
Supplementary Figure 1: The overall usage of the E. coli metabolic GEM over time. The cumulative 
number and new number of studies that have utilized the E. coli GEM of metabolism are shown as a 
function of year. The inserts show the early use of the E. coli GEM. 
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Supplementary Figure 2: The E. coli ‘road map.’ Studies that made a significant contribution to the E. coli 
knowledgebase are marked on a central carbohydrate map of the E. coli metabolic network in panel 1. 
Pins are color-coded according to the category of the study. The citations for each study (Supplementary 
Table 1) are encompassed in a star next to the pin. The location of the pin on the metabolic map 
signifies a feature of the E. coli knowledgebase that was contributed to by the study. A short description 
of the significant contribution of each study is given in panel 2. 
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Flux balance analysis (FBA) - the 
birth of constraint-based model-
ling (CBM).

iJE660 - the first genome-scale 
metabolic reconstruction of E. 
coli.

The metabolic flux distribution of 
the cell tends to seek optimality 
when grown on a suboptimal 
carbon source or after exposure 
to a genetic perturbation follow-
ing ALE.

FVA - a method to explore 
alternate optimal flux distribu-
tions calculated by FBA.  
Biologically, alternate optimal 
flux distributions are defined as 
equivalent pathways or redun-
dant pathways in the metabolic 
network that contribute to 
robustness in the context of 
optimal growth. 

OptKnock - an algorithm for the 
design of growth-coupled overpro-
duction strains.

FCA - The method identifies 
reactions that are directly, 
partially, and fully coupled.  This 
analysis method has found a 
remarkable number of uses.

The hypothesis that metabolite 
over-production can be stoichio-
metrically coupled to biomass 
generation is supported by 11 
strains that are designed using 
OptKnock and evolved to 
predicted production profiles.

Discovered the uncharacterized 
activities of pfkA and fbaA.

Highest reported flavanone 
production levels acheived.   The 
study highlights the importance 
of constraint-based modeling to 
recognize optimal combinations 
of gene deletions. 

Improved flavenoid production 
indicates that optimal heterolo-
gous enzymatic efficiency may 
be a function of not only the 
availabe NADPH cofactors, but 
also the specific intracellular 
redox ratio.

The authors integrated 
transcript-, flux- and metabol-
ome data onto the GEM to gain 
insight into redox and energy 
cofactor control on metabolism.

The stoichiometric metabolic 
model is used to accurately 
model, guide, experimental 
validation, and explore the 
conditions for cooperative 
behavior of co-colture growth.
The integrated regulatory and 
metabolic model more accurately 
predict phenotypic behavior of 
metabolic and transcription factor 
mutants.

FBA^me - the respiro-
fermentation physiology is 
constrained by the available 
space on the plasma membrane.  

The metabolic engineering 
workflow - pathway engineering 
followed by in vivo optimization.

While no single objective 
function is valid under all growth 
conditions for wild-type E. coli, 
the maximization of ATP or 
biomass yield is appears most 
accurate for nutrient-limited 
chemostat cultures.

Prediction and validation of the 
role of yneI (sad) as the 
NAD+/NADP+ -dependent 
succinate semialdehyde dehy-
drogenase using a custom 
gap-filling algorithm.

The study introduces an algo-
rithm to explore the higher order 
epistatic interactions of the E. coli 
genome. 

Bacterial evolution occurs 
primarily by horizontal gene 
transfer.
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A demonstration of proper use
of the model to guide metabolic
enginering strategies towards
improved naringenin production.

The pan genome of the species
E. coli is reconstructed and
explored to gain biological insight
into the evolution of E. coli.

232 The genes responsible for the
orphan reactions of asparagine
oxo-acid transaminase and
histidine transaminase were 
predicted and experimentally
confirmed.
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