

Supporting Information © Wiley-VCH 2013

69451 Weinheim, Germany

Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation**

Jan Stanek, Saurabh Saxena, Leonhard Geist, Robert Konrat,* and Wiktor Koźmiński*

anie_201210005_sm_miscellaneous_information.pdf

Supporting Information

Appendix. Structural information embedded in C`(CSA)-NH(DD) cross-correlation rate

Carbonyl ¹³C` chemical shift anisotropy – dipolar NH cross-correlation rate is given by

$$\Gamma_{H_N N(i), C^{\circ}(i)} = \frac{4}{15} \frac{h}{2\pi} \frac{\gamma_H \gamma_C \omega_C}{r_{NH}^3} \tau_C \cdot f(\sigma_x, \sigma_y, \sigma_z)$$
^[1]

where $\tau_{\rm C}$ is the (local) correlation time, $\gamma_{\rm H}$ and $\gamma_{\rm C}$ are gyromagnetic ratios of ¹H and ¹³C, respectively, r_{NH} is the distance between amide ¹H and ¹⁵N spins, and $\omega_{\rm C}$ is the Larmor frequency of ¹³C spins. $f(\sigma_x, \sigma_y, \sigma_z)$ is the determined by magnitude (i. e. principal values) of ¹³C CSA tensor and orientation of NH vector in the frame of its principal axes. Thus, this term is also a function of dihedral angles φ_i and ψ_i .

$$f = f(\sigma_x, \sigma_y, \sigma_z, \varphi, \psi)$$
^[2]

Therefore, a single C`(CSA)-NH(DD) CCR rate does not allow to unambiguously determine these dihedral angles. However, Kloiber and Konrat showed that rather small negative values are characteristic for residues in α -helical regions while greater absolute values are typical for residues in loops ^[1]. Furthermore, β -turns of type I and II can be distinguished by inspection whether CCR value is nonnegative (type I) or of alternating sign (type II) for consecutive i+1 and i+2 residues in the β -turn.

Residue	pH 2		рН б	
	CCR, Hz	Error, Hz	CCR, Hz	Error, Hz
Thr76	0.30	0.63	1.25	0.24
Val78	-0.92	0.61	1.06	0.09
Lys79	-0.16	0.91	0.77	0.14
Asn82	0.66	1.12	0.89	0.55
Lys83	-0.40	0.63	0.64	0.16
Glu84	-0.25	0.61	-0.38	0.11
Gln92	0.20	0.55	0.38	0.13
Val93	-0.96	0.46	0.10	0.07
Ser94	-0.89	0.63	0.20	0.19
Ala95	-0.22	0.62	0.67	0.22
Asn96	-0.31	0.81	2.01	0.30
Lys97	0.50	0.52	0.64	0.19
Thr98	0.10	0.50	0.45	0.11

For example, let us recall the selected CCR values measured for BASP1 at pH=2 and 6:

It can be concluded that CCR values are systematically and, for some residues, noticeably smaller at lower pH. This indicates the shift of secondary structure populations towards α -helices upon decrease of pH.

It should be emphasized that variations of local correlation time and anisotropic local motions in the protein backbone influence cross-correlation rates and complicates the quantitative analysis of the results. However, as we have already shown ^[2] the simultaneous fitting of several backbone-dependent cross-correlation rates lead to reliable distributions of dihedral backbone angles even in the presence of internal mobility. The here proposed multi-dimensional CCR experiment offers additional (independent) information about dihedral angle and further constraints the number of solutions. We thus propose to include this novel CCR experiment in the already described Z-surface approach for backbone dihedral angle determination.

Figure S1. Pulse sequence for the 4D HNCACO-CCR experiment. Narrow and wide bars represent/indicate 'hard' 90° and 180° pulses, respectively. All pulses are applied along the *x*-axis of the rotating frame unless indicated otherwise. ¹H and ¹⁵N composite pulse decoupling is performed with WALTZ-16 ^[3] and WURST-40 ^[4], respectively. Water-selective *sinc*-shaped $\pi/2$ -pulse of duration of 1.22 ms is employed. Selective *sinc*-shaped π pulses, with $\gamma B_1/2\pi = 12.0$ kHz and duration of 68.2µs (adjusted to obtain inversion of C' spin with no effect at C^α) are represented by wide grey *sinc*-shaped pulses. Gray bell-shaped pulses represent ¹³C^α-selective Q3 pulses ^[5] of duration of 220 µs and peak r.f. 14.5 kHz. Six-element composite pulse ^[6] is employed for simultaneous inversion of C^α and C' spins. Other carbon 90° (180°) pulses are rectangular, with rf. field strength adjusted to $|\Delta\Omega_{CA-CO}|/\sqrt{15}$ ($\sqrt{3}$) and duration of 46.6µs (41.7µs). Off-resonance pulses were applied using phase modulation of the carrier. 'BS' denotes Bloch-Siegert compensating pulse. The delays are $\tau_a = 2.69$ ms, $\tau_b = 14$ ms, $\tau_c = 3.15$ ms, $\tau_d = 4$ ms, $\tau_e = 0.35$ ms. Constant-time duration T_C is 90 ms. The delay $\xi = 2pw90(C')/\pi$ compensates C' evolution during $\pi/2$ pulses flanking constant-time period. C^α and ¹⁵N are evolved in the semi-constant time manner with contraction delays $\eta_2 = \tau_d \cdot t_2/t_{2,max}$ and $\eta_3 = \tau_b \cdot t_3/t_{3,max}$. Water magnetization is stored along z-axis for detection to efficiently suppress solvent signal and avoid saturation of amide protons. Quadrature detection in t_1 and t_2 is accomplished by altering ϕ_1 and ϕ_2 , respectively, according to the States-TPPI procedure. Echo and anti-echo signals in t_3 dimension were recorded in the interleaved fashion by inversion of gradient G₇ and shift of ϕ_5 by π accordingly. The ϕ_3 and receiver phase are inverted for even numbered points in t_3 to achieve axial peak displacement in ω_3 . The phase

2(-*x*); $\phi_{\text{rec}} = x$, $\phi_{\text{rec}} = x$, -*x*, *x*. The ¹H carrier frequency is set on resonance with the water signal (4.77 ppm). The ¹³C carrier frequency, initially set to 58.6 ppm (¹³C^{α}), is switched to 176.6 ppm (¹³C²) for the duration of CT block as indicated by vertical arrows. The ¹⁵N carrier is placed at 117.8 ppm. Gradients durations and strengths are: G₁ (0.5 ms, 19.5 G/cm), G₂ (1 ms, 14.2 G/cm), G₃ (0.5 ms, 6.4 G/cm), G₄ (2 ms, 31.9 G/cm), G₅ (0.5 ms, 3.5 G/cm), G₆ (0.5 ms, 5.3 G/cm), G₇ (0.2 ms, -/+32.3 G/cm).

Inter-scan delay of 1.2 s was used. 3350 (5000) sampling points (t_1, t_2, t_3) were randomly chosen from 180 $\times 62 \times 125$ Cartesian grid according to Gaussian probability distribution $p(t) = \exp[-(t/t_{max})^2/2\sigma^2]$; $\sigma=0.5$. The total experiment duration was 44 and 66 h for Chicken BASP1 samples at pH 2 and 6, respectively. Maximum evolution times of 90 (t_1) , 10 (t_2) and 50 ms (t_3) were achieved in the indirectly detected dimensions. Spectral widths of 2.0 (ω_1) , 6.2 (ω_2) , 2.5 (ω_3) and 12 kHz (ω_4) were assumed.

Figure S2. Change of secondary structure propensity (SSP) of BASP1 upon pH drop from 6 to 2 plotted for individual aminoacid residues across full protein length. SSP for a particular pH was calculated as a difference of C^{α} and C^{β} chemical shifts (δC^{α} - δC^{β}). Noteworthy is the significant change of SSP for residues 30-120 indicating increased preference for helical conformations at lower pH.

References:

- [1] K. Kloiber, R. Konrat, J. Am. Chem. Soc. 2000, 122, 12033-12034.
- [2] K. Kloiber, W. Schüler, R. Konrat, J. Biomol. NMR 2002, 22, 349-363.
- [3] A. J. Shaka, J. Keeler, R. Freeman, J. Magn. Reson. 1983, 53, 313-340.
- [4] Ē. Kupče, R. Freeman, J. Magn. Reson. Ser. A 1995, 115, 273-276.
- [5] L. Emsley, G. Bodenhausen, J. Magn. Reson. 1992, 97, 135-148.
- [6] A. J. Shaka, *Chem Phys Lett* **1985**, *120*, 201-205.