumference (WC) and Inflammatory Markers (Supplemental Figure 1). A
19 20 21	243	secondary analysis was completed using WC and MMW as independent variables and the
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	244	complete results of these analyses are located in the supplemental information. Briefly, we
	245	found a significant interaction between WC and MMW on sICAM-1. In individuals with an at-
	246	risk WC (\geq 102.0 cm for men and \geq 88.0 cm for women), sICAM-1 was significantly lower in
	247	those reporting 1000+ MMW compared to less than 500 MMW and tended to be lower in those
	248	reporting no regular exercise. Overall, main effects were similar to those found for BMI and
	249	MMW analyses. Having an at-risk WC was independently related to higher levels of CRP,
	250	sICAM-1, IL-6, fibrinogen and sE-selectin. Independent of WC, any level of regular exercise
	251	was related to lower levels of CRP, IL-6 with a similar tendency for fibrinogen.
40 41 42	252	
43 44	253	DISCUSSION
45 46 47	254	The current study aimed to determine whether the impact of BMI and MMW on
48 49	255	inflammatory markers varied by level of overweight or obesity. For CRP and s-ICAM-1
50 51	256	regular physical activity appeared to diminish the effects of higher BMI compared to those who
52 53 54	257	reported no regular physical activity. In addition, we found that BMI was strongly and
55 56 57 58 59 60	258	independently related to greater concentrations of both established and emerging inflammatory

Page 37 of 56

1

BMJ Open

2	
23456789111234156789011222222222222233323333333333333333333	
۵ ۵	
- 5	
6	
7	
γ Q	
a	
9 10	
10	
11	
12	
13	
14	
10	
10	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

259 markers that may increase CVD risk. Independent of BMI, regular physical activity was also 260 associated with lower IL-6, with a similar trend for fibringen. These results suggest that, 261 although obesity has a clear impact on inflammation, physical activity appears to mitigate at least 262 some of this effect. 263 For example, overweight individuals had CRP levels that were similar to levels observed 264 in obese individuals if they reported no regular exercise (4.05 and 4.83 µg/mL, respectively). 265 CRP levels greater than 3 µg/mL are typically associated with high CVD risk(26). In overweight 266 subjects who reported regular physical activity of at least 3, 20-minute sessions per week (be it 267 below [<500], within [500-1000] or above [>1000] USDHHS MMW recommendations), CRP 268 levels were lower and not significantly different from CRP levels found in normal weight 269 participants (). This suggests that increasing physical activity level to a minimum of 3 days per 270 week, at least 20 minutes per day, may improve CRP profiles among overweight individuals. 271 Obese individuals may require a higher level of regular physical activity in order to lower 272 inflammatory markers. While obese subjects also had greater levels of CRP and sICAM-1 273 compared to lean and overweight subjects, those who reported >1000 MMW (above the 274 USDHHS recommendation) had lower levels of sICAM-1 and tended to have lower CRP than 275 obese subjects reporting no regular physical activity. Taken together, we may speculate that 276 while physical activity levels currently recommended for the general population may reduce 277 particular inflammatory makers in overweight populations, obese populations may require 278 greater levels of physical activity above recommended values to reduce inflammatory markers 279 like CRP and sICAM-1.

As expected, strong main effects of BMI were observed for CRP, IL-6, fibrinogen,
sICAM-1 and sE-selectin, in agreement with previous work (27-30). Independent of BMI effects,

our results suggest that physical activity has differentiating effects on inflammatory markers. Individuals reporting no regular physical activity had higher levels of IL-6 with a tendency for higher fibringen, compared to those reporting any level of regular physical activity (<500, 500-1000 or >1000 MMW). Similar results have been observed in the MONItoring trends and determinants in CArdiovascular disease (MONICA) study(31), the National Health and Nutrition Examination Survey (NHANES III)(12, 14) and the Multi-Ethnic Study of Atherosclerosis (MESA)(32), such that both increased frequency and intensity of physical activity have been related to lower IL-6 and fibrinogen. Our findings add to these prior results by standardizing levels of physical activity by using USDHHS. Our results suggest that, regular physical activity at any level (<500, 500-1000, >1000) appears to be associated with lower levels of IL-6 and possibly fibrinogen, independent of BMI.

Although IL-6 produced in hypertrophied adipose tissue(33, 34) initiates the acute phase response, marked by the release of hepatic CRP (35, 36), an interaction between BMI and physical activity was detected for CRP, but not IL-6. While IL-6 and CRP were significantly correlated (r=0.514, see Supplemental Table 1), this correlation suggests that IL-6 levels do not fully explain CRP levels at any given moment. Further, CRP is a more stable biomarker, owing to its substantially longer plasma half-life (37), which may improve our ability to detect interaction effects in CRP compared to IL-6.

Interestingly, our results also suggest that regular exercise may have a more profound impact on lowering classical markers of inflammation and less impact on the inflammatory status of the endothelium. Regular physical activity has reliably been associated with lower levels of IL-6 and CRP, both classical inflammatory markers related to adipose and systemic inflammation(38). However, regular exercise appeared to have no independent impact on

Page 39 of 56

60

BMJ Open

1 2		
3 4 5 6 7 8 9	305	markers of endothelial activation, particularly sE-selectin. Higher levels of exercise were related
	306	to lower sICAM-1 in obese individuals only. In one prior study, inverse relationships between
	307	physical activity and sICAM-1 and sE-selectin were reported in drug-treated hypertensive men
10 11	308	(39). Thus, further research is necessary to understand mechanisms underlying differential
12 13 14	309	associations of exercise with systemic and endothelial inflammation.
14 15 16	310	Several limitations must be addressed. First, the cross-sectional design does not allow us
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 39 40	311	to infer causal relationships. Prospective and interventional designs are necessary to confirm our
	312	findings. No objective measures of physical activity were available in the MIDUS sample.
	313	Therefore, the use of self-report physical activity data may have diminished our ability to detect
	314	effects. However, in addition to being in line with previous studies using self-report physical
	315	activity, our findings are also in line with previous studies(40, 41) that demonstrated that higher
	316	cardiorespiratory fitness, as measured by indirect calorimetry, was associated with lower levels
	317	of inflammation independent of visceral adiposity or BMI. Another limitation is that the sample
	318	was predominantly comprised of non-Hispanic white individuals, suggesting that findings may
	319	not extend to all ethnicities. Finally, BMI and physical activity variables are correlated,
	320	potentially raising the concern of small sample sizes in specific groups crossed by BMI and
40 41 42	321	MMW. However, the smallest group for analyses still contained 54 individuals (normal weight
43 44	322	individuals reporting no exercise).
45 46 47	323	In summary, our results demonstrate both interactive and independent influences of BMI
48 49	324	and levels of physical activity on both established and emerging markers of inflammation.
50 51	325	Inflammation is both a consequence of obesity and a mechanism promoting CVD. Regular
52 53 54	326	physical activity appears to mitigate the effects of higher BMI on some inflammatory markers,
55 56 57	327	particularly CRP, which is strongly implicated in CVD. Importantly, while any level of regular
58 59		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3 4	328
5 6	329
7 8 9	330
9 10 11	331
12 13	332
14 15	333
16 17	334
18 19 20	335
20 21 22	
22 23 24	336
25 26	337
27 28	338
29 30	339
31 32	340
33 34 35	341
36 37	342
38 39	343
40 41	344
42 43	345
44 45 46	346
40 47 48	
49 50	347
51 52	348
53 54	349
55 56	350
57 58	
59 60	

328 physical activity may help reduce inflammation in overweight individuals, similar effects in

329 obese individuals may require levels of physical activity that are greater than currently

330 recommended by the USDHHS for general health.

Page 41 of 56

351

352

353

ACKNOWLEDGEMENTS

BMJ Open

We thank the staff of the Clinical Research Centers at the University of Wisconsin-Madison,

UCLA, and Georgetown University for their effort in conducting the original data collection.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2345678910123415678901123456789011233456789011233456789011233456789011233456789011233456789011233456789
21
22
22
20
24
20
20
21
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

354	
355	FUNDING
356	KS was supported through a T32 Training Fellowship (Training in Behavioral and Preventive
357	Medicine; T32 HL076134). The original research was supported by a grant from the National
358	Institute on Aging (P01-AG020166) to conduct a longitudinal follow-up of the MIDUS (Midlife
359	in the U.S.) Investigation.
360	
361	The original study was supported by the John D. and Catherine T. MacArther Foundation
362	Research Network on Successful Midlife Development and by the following grants: M01-
363	RR023942 (Georgetown), M01-RR00865 (UCLA) from the General Clinical Research Centers
364	Program and 1UL1RR025011 (UW) from the Clinical and Translational Science Award (CTSA)
365	program of the National Center for Research Resources, National Institutes of Health.
366	
367	CONFLICTS OF INTEREST
368	CONFLICTS OF INTEREST The authors declare no conflict of interest.
369	
370	CONTRIBUTORSHIP
371	KS, JMM and RRW each made substantial contributions to the conception and design of the
372	study, data acquisition, analysis and interpretation, as well as to drafting and revision for
373	substantial intellectual content. All authors made final approval of the version to be published.

1 2	
3 4	374
5 6 7	375
7 8 9	376
10 11	377
12 13 14	378
14 15 16	379
17 18	380
19 20 21	381
22 23	382
24 25	383
26 27 28	384
29 30	385
31 32	386
33 34 35	387
36 37	388
38 39	389
40 41 42	390
43 44	391
45 46 47	392
48 49	393
50 51	394
52 53 54	395
55 56	396
57 58 59	

Т
1

75 Data and documentation for MIDUS studies are available at the Inter-university Consortium for

Political and Social Research (ICPSR). http://www.icpsr.umich.edu/icpsrweb/landing.jsp

ARTICLE SUMMARY Article focus • Systemic inflammation is related to the progression of cardiovascular disease. Independent of obesity, physical activity is inversely related to concentrations of well-established inflammatory biomarkers, such as C-reactive protein (CRP) or interleukin-6 (IL-6). This article evaluates interactive effects of body mass index and physical activity on established inflammatory markers, CRP, IL-6, and emerging inflammatory markers, fibrinogen, soluble intracellular adhesion molecule (sICAM)-1, soluble E-selectin, and IL-6 soluble receptor. Key messages Interactive effects of body mass index and physical activity • were observed for CRP, such that regular physical activity reported by overweight individuals was related to significantly lower CRP levels compared to those reported no regular activity. • Independent of BMI, regular physical activity was related to lower IL-6, with a trend for lower fibrinogen Physical activity had no independent effect on circulating markers related to endothelial inflammation, such as sICAM-1 or sE-selectin. **Strengths and limitations** 1254 adults from the National Survey of Midlife Development in the United States (MIDUS) Biomarker Project were analyzed. Statistical analyses were adjusted for age, sex, smoking, and relevant medication use. A strength of this paper is categorizing physical activity levels based on national recommendations. This data may be used to determine appropriate levels of physical activity necessary for reducing inflammation in overweight and obese adults. However, crosssectional data is limited, as causal inferences cannot be obtained. A second limitation is that the sample was predominantly comprised of non-Hispanic white individuals, therefore findings may not extend to all ethnicities.

BMJ Open

2 3 4	³ 397 REFERENCES			
5 6 7	398	1. Blair SN, Brodney S. Effects of physical inactivity and obesity on morbidity and		
7 8 9	399	mortality: current evidence and research issues. Med Sci Sports Exerc. 1999;31(11 Suppl):S646-		
10 11	400	62. Epub 1999/12/11.		
12 13	401	2. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-7.		
14 15 16	402	Epub 2006/12/15.		
17 18	403	3. Koenig W, Khuseyinova N, Baumert J, et al. Increased concentrations of C-reactive		
19 20 21	404	protein and IL-6 but not IL-18 are independently associated with incident coronary events in		
21 22 23	405	middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study,		
24 25	406	1984-2002. Arterioscler Thromb Vasc Biol. 2006;26(12):2745-51. Epub 2006/09/30.		
26 27 28	407	4. Papageorgiou N, Tousoulis D, Siasos G, et al. Is fibrinogen a marker of inflammation in		
29 30	408	coronary artery disease? Hellenic J Cardiol. 2010;51(1):1-9. Epub 2010/02/02.		
31 32	409	5. Schmidt C, Hulthe J, Fagerberg B. Baseline ICAM-1 and VCAM-1 are increased in		
33 34 35	410	initially healthy middle-aged men who develop cardiovascular disease during 6.6 years of		
36 37	411	follow-up. Angiology. 2009;60(1):108-14. Epub 2008/05/28.		
38 39	412	6. Demerath E, Towne B, Blangero J, et al. The relationship of soluble ICAM-1, VCAM-1,		
40 41 42	413	P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann		
43 44	414	Hum Biol. 2001;28(6):664-78. Epub 2001/12/01.		
45 46	415	7. Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol.		
47 48 49	416	2009;6(6):399-409. Epub 2009/04/29.		
50 51	417	8. Calabro P, Yeh ET. Obesity, inflammation, and vascular disease: the role of the adipose		
52 53 54 55 56	418	tissue as an endocrine organ. Subcell Biochem. 2007;42:63-91. Epub 2007/07/07.		
57 58 59 60				

2					
3 4 5 6 7 8 9	419	9.	Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue		
	420	volumes are cross-sectionally related to markers of inflammation and oxidative stress: the			
	421	Framingham Heart Study. Circulation. 2007;116(11):1234-41. Epub 2007/08/22.			
10 11	422	10.	Mathieu P, Poirier P, Pibarot P, et al. Visceral obesity: the link among inflammation,		
12 13	423	hypert	tension, and cardiovascular disease. Hypertension. 2009;53(4):577-84. Epub 2009/02/25.		
$\begin{array}{c} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44 \end{array}$	424	11.	Reuben DB, Judd-Hamilton L, Harris TB, et al. The associations between physical		
	425	activit	ty and inflammatory markers in high-functioning older persons: MacArthur Studies of		
	426	Successful Aging. J Am Geriatr Soc. 2003;51(8):1125-30. Epub 2003/08/02.			
	427	12.	King DE, Carek P, Mainous AG, 3rd, et al. Inflammatory markers and exercise:		
	428	differences related to exercise type. Med Sci Sports Exerc. 2003;35(4):575-81. Epub 2003/04/04.			
	429	13.	Wannamethee SG, Lowe GD, Whincup PH, et al. Physical activity and hemostatic and		
	430	inflam	matory variables in elderly men. Circulation. 2002;105(15):1785-90. Epub 2002/04/17.		
	431	14.	Abramson JL, Vaccarino V. Relationship between physical activity and inflammation		
	432	among	g apparently healthy middle-aged and older US adults. Arch Intern Med.		
	433	2002;	162(11):1286-92. Epub 2002/06/01.		
	434	15.	Geffken DF, Cushman M, Burke GL, et al. Association between physical activity and		
	435	marke	ers of inflammation in a healthy elderly population. Am J Epidemiol. 2001;153(3):242-50.		
	436	Epub 2001/02/07.			
45 46	437	16.	Taaffe DR, Harris TB, Ferrucci L, et al. Cross-sectional and prospective relationships of		
47 48 49 50 51	438	interle	eukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur		
	439	studie	s of successful aging. J Gerontol A Biol Sci Med Sci. 2000;55(12):M709-15. Epub		
52 53	440	2000/	12/29.		
54 55 56					
57					
58 59					

1 2							
3 4	441	17.	Starkie R, Ostrowski SR, Jauffred S, et al. Exercise and IL-6 infusion inhibit endotoxin-				
5 6 7	442	induce	d TNF-alpha production in humans. FASEB J. 2003;17(8):884-6. Epub 2003/03/11.				
7 8 9	443	18.	Pedersen BK, Steensberg A, Fischer C, et al. Exercise and cytokines with particular focus				
10 11	444	on mus	scle-derived IL-6. Exerc Immunol Rev. 2001;7:18-31. Epub 2001/10/03.				
12 13	445	19.	Pedersen BK, Steensberg A, Fischer C, et al. The metabolic role of IL-6 produced during				
14 15 16	446	exercis	se: is IL-6 an exercise factor? Proc Nutr Soc. 2004;63(2):263-7. Epub 2004/08/06.				
17 18	447	20.	Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white				
19 20	448	adipos	e tissue. Br J Nutr. 2004;92(3):347-55. Epub 2004/10/08.				
21 22 23	449	21.	Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic				
24 25	450	inflammation. Clin Chim Acta. 2010;411(11-12):785-93. Epub 2010/03/02.					
26 27 28	451	22.	USDHHS, editor. 2008 Physical Activity Guidelines for Americans. Washington				
29 30	452	DC2008.					
31 32	453	23.	C Ryff DA, JS Ayanian, DS carr, PD Cleary, C Coe, R Davidson, RF Krueger, ME				
33 34 35	454	Lachm	aan, NF Marks, DK Mroczek, T Seeman, MM Seltzer, BH Singer, RP Sloan, PA Tun, M				
36 37	455	Weinst	tein, D Williams. National Survey of Midlife Development in the United State (MIDUS II),				
38 39	456	2004-2	2006. Inter-university Consortium for Political and Social Research (ICPSR) [distrubutor].				
40 41 42	457	2011.					
43 44	458	24.	Kraemer H. How Many Subjects? Statistical Power Analysis in Research: SAGE				
45 46 47	459	Publications, Inc; 1987.					
48 49	460	25.	Cohen J. Statistical Power Analysis for the Behavioral Sciences. Second ed: Lawrence				
50 51	461	Erlbau	m Associates; 1998.				
52 53 54	462	26.	Bassuk SS, Rifai N, Ridker PM. High-sensitivity C-reactive protein: clinical importance.				
55 56 57 58 59 60	463	Curr P	robl Cardiol. 2004;29(8):439-93. Epub 2004/07/20.				

1

2					
3 4	464	27.	Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum		
5 6 7	465	concer	ntrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract. 2005;69(1):29-35. Epub		
8 9	466	2005/0	06/16.		
10 11	467	28.	Bastard JP, Jardel C, Bruckert E, et al. Elevated levels of interleukin 6 are reduced in		
12 13 14	468	serum	and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol		
15 16	469	Metab	. 2000;85(9):3338-42. Epub 2000/09/22.		
17 18	470	29.	Ditschuneit HH, Flechtner-Mors M, Adler G. Fibrinogen in obesity before and after		
19 20 21	471	weight	t reduction. Obes Res. 1995;3(1):43-8. Epub 1995/01/01.		
22 23	472	30.	Straczkowski M, Lewczuk P, Dzienis-Straczkowska S, et al. Elevated soluble		
24 25 26	473	interce	ellular adhesion molecule-1 levels in obesity: relationship to insulin resistance and tumor		
20 27 28	474	necros	is factor-alpha system activity. Metabolism. 2002;51(1):75-8. Epub 2002/01/10.		
29 30	475	31.	Autenrieth C, Schneider A, Doring A, et al. Association between different domains of		
31 32 33	476	physic	al activity and markers of inflammation. Med Sci Sports Exerc. 2009;41(9):1706-13. Epub		
34 35	477	2009/0	08/07.		
36 37	478	32.	Majka DS, Chang RW, Vu TH, et al. Physical activity and high-sensitivity C-reactive		
38 39 40	479	proteir	n: the multi-ethnic study of atherosclerosis. Am J Prev Med. 2009;36(1):56-62. Epub		
41 42	480	2008/1	1/18.		
43 44	481	33.	Day CP. From fat to inflammation. Gastroenterology. 2006;130(1):207-10. Epub		
45 46 47	482	2006/01/13.			
48 49	483	34.	Fain JN, Madan AK, Hiler ML, et al. Comparison of the release of adipokines by adipose		
50 51 52	484	tissue,	adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose		
52 53 54	485	tissues	of obese humans. Endocrinology. 2004;145(5):2273-82. Epub 2004/01/17.		
55 56					
57 58					
59					
60					

Page 47 of 56

1

BMJ Open

2 3 4	486	35.	Castell JV, Gomez-Lechon MJ, David M, et al. Interleukin-6 is the major regulator of	
5 6	487	acute	phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989;242(2):237-9. Epu	ıb
7 8 9	488	1989/0	01/02.	
10 11	489	36.	Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biocher	n J.
12 13 14	490	1990;2	265(3):621-36. Epub 1990/02/01.	
15 16	491	37.	Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of	
17 18	492	develo	oping type 2 diabetes mellitus. JAMA. 2001;286(3):327-34. Epub 2001/07/24.	
19 20 21	493	38.	Mathieu P, Lemieux I, Despres JP. Obesity, inflammation, and cardiovascular risk. Cli	n
22 23	494	Pharm	nacol Ther. 2010;87(4):407-16. Epub 2010/03/05.	
24 25	495	39.	Hjelstuen A, Anderssen SA, Holme I, et al. Markers of inflammation are inversely rela	ited
26 27 28	496	to phy	vical activity and fitness in sedentary men with treated hypertension. Am J Hypertens.	
29 30	497	2006;	19(7):669-75; discussion 76-7. Epub 2006/07/04.	
31 32	498	40.	Church TS, Barlow CE, Earnest CP, et al. Associations between cardiorespiratory fitne	ess
33 34 35	499	and C	-reactive protein in men. Arterioscler Thromb Vasc Biol. 2002;22(11):1869-76. Epub	
36 37	500	2002/	11/12.	
38 39 40	501	41.	Arsenault BJ, Cartier A, Cote M, et al. Body composition, cardiorespiratory fitness, an	d
40 41 42	502	low-g	rade inflammation in middle-aged men and women. Am J Cardiol. 2009;104(2):240-6.	
43 44	503	Epub	2009/07/07.	
45 46 47	504			
48 49	505			
50 51	506			
52 53 54	507			
55 56	508			
57 58 50				
59 60				22

1		
2 3 4	509	FIGURE AND TABLE LEGENDS
5 6 7	510	
7 8 9	511	
10 11 12	512	Figure 1: Inflammatory Markers. Data from 1254 men and women in MIDUS. Joint
12 13 14	513	association of BMI category (normal, overweight and obese) and MMW category (no regular
15 16	514	exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C),
17 18 19	515	fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex,
20 21	516	smoking and relevant medication use. The analysis for sICAM-1 was further adjusted for race.
22 23	517	Error bars represent SEM. BMI=BMI main effect P value, MMW=MMW main effect P value,
24 25 26	518	INT=interaction effect P value.
27 28	519	
29 30	520	
31 32 33	521	Table 1: Subject Characteristics. BMI = body mass index; CRP = C-reactive protein; IL =
34 35	522	interleukin; IL-6sr = IL-6 soluble receptor; MMW = MET-Minutes per Week; sE-Selectin =
36 37 38	523	soluble E-Selectin; sICAM-1= soluble intracellular adhesion molecule-1.
39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 57 58	524	
60		23

 BMJ Open

Section/Topic	Item #	Recommendation	Reported on page #		
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1		
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2		
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3		
Objectives	3	State specific objectives, including any pre-specified hypotheses	3		
Methods					
Study design	4	Present key elements of study design early in the paper	4		
Setting	5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection				
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i>—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i>—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed 	4 N/A		
Variables	Case-control study—For matched studies, give matching criteria and the number of controls per case iables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable				
Data sources/ measurement	Data sources/ measurement 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group		4-7		
Bias	9	Describe any efforts to address potential sources of bias	7		
Study size	10	Explain how the study size was arrived at	4		
Quantitative variables					
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7		
		(b) Describe any methods used to examine subgroups and interactions	7		
		(c) Explain how missing data were addressed	7		
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	N/A		

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	8
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8
		(b) Indicate number of participants with missing data for each variable of interest	8
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/A
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	8-10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	8-10
		(b) Report category boundaries when continuous variables were categorized	8-10
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	14
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information	1		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

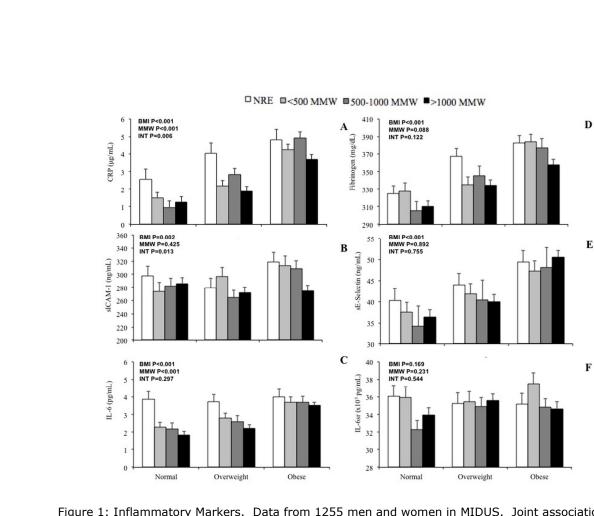


Figure 1: Inflammatory Markers. Data from 1255 men and women in MIDUS. Joint association of BMI category (normal, overweight and obese) and MMW category (no regular exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C), fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex, smoking and relevant medication use. Error bars represent SEM. BMI=BMI main effect P value, MMW=MMW main effect P value, INT=interaction effect P value. 114x90mm (300 x 300 DPI)

E

F

Waist Circumference (WC) and MET-Minutes per Week (MMW)

CRP (Supplementary Figure 1, panel A). We found no significant interaction effect between WC and MMW for CRP (F=1.426, P=0.234). We found significant main effects for WC (F=159.669, P<0.001) and MMW (F=9.766, P<0.001) on circulating CRP. CRP levels were lower in participants who reported a normal waist circumference and any level of regular exercise (<500, 500-1000, and >1000 MMW), compared to those with an at-risk waist circumference (P's<0.001) and those no regular exercise (P's<0.05).

sICAM-1 (Supplementary Figure 1, panel B). We found a significant interaction effect between WC and MMW for sICAM-1 (F=4.846, P=0.002). While sICAM-1 levels were not significantly difference across MMW categories in individuals with a normal WC (P's>0.05), in individuals with an at-risk WC, sICAM-1 was significantly lower in those reporting 1000+ MMW compared to less than 500 MMW (P=0.007) and tended to be lower in those reporting no regular exercise (P=0.072). Similar to BMI, waist circumference independently contributed to sICAM-1 (F=26.841,, P<0.001), such that values were greater in subjects with an at-risk WC compared to those with a normal WC (P <0.001). No effect of MMW was observed (F=1.055, P=0.367) for sICAM-1.

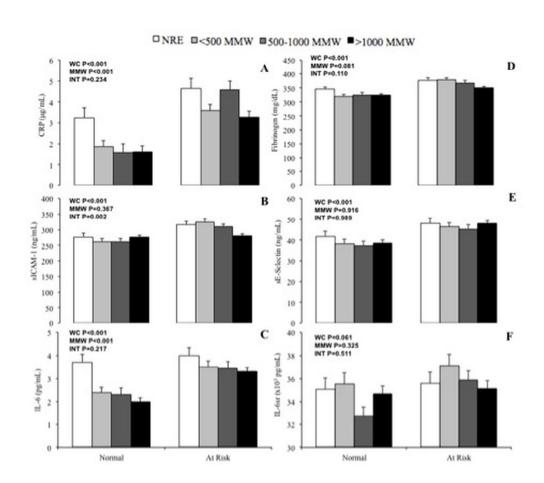
IL-6 (Supplementary Figure 1, panel C). We found no significant interaction effect between WC and MMW for IL-6 (F=1.282, P=0.217). We found significant main effects for waist circumference (F=84.441, P<0.001) and MMW (F=10.255, P<0.001), such that IL-6 levels were lower in participants who reported an normal waist circumference and any level of regular exercise (<500, 500-1000, and >1000 MMW), compared to those with an at risk waist circumference (P's<0.001) and those reporting no regular exercise (P's<0.05).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Fibrinogen (Supplementary Figure 1, panel D). We found no significant interaction effect between WC and MMW for fibrinogen (F=2.019, P=0.110). Waist circumference also impacted fibrinogen (F=38.960, P<0.001), such that values were greater in subjects with an atrisk waist circumference compared to those with a normal waist circumference (P's <0.001). The effect of MMW on fibrinogen bordered on statistical significance (F=2.245, P=0.081), such that values were lower with in individuals who reported greater MMW.

sE-Selectin (*Supplementary Figure 1, panel E*). We found no significant interaction between WC and MMW for sE-Selectin (F=0.041, P=0.989). Waist circumference also independently contributed to sE-selectin (F=40.967, P<0.001), such that values were greater in subjects with an at-risk waist circumference compared to those with a normal waist circumference (P <0.001). No effect of MMW was observed for sE-selectin (F=0.172, P=0.916).


IL-6sr (Supplementary Figure 1, panel F). We found no significant interaction effect between WC and MMW for IL-6sr (F=0.769, P=0.511). Like BMI, we found no main effects for waist circumference (F=3.505, P=0.061) or MMW on IL-6sr (F=1.158, P=0.325).

Interrelationship of Inflammatory Markers. Correlations between all inflammatory markers are shown in Supplementary Table 1.

Figure Legend

Supplemental Figure 1. Waist Circumference (WC), MET Minutes per Week (MMW) and Inflammatory Markers. Data from 1255 men and women in MIDUS. Joint association of WC category (normal [$(\geq 102.0 \text{ cm for men and } \geq 88.0 \text{ cm for women]}$, at risk [$(>102.0 \text{ cm for men and } \geq 88.0 \text{ cm for women]}$, at risk [$(>102.0 \text{ cm for men and } \geq 88.0 \text{ cm for women]}$, at risk [$(>102.0 \text{ cm for men and } \geq 88.0 \text{ cm for women]}$, at risk [$(>102.0 \text{ cm for men and } \geq 88.0 \text{ cm for women]}$, at risk [$(>102.0 \text{ cm for men and } \geq 88.0 \text{ cm for women]}$], at risk [$(>102.0 \text{ cm for men and } \geq 88.0 \text{ cm for women]}$], at risk [$(>102.0 \text{ cm for men and } \geq 88.0 \text{ cm for women]}$]. men and >88.0 cm for women]) and MMW category (no regular exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C), fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex, smoking and relevant medication use. Error bars represent SEM. WC=WC main effect, MMW=MMW main effect,

INT=interaction effect.

Supplemental Figure 1. Waist Circumference (WC), MET Minutes per Week (MMW) and Inflammatory Markers. Data from 1255 men and women in MIDUS. Joint association of WC category (normal [(≥102.0 cm for men and ≥88.0 cm for women], at risk [(>102.0 cm for men and >88.0 cm for women]) and MMW category (no regular exercise, <500 MMW, 500-1000 MMW and >1000 MMW) for CRP (A), sICAM-1 (B), IL-6 (C), fibrinogen (D), sE-Selectin (E) and IL-6sr (F). These analyses were adjusted for age, sex, smoking and relevant medication use. Error bars represent SEM. WC=WC main effect, MMW=MMW main effect, INT=interaction effect.

100x90mm (300 x 300 DPI)

	IL-6	IL-6sr	Fibrinogen	CRP	sE-Selectin	
IL-6						
IL-6sr	0.037					
Fibrinogen	0.417**	0.017				
CRP	0.514**	0.053	0.513**			
sE-Selectin	0.213**	0.035	0.104**	0.156**		
sICAM-1	0.134**	0.140**	0.092**	0.144**	0.041	

Supplemental Table 1. Correlations of Inflammatory Biomarkers. IL-6 = Interleukin-6, IL-6sr = IL-6 soluble receptor, CRP = C-reactive protein, sE-Selectin =

soluble E-Selectin and sICAM-1 = soluble intracellular adhesion molecule – 1. * denotes significance at $p \le 0.05$, ** denotes significance at $p \le 0.001$.