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Supplemental Materials and Methods and Results

Supplemental materials and methods
Construction of databases of upstream and first-intron sequences from maize

Flat files of putative maize promoter and first-intron sequences were created using custom Perl script
programs. For the promoter database, the 5’ end of each predicted immature mRNA from the maize,
rice or Arabidopsis genomes were used to define the transcriptional start site (+1 - TSS) of each gene.
The TSS are defined from the predicted cDNAs for each gene in the 3 plant genomes. For each gene, 1 kb
of upstream sequence was extracted and used to create a flat file of predicted maize, rice and
Arabidopsis promoters. Whenever a sequence gap was identified, only the relevant downstream
sequence was extracted. If an upstream sequences available from a genome was less than 40 bp, it was
discarded from the flat file, as the motif discovery algorithms need a minimal sequence size to
accurately discover motifs. Three upstream sequence databases were created, each representing
different sequence lengths (1000 bp, 500 bp, 200 bp). For the database of first-intron sequences (for
maize only), a Perl script was written to recognize and retrieve predicted intron 1 sequences (based on
lower case annotation).

The sequences used to generate the databases were extracted from: MaizeSequence.org (release

5b.60 Working Set - http://ftp.maizesequence.org), the rice sequence from MSU.6.14 (downloaded from

Gramene — www.gramene.org) and the Arabidopsis sequence from TAIR 10.14

(ftp://ftp.arabidopsis.org/home/tair/Genes/). The sequence data originated from the

Genome Sequencing Center at the Washington University School of Medicine, St. Louis, USA [1].

Comparisons of current motif discovery tools

In order to determine whether existing motif discovery programs give equivalent results, Weeder,

MEME and BioProspector programs were compared. Each program was used to discover 213 known
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TRANSFAC® motifs [2] embedded in 125 promoter data sets known as the benchmark data set,
previously generated to help researchers make direct comparisons of the effectiveness of different
motif discovery tools [3]. The data sets are grouped into three types: synthetic (Algorithm Markov, AM),
semi-synthetic (Algorithm Real, AR), and real biological promoters (Model Real, MR). The success rate of
each motif discovery program for each benchmark data set was measured using the following statistical
outputs either generated by the benchmark web application or calculated:

* the nucleotide level sensitivity (nSn):

nTP

non nTP +nFN

* the nucleotide False Discovery Ratio (nFDR):

nFP

nFDR = ————
" nTP+ nFP

* the nucleotide level correlation coefficient (nCC):

nTP.nTN —nFN.nFP

nCC = — - = -
v (nTP +nFN)(nTN + nFP)(nTP + nFP)(nTN + nFN)

Where nTP is the number of true positive motif nucleotides found; nTP, the number of true negative
motif nucleotides found; nFP, the number of false positive motif nucleotides found; nFN, the number of
false negative motif nucleotides found. nCC is a measure of the correlation between the known
nucleotide positions and the predicted nucleotide positions [4].

For each benchmark data set, the nucleotide level correlation coefficient score (nCC) of motif
prediction was compared between pairs of motif discovery programs. The results of all data sets were

plotted and compared using the Spearman correlation coefficient (Prism 5, GraphPad Software, USA).
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Filters for each standalone program

As each program generates different sets of false-positives, a custom filter was designed for each
motif discovery tool to reduce the nFDR while preserving nTPs. In order to optimize the filter
parameters, candidate filters were applied to the Sandve et al. (2007) benchmark data set described
above and the best filters were chosen based on comparisons of nFDR and nCC (see above) using the
Friedman test (non-parametric repeated measures ANOVA) (Prism 5, GraphPad Software, USA).

Each filter was based on limiting the probability (p) that the frequency of the candidate motif in the
user data set (with sample size N) could occur randomly if a genome was repeatedly sampled using
sample size N. Two sampling algorithms were tested. The first one was the motif “enrichment”, without
replacement of the subject (promoter sequences) that uses the hypergeometric distribution [5-7]. The

second was with replacement of the sample subject following the binomial distribution [7, 8].

For MEME, the significance level ( pH) based on the hypergeometric distribution was used for the

motif filtering and was calculated as follows:

miniN.g} (‘\') ("G _A\.‘.'"')

Where n is the number of benchmark data set sequences containing the predicted motif out of the
total number of sequences (N) belonging to that data set; G is the number of random sequences from
the organism that is the most overrepresented in the data set (G was set at 300); g is the number of
random sequences containing the predicted motif; n is the size of the motif in base pairs; and i is the
position within the motif. To retrieve predicted motifs in both the benchmark and random data sets,
FIMO was used [9]; the FIMO e-value threshold was set at 1e™. Predicted motifs were filtered out when

PH \yas > 0.05. These threshold levels (FIMO value and PrJ \yere chosen based on optimization runs

using the benchmark data sets that increased the nSn but decreased nFDR.
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For Weeder, there were two filters applied. The first filter removed predicted motifs with low

complexity DNA stretches (> 75% of the same nucleotide). The second filter was based on the binomial

distribution ( 'pg) based on previous works [7, 8], which gives an estimate of the probability that a motif
is non-random, calculated as follows:

YyN-n

Ps = (:1) p™.(1-p)

Where n is the number of benchmark data set sequences containing the predicted motif out of the

total number of sequences (N) belonging to that data set; and P is the ratio of the number of random
sequences containing the predicted motif compared to the total number of random promoter

sequences (set at 300). To retrieve predicted motifs in both the benchmark and random data sets, Pscan

was used [10]; the Pscan score threshold was set at 0.97. Predicted motifs were filtered out when Ps

was > 0.3. Pscanand P8 significance levels were also selected after optimization runs using the

benchmark data sets that increased the nSn and decreased nFDR.
For BioProspector, the same binomial probability ( 'ps) used for Weeder was applied, except that the

Pscan score threshold was set at 0.90, and predicted motifs were filtered out when Ps was >0.7. The
significance levels were selected using the same method as Weeder.

To test each potential filter threshold, the average of three run results was used; for each run, a new
set of random promoter sequences was generated. This multiple-run method also helped to buffer
against the fact that BioProspector uses a stochastic algorithm, each run generating a different

prediction.

Combining multiple programs

As each standalone program appeared to predict different but overlapping sets of motifs, the effect
of combining all three filtered motif discovery programs was tested using the Sandve et al. (2007)

benchmark data set. The performance of the filtered combination against each standalone program was
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compared using the nSn, nCC and nFDR scores (see above) with the Friedman test (non-parametric

repeated measures ANOVA) (Prism 5, GraphPad Software, USA).

Motif ranking using the MNCP score

The occurrence of motif m, is determined in each of the promoters/first introns of the regulated user
data set u belonging to the regulated promoter/first intron population N,. Each promoter/firstintron
within the regulated data set is ranked according to the occurrence of motif m,: promoter(s)/first
intron(s) with the highest motif occurrence are given the 1* rank. In parallel, the occurrence of motif m,
is also determined in the random promoter/firstintron data set r (regulated and non-regulated)
belonging to the random promoter/first intron population N.,. If the motif m, is a regulator of the user
data set N, its occurrences should be higher than in the random data set N,. Each promoter/firstintron
Ry () R(p) 5

(px) in the regulated data set has a rank and another rank in the random data set

normalized ratio of the two ranks (C) for each promoter/firstintron p, is hence:

R, (p:)/Ny

Cip,) = - -
P! R r ﬂpxj N."

Cis calculated for each promoter/first introns containing motif m, in the user data set. MNCP is the
mean of all the C values. If MNCP for motif m, is greater than 1, that motif is more represented in the
regulated data set compared to the random data set. In Promzea, each motif is ranked according to its
relative MNCP score. Clover software is used to retrieve the motif and estimate its occurrence in the

user and random data sets from the maize genome.

Using user input sequences to extract corresponding promoter (and first-intron) regions

The Perl script was written to allow each user to generate a list of promoters (and first-intron
sequences) corresponding to only those genes of interest (e.g. promoters of co-expressed genes or
genes in the same biochemical pathway). The program accepts the following inputs: cDNA FASTA

sequence files, microarray probe-set ID or Gramene maize ID list (Figure 1). The GeneChip Maize
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Genome Array (Affymetrix) is currently supported by Promzea. In the case of the cDNA FASTA files, the
Perl script matches each input cDNA to its corresponding MaizeSequence.org cDNA using standalone
BLAST (NCBI, version 2.2.23) .The BLAST parameters were chosen empirically based on training data
(data not shown). A cDNA sequence in the genome is considered similar to an input cDNA if the
percentage identity is > 85% and the e-value is < 1e-50. The selected cDNAs from MaizeSequence.org
are then used to retrieve the corresponding upstream (or first intron sequences). For
microarray/Gramene ID inputs, the Perl script generates a list of the corresponding upstream (or intron

1) sequences directly.

Motif discovery, filtering, ranking and graphical output in Promzea

The user lists of promoters and first intron sequences generated above were used by our Perl script
as inputs into three complimentary motif discovery programs shown to retrieve different types of
motifs: MEME [11], BioProspector [12] and Weeder [13]. Predicted motifs from each standalone

program were filtered using the parameters described above. All the filtered results are regrouped.

Understanding motif function in Promzea using functional gene annotation

Gene annotations (e.g. anthocyanin pathway) can be used to help users understand the biological
function of a motif. The annotation can also be used by the user as a second form of motif validation as
the annotation-defined trait should relate to the user experiment. A flat file of well-described gene
annotations was first created using the “Functional-Annotations” files from MaizesSequence.org. Clover
[14] is used to search the maize promoter/first-intron flat file for each predicted motif which is then
matched to its corresponding gene annotation (Figure 1). The iGA Perl program [15] is used to calculate
if an annotation is overrepresented for a given motif. Retrieved annotations are represented as a pie

chart for the user using Chart:Clicker where each slice is - log (annotation p-value). For a p-value equal



135 to zero, ~log(p-value) is equal to infinite which cannot be represented on a pie-chart. To circumvent this

136 problem, the choice has been made to replace zero p-values with p-values equal to 107

137  Validation of Promzea predictions using experimentally defined motifs

138 Promzea was further validated by searching a data set of promoters regulated by transcription

139  factors C1 and P which activate the maize anthocyanin and phlobaphene biosynthetic pathways,

140 respectively [16]. To generate the input for Promzea, all cDNAs from Genbank that were annotated as
141 corresponding to the co-regulated genes were gathered in a FASTA file (Additional File 2); a promoter

142 sequence list was generated as described above. The 200 base promoter option was used for Promzea
143 analysis, as the literature shows that motifs important for the expression of anthocyanin biosynthetic

144  enzymes are within the first 200 bases of the promoter [17].

145  Testing of Promzea with co-expression data from the Maize Development Atlas

146 This gene expression data are available from the GEO database (Gene Expression Omnibus -

147 http://www.ncbi.nlm.nih.gov/geo/). The normalized microarray data were extracted from the GSE27004
148 experiment of the GEO database. The data for 60 different tissues were normalized using the RMA

149 method. The authors had produced tissue specific clusters of gene expression using the unweighted

150 pair-group method with the arithmetic mean (UPGMA) approach and Pearson’s correlation. The cluster
151  gene lists were used from the Additional Table S4 of the publication {Sekhon, 2011 #80}. Promzea was
152  fed with the different tissue-specific gene lists. The similarities between each predicted Promzea motif
153 with experimentally defined motifs were determined by using the default setting of the STAMP software
154 used with the plant databases PLACE, Athamap and Agris.
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Supplemental Results
Comparisons of current motif discovery programs using benchmark data sets

The first objective was to evaluate whether each standalone motif discovery program predicted the
known motif nucleotides in each data set to a similar extent. For this analysis, a previously generated
benchmark data set was used consisting of 213 known motifs embedded into sets of promoter
sequences [3]. For each data set, the nCC score was calculated, a measure of the correlation between
the known motif nucleotide positions and the predicted motif nucleotide positions [4]. When software
predicted nucleotides that exactly matched with the known binding sites (true positives, nTP), the nCC
score was +1, whereas an nCC score of <0 indicated a random prediction. For every paired program
comparison, Spearman correlations (r) of the benchmark nCC scores ranged from 0.14 to 0.36
(Additional Figure S1). In a large subset of benchmark data sets, Weeder predicted known motifs
effectively (nCC>0), whereas BioProspector and MEME did not (nCC <0) (Additional Figure 1B, C). These

results suggest that each motif discovery program retrieves a distinct set of motifs.
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