
Supporting Information
Tripathy et al. 10.1073/pnas.1221214110
SI Materials and Methods
Neuron Recordings. Whole-cell patch clamp recordings of mitral
cells were obtained in vitro from mouse olfactory bulb slices using
methods described previously (1). Mitral cells were identified
under infrared differential interference contrast optics on the basis
of their laminar position in the olfactory bulb and their morphol-
ogy. All experiments were performed at 35 °C in standard Ringer’s
solution with excitatory (25 μM 2-amino-5-phosphonopentanoic
acid and 10 μM 6-cyano-7-nitroquinoxaline-2,3-dione) and in-
hibitory (10 μM bicuculline) synaptic activity blocked.
Current-clamp recordings were performed while injecting neu-

rons with a filtered white-noise current stimulus. Noise traces were
generated by convolving a 2.5-s white-noise current with an alpha
function of the form t * expð−t=τÞ, where τ = 3 ms. We chose this
spectral structure as it generates reliable spiking in these neurons
and corresponds to the timescale of fast synapses afferent to MCs
(2). Each neuron received one of a small number of stimuli gen-
erated via this method (most neurons received one of three stim-
ulus templates) and was presented ∼40 stimulus repeats. The
amplitude (variance) of the noise used was between 5% and 40%
of the direct current (100–800 pA, σ = 20–80 pA) offset for each
cell, with the majority of cells receiving 10–20% of the dc offset.
The variance of the noise was selected as previously described (2),
to induce reliable firing without large input fluctuations. For all
recordings, a 25 or 50 pA hyperpolarizing pulse was injected before
stimuli were delivered to measure input resistance and membrane
time constant, allowing us to track the stability of recordings over
multiple trials. Only neurons whose firing patterns were stable
across trials and fired a sufficient number of spikes in each trial (>5
Hz) were used in this study. Upon stimulation most neurons usu-
ally underwent a brief nonspiking adaptation period (111± 14 ms),
which was assessed visually and excluded from the analysis.

Model Fitting. GLM models were fit and simulated using code
provided by Jonathan Pillow (Departments of Psychology and
Neurobiology, University of Texas at Austin, Austin, TX) (3).
Models consisted of a temporal stimulus filter k, a postspike history
filter h,and a constant bias term b. Stimulus and history filters were
each represented using 10 spline-like cosine basis functions spaced
logarithmically in time. The conditional intensity function of each
neuron was modeled as λðtÞ= expðk·x+ h·r+ bÞ, where x denotes
the stimulus and r is the recorded spike response of the neuron.
Before fitting, stimuli were downsampled to 1 KHz and standard-
ized by subtracting the steady-state component and dividing by the
amplitude of the stimulus noise. LNP models were fit using the
spike-triggered average stimulus as the linear filter and estimating
the spike-rate nonlinearity using 60 independent histogram bins.
Models were trained using all of the trials from the first 90% of

the stimulus presentation and validated using the remaining 10%.
In specific, we validated the fit of our models by comparing real
and model peri-stimulus time histograms (PSTHs) computed
from the test stimulus set (i.e., stimuli not used in the training of
the model). We simulated model spike trains using the GLM to
probabilistically generate spikes elicited by the test stimulus.
PSTHs were computed by summing spikes across trials and
smoothing with a Gaussian filter of width σ = 2 ms. The similarity
between real and model PSTHs was reported using Pearson’s
correlation coefficient. For visualization, MC rasters were ran-
domized across trials.
To assess whether the GLM fitting procedure could also fit

neuron responses to multiple stimulus types, we performed an
additional set of experiments on mitral cells (n = 5 neurons)

where each neuron was stimulated with both a high- and low-
frequency stimulus (white noise convolved with an alpha func-
tion with τ = 3 ms and τ = 10 ms, respectively). We found that
the GLM modeling procedure could sufficiently fit neuron re-
sponses to each of these stimulus types, indicating that the fitting
procedure is not specific to the particular stimulus type used to
generate stimulus evoked responses in this study (Fig. S2).

Computation of Neuronal Statistics using GLM Models. We were
interested in computing neuronal statistics like average firing
rates and trial-to-trial reliability from the fitted GLMmodels. We
computed these by simulating long experiments (∼2 min) of
continuous stimulation and computing desired statistics based on
these responses. We computed neuron reliability by stimulating
each model neuron with multiple trials (n = 50) of the same
stimulus and calculating reliability as the average zero-lag cor-
relation across trials using a bin size of 5 ms.
To calculate to what extent neurons were driven by intrinsic

(history plus bias) versus stimulus components (Fig. S3B), we used
the model to simulate spike trains while storing the stimulus and
intrinsic “currents,” which generated the spike trains. Here the
stimulus-driven component consists of the convolution of neuron’s
stimulus filter with the input stimulus; whereas, the intrinsic
component is defined as the bias term plus convolution of neu-
ron’s spike train with its postspike filter. We calculated the ratio of
intrinsic to stimulus inputs as h½stim�+i=h½intrinsic�+i where ½·�+ in-
dicates selection of positive values of the currents and h·i indicates
the mean.

Stimuli Generation for Simulations.We generated zero-mean Gaussian
stimuli x with a defined temporal correlation structure and length
n by first generating a signal autocorrelogram with the desired
spectral structure. This autocorrelogram was used to define a
Toeplitz n * n covariance matrix C where the elements of C in-
dicate the pairwise correlations between points of x. Correlated
stimuli were then generated using the Cholesky decomposition to
find a matrix L such that C=L*LT , then multiplying L with a
series of uncorrelated normal random variables of length n.
Here we chose eight broadly different stimuli statistics: three

stimuli generated via convolving white noise with an alpha function
defined as t * expð−t=τÞ, where τ = 3, 5, and 10 ms; three Ornstein–
Uhlenbeck processes with τ = 10, 20, and 40 ms, which have flat
followed by 1/f2-like frequency profiles; a pure white-noise stimulus,
with cutoff at 500 Hz; lastly, a “naturalistic” stimulus generated by
combining an 8-Hz oscillatory stimulus with an Ornstein–Uhlen-
beck process with τ = 10 ms (displayed in Fig. S5).

Decoding.We decoded the population spiking responses using the
maximum a posteriori (MAP) estimator (4), which finds the most
probable stimulus given a particular population spike response.
Stimuli x (typically of length ∼0.5 s, with sampling rate 1 KHz)
were decoded from simulated spike responses r by comput-
ing the mode of the posterior distribution, x

argmax
pðxjrÞ, where

pðxjrÞ∝ pðrjxÞpðxÞ via Bayes’ rule. Here pðrjxÞ is the likelihood of
a response given a stimulus and is given by the set of uncoupled
neuron encoding models and pðxÞ is a multivariate Gaussian
prior specifying the specific stimulus autocorrelation structure
(with covariance matrix, C, used to generate stimuli). In specific,
stimuli were decoded using a recently described method (4)
that takes advantage of a convenient Gaussian approximation
on the posterior distribution pðxjrÞ and its log-concavity to ex-
actly compute the maximum (i.e., the mode) of the posterior
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distribution via numerical optimization techniques. This method
also provides an estimate of the uncertainty of the stimulus
representation (Fig. S4 F and G). Matlab code for decoding and
all other methods related to the simulation and analysis of spike
trains generated from GLM models (detailed below) can be
found at https://github.com/stripathy/mitral_cell_diversity.

Mutual Information Calculation. We calculated the mutual infor-
mation (4) of the population response r about the stimulus x as
Iðx; rÞ=HðxÞ−HðxjrÞ. HðxÞ denotes the entropy of the stimulus
and is defined by the multivariate Gaussian stimulus prior pðxÞ
and HðxjrÞ denotes the conditional entropy of the stimulus given
the response and is estimated by approximating the posterior
distribution pðxjrÞ as a multivariate Gaussian Nðxmap;CÞ, where
the covariance matrix, C, is computed as a byproduct of our
decoding method. Here we use the fact that the entropy of a
Gaussian with covariance matrix C is ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πeÞnjCj

p
, where j·j

denotes matrix determinant and n is the dimension of the
stimulus. Estimates of Iðx; rÞ were obtained by averaging HðxjrÞ
over responses elicited to multiple stimuli realizations (n = 50).
It is important to note that because this method estimates the
entropy of the posterior distribution, it generally provides a bet-
ter estimate of the mutual information than the commonly used
lower-bound estimate of Iðx; rÞ obtained via the optimal linear
estimator (5), especially when the neurons are nonlinear and not
well described by an LNP model.
We computed a normalized measure of the redundancy or

synergy (6) of a pair of neurons a; b relative to each of the neurons
independently as Iðx;aÞ+ Iðx;bÞ− Iðx;a;bÞ

Iðx;a;bÞ . Positive values indicate infor-
mational redundancy and negative values indicate synergy.
To elaborate on our finding of synergistic pairs of neurons (Fig.

2F), we note that due to computational constraints we can only
decode stimuli of relatively short lengths (0.5 s). Therefore, we
will tend to underestimate the information rates of neurons that
fire at low firing rates. For example, when performing stimulus
decoding to calculate the information rate of a single neuron
with a very low firing rate, it may fire zero spikes during the time
interval and thus encodes no stimulus information. However,
when considering two such neurons, the two will be much more
likely to fire at least one spike between them, and thus encode
some nonzero stimulus information. In this example, the case of
a two-neuron pair would appear synergistic relative to a single
neuron alone. Therefore, if we could simulate arbitrarily long
stimulus presentations we would expect this apparent synergy
effect to disappear.

Calculating Population Stimulus Generalization. To calculate how
well heterogeneous and homogeneous populations generalized
across stimuli of differing types, we computed the generalizability
for each population type. Here generalizability is defined as
corrðranksstim1; ranksstim2Þ, or the correlation between population
ranks on pairs of stimulus types.

GLM Dimensionality Reduction. We chose to reduce the dimen-
sionality of the space defined by neuronal GLM parameters using
principal component analysis (Fig. S6) for visualization and
further analysis. Principle components (PCs) were generated by
first concatenating waveforms of stimulus, postspike, and bias
components across all neurons and standardizing before per-
forming PC analysis. Postspike and bias terms were transformed
to units of log(Gain) before concatenating. The first 10 ms of
postspike filters were removed and not included in analysis.

Computing Population Diversity.We calculated population diversity
as the mean Euclidean distance of GLM parameters computed
between all pairs of neurons in a population.We excluded the first
10 ms of the postspike filters across neurons as most neurons were
refractory during this period. The average diversity of hetero-
geneous populations was computed by averaging over 50,000
randomly sampled populations. When reporting the uncertainty
in the diversity of randomly sampled populations (Fig. 4D), we
chose to show a measure of the population variance (inter-
quartile range) as opposed to SEs.
We sampled populations that varied greatly in their amount of

diversity (from low to high; Fig. 4F and Figs. S9 and S10) through
implementing stratified sampling where we first sampled 2 mil-
lion five-neuron populations and then further subsampled this
set to pick populations that varied uniformly in their diversity.

Eliminating Diversity in a Single GLM Dimension. We constructed
populations which had diversity eliminated along a single GLM
dimension (stimulus, postspike, or bias) by modifying the neuron
model parameters from the ones based on the recorded neurons
(Fig. S11). For example, to sample neurons where diversity in the
stimulus filter had been eliminated, we set the stimulus filter for
all neurons that of the mean stimulus filter computed over all
neurons. We further ensured that mean of the firing rates across
neurons were similar between the original and diversity-reduced
populations.
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Fig. S1. Comparison of GLM and LNP model parameters and prediction accuracy. (A) GLM parameters (red) and spike triggered average current (STA, Left,
blue) for the neuron in Fig. 1A. (B) LNP parameters for same neuron. (C) Experimental MC, GLM, and LNP rasters (Top) and PSTH (Bottom). Note that GLM
spikes replicate the MC more precisely than the LNP model. (D–F) As in A–C but for neuron in Fig. 1B.
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shown to illustrate temporal correlation difference between stimuli in i and ii. (B) As in A, but for a different mitral cell. (C) GLM models accurately predict
neuron responses to each of these two stimulus types (n = 5 MCs). Prediction accuracy computed as the correlation coefficient between MC and model PSTH.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

C
ou

nt

Intrinsic input / stimulus input

B

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

Neuron reliability

In
fo

 (
bi

ts
/s

pi
ke

)

 

 

Intrinsic input / stim
ulus input0

0.5

1

1.5

2

CA

Firing rate

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

In
fo

 (
bi

ts
/s

ec
)

CV ISI distribution

Fig. S3. Relationship between neuronal information rate and other spiking characteristics. (A) Neuron information rate as a function of coefficient of var-
iation (CV) of the interspike interval distribution (ISI) (CV ISI distribution). Neurons with higher information rates tend to have lower CVs, indicating that they
fire more regularly (i.e., less Poisson-like). (B) Histogram of the relative ratio of neuron spiking due to stimulus driven or intrinsic components (bias plus history
term) as indicated from the GLM. Neurons vary from being driven entirely by stimulus to being driven primarily by intrinsic components. (C) Same as Fig. 2D but
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Fig. S4. Two copies of the same neuron are more informative than a single neuron alone. (A) Stimulus-response mutual information for single neurons (thick
line) and populations of two copies of the same cell (thin line). In all cases, two neurons convey more information than a single neuron alone. (B) Informational
redundancy of homogeneous pairs versus single neuron populations plotted as a function of single neuron reliability. Boxes show neurons 18 and 35, which are
also highlighted in Fig. 2B. (C) GLM parameters for boxed neurons in B. These two neurons were chosen as an example because they have very different GLM
parameters which cause them to spike differently in response to the same stimulus. Neuron 18 (cyan) fires primarily as a result of the stimulus whereas neuron
35 (orange) has a large postspike rebound current causing it to fire relatively periodically. (D and E) Example stimulus and reconstructions for neurons 35 and
18. Note that for neuron 35, an unreliable neuron, there is an improved stimulus representation when another copy of 35 is added; this is effect is less
pronounced for neuron 18, which fires more reliably. (F and G) As in D and E but showing uncertainty in stimulus reconstruction. Blue shaded trace indicates
neuron 18 and red trace indicates neuron 35. Stimulus not shown for clarity. Error bars represent 1 SD of the Gaussian estimate of the decoded posterior
distribution. For both neurons, the stimulus representation is less uncertain with neuron pairs versus single neurons, highlighting the benefit of redundancy or
pooling representations over neurons.
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Fig. S5. Examples of the eight stimulus statistics used in this study. (A) White noise convolved with alpha function with τ = 3 ms. (B) White noise convolved
with alpha function with τ = 10 ms. (C) Ornstein–Ulhenbeck process with τ = 10 ms. (D) Pure white-noise stimulus (max frequency = 500 Hz). (E) Ornstein–
Ulhenbeck process with τ = 20 ms. (F) Ornstein–Ulhenbeck process with τ = 40 ms. (G) White noise convolved with alpha function with τ = 5 ms. (H) Naturalistic
sniffing stimulus generated by combining 8-Hz oscillation with Ornstein–Ulhenbeck process with τ = 10 ms.
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Fig. S6. Decomposition of neuronal GLM parameter space into a small number of principal components. (A) GLM parameters for an example five-neuron
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tend to have low firing rates, low-amplitude stimulus filters (relative to the mean across neurons) and longer refractory periods with less of a tendency to burst
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eration is a homogeneous neuron (red, i.e., a copy of selected neuron is already in the population) or heterogeneous (green). Same population as shown in i.
(iii) Same data as ii, plotted as iterative improvement in decoding error when adding an additional neuron, broken down by if neuron added is a homogeneous
neuron (red) or heterogeneous neuron (green). There is no significant difference (P > 0.05) in decoding error improvement between homogeneous and
heterogeneous groups. (B and C) As in A, but for a low-frequency stimulus (B, white noise convolved with alpha function with τ = 10 ms) or a high-frequency
stimulus (C, white noise convolved with alpha function with τ = 3 ms).
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Fig. S8. Companion figure to Fig. 4E, showing that populations selected through the greedy search procedure to best represent different stimulus types tend
to have different amounts of GLM parameter diversity. (A–C) Pairwise comparisons between the amounts of population diversity resulting when populations
are optimized to best represent different stimulus types. Population diversity values are first computed by running the greedy search algorithm multiple times
for each stimulus type (n = 10). Colored squares indicate P value for statistical test comparing population diversity between each pair of stimulus types. Circles
between stimulus pairs indicates that populations are significantly different in terms of their diversity (Wilcoxon, P < 0.05). Stimuli are numbered as in Fig. S5
(1): White noise convolved with alpha function with τ = 3 ms (2). White noise convolved with alpha function with τ = 10 ms (3). Ornstein–Ulhenbeck process
with τ = 10 ms (4). Pure white-noise stimulus (max frequency = 500 Hz) (5). Ornstein–Ulhenbeck process with τ = 20 ms (6). Ornstein–Ulhenbeck process with τ =
40 ms. (7) White noise convolved with alpha function with τ = 5 ms. (8) Naturalistic sniffing stimulus generated by combining 8-Hz oscillation with Ornstein–
Ulhenbeck process with τ = 10 ms.
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Fig. S9. Evidence for a U-shaped relationship between population diversity and decoding error. (A and B) Decoding error for five-neuron populations (black
dots) as a function of population diversity along stimulus filters (i); postspike filters (ii); and bias parameters (iii) for stimulus 1 (A, as in Fig. 3A) or stimulus 2 (B,
as in Fig. 3B). (i–iii) Two-hundred heterogeneous populations were drawn such that populations of varying diversity (from superdiverse through subdiverse)
were sampled with equal probability (Materials and Methods; n = 5 neurons per population). Blue line shows fit of a quadratic polynomial, used to test for
expected U-shaped relationship. In all cases, the regression coefficient associated with the quadratic term of the polynomial fit was positive and significant (P <
0.01), except for A, ii and B, ii, indicating that reconstruction error is minimized at an intermediate values of stimulus filter and bias diversity. The reason why
there does not appear to be a concave-up U-shaped relationship for postspike filters is due to sampling confounds: low postspike diversity populations tend to
have higher firing rates than high postspike diversity populations. (C) As in A, but showing U curves averaged across each of the eight stimuli. In this case, the
decoding error was first normalized to z scores before performing the regression, allowing comparison across stimuli.
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Fig. S10. Lack of a substantial U-shaped relationship between population diversity and decoding error for larger sized populations. Decoding error for neuron
populations (black dots) of size n = 2 neurons (i, data reanalyzed from Fig. 2); 5 neurons (ii, same as Fig. 4F); or 10 neurons (iii) per population as a function of
population diversity along the GLM stimulus filter dimension for stimulus 1 (as in Fig. 3A). (i–iii) Two-hundred heterogeneous populations were drawn such
that populations of varying diversity (from superdiverse through subdiverse) were sampled with equal probability (Materials and Methods). Blue line shows fit
of a quadratic polynomial, used to test for expected U-shaped relationship. The simplest explanation for why the observed U-shaped curve effect gets weaker
with more neurons per population is that each of these larger populations have saturated in their ability to represent the stimulus. In this case, it matters less
whether the populations are diverse (or not) because there are enough neurons in each population to effectively represent the stimulus.
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Fig. S11. Benefit of neuron variability does not depend on a single GLM model dimension. (A) Example five-neuron populations where population variability
in a single GLM dimension (stimulus, postspike, and bias) has been eliminated (Top, Middle, and Bottom, respectively). (B) Mean information rates for het-
erogeneous, homogeneous, and stimulus, postspike, and bias-reduced diversity populations. Information rates computed relative to heterogeneous pop-
ulations (n = 5 neurons per population, 200 populations per condition, stimulus is high-frequency stimulus, white noise convolved with alpha function with τ =
3 ms). None of the reduced diversity populations were significantly different from random heterogeneous populations (P > 0.05, Wilcoxon, N.S.) indicating that
the coding benefits of diversity do not rely upon a single GLM dimension. This figure suggests that the representational advantage of neuron variability is not
specifically tied to any one of the three GLM dimensions.
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