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Modelling the excess zero probability

The probability for excess zeroes is modelled by logistic regression. A Box-Cox transformation of the

expected lice abundance, µit, is used as an explanatory variable. This is a way to account for all important

variables in a parsimonious way. In addition, we take into account if the farm of current interest was

active the previous month and, if so, if it had zero lice counts or not. More formally, the probability for

excess zeroes is given by

logit(pzit) = log(pzit/(1− pzit)) (1)

= βz0 + βz1 · (µ
βz
2
it − 1)/βz2 + βz3 · y0

i(t−1) · Si(t−1) + βz4 · (1− Si(t−1)).

Here, y0
i(t−1) is an indicator variable that is 1 if yi(t−1) = 0, i.e. if there was a zero lice count at farm

i at month t − 1, and 0 elsewhere. Furthermore, the βz-s are coefficients as usual. The interpretation

of the first and the last two terms in (1) is that the sum of these constitute three different intercepts.

The intercept is βz0 if the current farm was active in the previous month (Si(t−1) = 1) with positive lice

counts (y0
i(t−1) = 0). If zero lice was counted in the previous month (y0

i(t−1) = 1), the intercept is βz0 +βz3 .

Finally, if the current farm was in-active in the previous month (Si(t−1) = 0), the intercept is βz0 + βz4 .

The Box-Cox transformation allows for a non-linear dependency of the expected lice abundance µit on

the logit scale, and βz2 controls this non-linear dependency.
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Modelling the negative binomial distribution

If X is negative binomially distributed with parameters R and P , its probability distribution is [1]

P (X = x) =
Γ(x+R)
x! · Γ(R)

(1− P )RP x. (2)

The mean is RP/(1 − P ) and the variance is RP/(1 − P )2. If we introduce the i and t indexes, in

our case with a zero-inflated negative binomial distribution the mean in the negative binomial part is

µNBit = RitPit/(1 − Pit) = n · µit/(1 − pzit), where n = 20 is the number if fish in the sample, and the

expected salmon lice abundance µit and the excess zero probability pzit are modelled as described above.

In addition, we model the parameter Rit as a function of a Box-Cox transformation of µit as

log (Rit) = βR0 + βR1 · (µβ
R
2
it − 1)/βR2 , (3)

where the βR-s are coefficients that are to be estimated from the data. A simpler alternative would be

to model Rit as a constant, i.e. with βR1 = 0, but this would give a significantly poorer fit and provide a

less precise description of the probability distribution for the counts. On the other hand, Rit could also

have been modelled as a separate function of the explanatory variables as in Jansen et al. ( [2], but our

alternative model in Eq. (3) is a parsimonious compromise between these two extremes.

The parameter Pit is then implicitly given as

Pit = µNBit /(µNBit +Rit) = n · µit/(n · µit + (1− pzit) ·Rit). (4)
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The likelihood

We drop the farm and month indexes for a moment and let p0 denote the probability for the number of

counted lice, y, being 0. This is the sum of the probability for excess zeroes and of the probability for an

“ordinary” zero from the negative binomial distribution, given by

p0 = pz + (1− pz)(1− P )R. (5)

The probability for the zero-inflated negative binomial distribution is then

P (Y = y) = (p0)y
0
[(1− p0)Γ(y +R)(1− P )RP y/(y!Γ(R)](1−y

0), (6)

where, as before, y0 = 1 if y = 0 and y0 = 0 if y > 0.

The log likelihood of our data is therefore

ll(θ) =
∑
i

∑
t

y0
it log(p0

it) + (1− y0
it)[log(1− p0

it) + log(Γ(yit +Rit)) (7)

+Rit log(1− Pit) + yit log(Pit)− log(Γ(Rit))],

dropping terms that do not depend on the parameters.
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Results for pxit and Rit

Table A shows the estimated values for the parameters in the sub-models for pzit and Rit. The probability

for excess zeroes increased if the observed lice abundance the previous month was 0 (betaz3 > 0) and when

the current farm was in-active the previous month βz4 > 0. The probability for excess zeroes increased

also by increasing expected lice abundance, which at first glance may seen counter-intuitive. But this does

not mean that the total probability for observing 0 lice abundance increased, since the probability for

“ordinary” zeroes in the negative binomial distribution at the same time increased. The R parameter in

the negative binomial distribution decreased by increasing expected lice abundance, since βR1 was positive

when βR2 was negative.

Table A. Estimated parameters in the sub-models for pzit and Rit with 95 % confidence intervals for
the selected model.

Variable name or Parameter
parameter description symbol Est. Lower Upper

Excess zero probability βz
0 -3.402 -3.582 -3.222

-”- βz
1 0.064 0.010 0.117

-”- βz
2 0.326 0.091 0.562

-”- βz
3 3.010 2.899 3.121

-”- βz
4 3.270 3.098 3.442

R parameter βR
0 -2.191 -2.340 -2.042

-”- βR
1 1.484 1.311 1.657

-”- βR
2 -0.634 -0.687 -0.581

Est.: Estimate
Lower: Lower bound of 95 % confidence interval
Lower: Upper bound of 95 % confidence interval
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Results including medical treatment the previous month

Table B corresponds to Table 1 in the main text and shows the estimated parameters in the expected

abundance when medical treatment the previous month is included in the model.

Table B. Estimated parameters in the expected abundance µit with 95 % confidence intervals for the
selected model extended with medical treatment the previous month.

Farm
Parameter Variable name or specific Parameter
group parameter description variable symbol Est. Lower Upper
misc. Other sources γ 0.074 0.066 0.082
-”- Lagged lice counts ρ2 0.119 0.101 0.138
-”- -”- ρ3 0.029 0.019 0.040
-”- -”- ρ4 0.024 0.015 0.033
-”- Non-linear dependency α 0.683 0.668 0.698
-”- Sea distance function φ0 -1.462 -1.619 -1.306
-”- -”- φ1 -0.353 -0.277 -0.428
-”- -”- φ2 0.567 0.481 0.653
susc. intercept no βsusc

k -0.377 -0.430 -0.323

-”- (t− 103/2) -”- -”- 3.41 · 10−3 2.47 · 10−3 4.36 · 10−3

-”- (t− 103/2)2 -”- -”- 5.21 · 10−5 3.82 · 10−5 6.60 · 10−5

-”- (t− 103/2)3 -”- -”- −1.75 · 10−6 −2.26 · 10−6 −1.24 · 10−6

-”- (temp − 9) yes -”- 0.1025 0.0983 0.1066
-”- (temp − 9)2 -”- -”- -0.0050 -0.0059 -0.0041
-”- (latitude-64) -”- -”- 0.0099 0.0057 0.0142
-”- (temp-9)x(latitude-64) -”- -”- 0.0129 0.0118 0.0140
-”- tempt − tempt−1 -”- -”- -0.0238 -0.0296 -0.0180
-”- log(weight) -”- -”- 0.224 0.210 0.237
-”- Stocked -”- -”- -1.082 -1.222 -0.942
-”- Relocated -”- -”- 0.188 0.071 0.305
-”- Salmon proportion -”- -”- 0.152 0.106 0.199
-”- treatmentt−1 -”- -”- -0.341 -0.372 -0.310

inf. log(number of fish) yes βinf
k 0.252 0.186 0.318

misc.: Miscellaneous parameters
susc.: Parameters related to the susceptible farm
inf. : Parameters related to the infectious farm
Est.: Estimate
Lower: Lower bound of 95 % confidence interval
Lower: Upper bound of 95 % confidence interval
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Other, non-optimal variants of the model

We also investigated several variants of the model, but none of these gave improved BIC values compared

to the selected model. These include:

• Models with either a third order polynomial of seawater temperature, a cross product of latitude

and squared temperature, or a second order polynomial of the logarithm of the fish weight.

• A model with seawater temperatures from month t− 1 instead of month t.

• A model with the logarithm of the number of fish at the susceptible farm as an explanatory variable

in Eq. (3) in the main text.

• A model with the logarithm of (seawater temperature + 0.6) as used by Jansen et al. [2].

• The procedures for reporting lice counts were changed in August 2009, and this could potentially

have given lower lice counts. We therefore fitted a model with an indicator variable for August 2009

in Eq. (3) in the main text, and another model with an additional indicator variable for September

the same year.

• The lice counts show a strong seasonal variation, which potentially can be accounted for by the

seawater temperature. To investigate if there was further seasonal variation, we fitted a model with

a pair of sine and cosine functions with a period of 12 months in Eq. (3) in the main text, and a

model that in addition included a pair with a period of six months.
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