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Additional Text 

Validation of extracted core DDIs  

We used the DOMINE database as a comprehensive source of known and predicted 

domain-domain interactions (DDIs) derived from multiple sources [1, 2]. In the sets 

of DDIs extracted by the parameter-dependent DDI selection (PADDS) method for 

protein-protein interactions (PPIs) from the Riley dataset, 12,725 DDIs were 

conserved across all values of α and represented a core set of DDIs for this PPI set. 

We ranked the DDIs extracted by PADDS based on their corresponding benefit values 

and evaluated the k top-ranked DDIs. For each threshold k, k = 500, 1,500, 3,000, 

5,000, 10,000, 15,000, we identified a set of core DDIs, i.e., DDIs that did not depend 

on α, that appeared in the top k DDIs in all extracted sets. We compared the core 

DDIs to those from the DOMINE database [1, 2] and identified the fractions that had 

already been 1) extracted/predicted solely by other computational methods, 2) derived 

from a crystal structure and extracted/predicted by other computational methods, or 3) 

derived from a crystal structure and extracted by PADDS but not by any other 

computational method.  

Figure S1 below shows the types and fractions of DOMINE-validated core DDIs for 

each set extracted at different thresholds of top-ranked DDIs inferred by PADDS. As 

expected, increasing the threshold for selecting top-scoring DDIs decreased the 

overall percentage of validated DDIs in the core sets. However, even for the complete 

core set of recovered DDIs, we were still able to validate approximately 40% of the 

core DDIs in the DOMINE database. 

Among the top-ranked DDIs for thresholds ≤1,500, the extracted core sets were 

enriched with interactions derived from known structures (shown in red and green in 

Figure S1). Out of the 220 top core DDIs, 122 were inferred from Protein Data Bank 
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entries [3-5]. Five of these 122 DDIs had not been detected by any other 

computational method, namely interactions between: 1) helicase conserved C-

terminal domain (annotation label: HELICASE_C) and type III restriction enzyme 

(RESIII), 2) protein kinase domain (PKINASE) and immunoglobulin I-set domain (I-

SET), 3) pyrroline-5-carboxylate reductase domains (P5CR), 4) bZIP Maf 

transcription factors (BZIP MAF), and 5) Src homology 3 domains SH3_1 and SH3_2. 

Thus, the PADDS algorithm was capable of providing parameter-independent and 

unique DDI predictions not derivable from high-confidence results of other 

computational procedures.   
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Additional Figures  

Figure S1 – Enrichment in DOMINE domain-domain interactions 

For each threshold k, the number of core domain-domain interactions (DDIs) 

identified by the parameter-dependent DDI selection (PADDS) method is shown on 

the x-axis and the corresponding k-value given underneath in parenthesis. We 

compared the core DDIs to those from the DOMINE database [1, 2] and identified the 

fractions that had already been 1) extracted/predicted solely by other computational 

methods (yellow), 2) derived from a crystal structure and extracted/predicted by other 

computational methods (red), or 3) derived from a crystal structure and extracted by 

PADDS but not by any other computational method (green). 

 

 

  



 - 5 - 

Figure S2 – Relationship between the amount of domain annotation data, the 
number of extracted domain-domain interactions, and the number of predicted 
protein-protein interactions for yeast 

Three different reconstitution methods {the maximum-specificity set cover method 

(MSSC) [7], the generalized parsimonious explanation (GPE) [8], and the parameter-

dependent DDI selection (PADDS)} extracted domain-domain interaction (DDI) sets 

of different sizes, when we used six domain annotation sets containing data from 

different sources. Database sets were defined as in Table 2 of the main text. The 

reported PADDS values correspond to the average values over all extracted sets, i.e., 

sets for all values of parameter α used, for the particular domain annotation set. 

PADDS consistently produced the smallest sets of extracted DDIs needed to account 

for a given set of protein-protein interactions (PPIs) and the size of these sets 

decreased with additional annotation data. The MSSC method extracted smaller sets 

of DDIs than GPE, for the first five sets of domain annotations. However, for the 

annotation set that contained domain annotation data from the six databases, MSSC 

extracted slightly larger sets of DDIs than GPE. All three methods yielded much 

larger numbers of possible PPIs for a given set of DDIs than the total estimated true 

number of yeast PPIs [16-19]. The marker size and the number corresponds to the 

number of merged databases, e.g., 1 corresponds to SET-1, 2 corresponds to SET-2, 

etc. As the underlying set of PPIs, we used a high-confidence yeast PPI data set 

created by the Interaction Detection Based On Shuffling (IDBOS) procedure at a 5% 

false discovery rate [20, 21]. 
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Figure S3 – Evaluation of reconstitution methods using receiver operating 
characteristic curve analysis 

Comparison of the ability of each reconstitution method to extract domain-domain 

interactions (DDIs) that account for the underlying protein-protein interactions (PPIs) 

and novel PPIs. The true positive rate (true positive PPIs/(true positive PPIs + false 

negative PPIs) and the false positive rate (false positive PPIs/(false positive PPIs + 

true negative PPIs) for each extracted set of DDIs are represented as corresponding 

receiver operating characteristic curves. To estimate true/false negatives, we assumed 

that the set of negatives included all possible PPIs that were not in a given set of PPIs. 

We ranked DDIs based on benefit [the parameter-dependent DDI selection method 

(PADDS)], association score {the maximum-specificity set cover method (MSSC) 

[7]}, and LC score {the generalized parsimonious explanation (GPE) [8]}. We only 

plotted PADDS results for three values of α: 0.0, 0.1, and 1.0. Results for α є [0.2, 

0.9] were equally distributed between the results for α = 0.1 and α = 1.0. PADDS for 

α > 0.0 outperformed the MSSC and GPE methods. Although all methods (and 

parameters) produced very similar results, with increasing amounts of annotation data 

the differentiation between extracted DDIs and, hence, the methods and the 

parameters became more distinct. Database sets were defined as in Table 2 of the 

main text. For the complete data representation, see Figure S3. As the underlying set 

of PPIs, we used a high-confidence yeast PPI data set created by the Interaction 

Detection Based On Shuffling (IDBOS) procedure at a 5% false discovery rate [20, 

21]. 
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Figure S4 – Evaluation of reconstitution methods using receiver operating 
characteristic curve analysis: complete data 

Comparison of the ability of each reconstitution method to extract domain-domain 

interactions (DDIs) that account for the underlying protein-protein interactions (PPIs) 

and novel PPIs. The true positive rate (true positive PPIs/(true positive PPIs + false 

negative PPIs) and the false positive rate (false positive PPIs/(false positive PPIs + 

true negative PPIs) for each extracted set of DDIs are represented as corresponding 

receiver operating characteristic curves. To estimate true/false negatives, we assumed 

that the set of negatives included all possible PPIs that were not in a given set of PPIs. 

We ranked DDIs based on benefit [the parameter-dependent DDI selection method 

(PADDS)], association score {the maximum-specificity set cover method (MSSC) 

[7]}, and LC score {the generalized parsimonious explanation (GPE) [8]}. We only 

plotted PADDS results for three values of α: 0.0, 0.1, and 1.0. Results for α є [0.2, 

0.9] were equally distributed between the results for α = 0.1 and α = 1.0. PADDS for 

α > 0.0 outperformed the MSSC and GPE methods. Although all methods (and 

parameters) produced very similar results, with increasing amounts of annotation data 

the differentiation between extracted DDIs and, hence, the methods and the 

parameters became more distinct. Database sets were defined as in Table 2 of the 

main text. As the underlying set of PPIs, we used a high-confidence yeast PPI data set 

created by the Interaction Detection Based On Shuffling (IDBOS) procedure at a 5% 

false discovery rate [20, 21]. 
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Tables  

Table S1 – Enrichment of “known” (iPFAM) domain-domain interactions. 

Comparison of the fraction of retrieved iPFAM DDIs using PADDS and GPE as a 

function of top-ranked DDI sets. For the GPE sets, we used the DDI rank information 

provided with the published data that includes their designated high-confidence (GPE-

HC) and low-confidence (GPE-LC) sets [8]. We have also indicated the best results 

achievable with any α value, typically achieved for (α = 0.1). Data presented in this 

table correspond to the data from the Figure 2 of the main text. σ, standard deviation. 

 DDI set size PADDS-best 

Non-

extreme α 

values (σ) 

GPE-HC GPE-LC 

Known 

DDIs 

retrieved 

(%) 

   10 1.01 0.77 (0.10)  1.45  0.72 

   50 3.62 3.28 (0.22)  2.30  2.60 

  100 7.53 6.82 (0.68)  5.21  4.78 

  250 16.35 15.82 (0.49) 13.89  8.54 

  500 27.21 25.74 (0.95) 22.14 15.63 

1,000 40.23 36.18 (1.75) 31.84 25.76 

1,399 43.56 38.75 (1.36) 34.59 30.97 

2,000 46.16 45.01 (0.69) - 38.93 

3,000 51.66 51.15 (0.36) - 46.02 

5,000 58.90 58.37 (0.31) - 54.55 

Precision 

   10 0.70 0.53 (0.07)  1.00  0.50 

   50 0.50 0.45 (0.03)  0.32  0.36 

  100 0.52 0.47 (0.05)  0.36  0.33 

  250 0.45 0.44 (0.01)  0.38  0.24 

  500 0.38 0.36 (0.01)  0.31  0.22 

1,000 0.28 0.25 (0.01)  0.22  0.18 

1,399 0.22 0.20 (0.01)  0.17  0.15 

2,000 0.16 0.16 (0.00) -  0.13 

3,000 0.12 0.12 (0.00) -  0.11 

5,000 0.08 0.08 (0.00) -  0.08 
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Table S2 – Protein-domain annotation data for the IDBOS set of protein-protein 
interactions.  

Domain annotation sets include merged domain annotation data from multiple 

databases and are defined as in Table 2 of the main text. The IDBOS data consisted of 

1,295 proteins and 8,401 protein-protein interactions (PPIs) [20, 21]. The number and 

percentage of PPIs in which both interacting proteins have domain annotations are 

shown in columns 4 and 5, respectively [20, 21]. 

 

Domain 

annotation set 

Yeast proteins in 

IDBOS set with 

domain annotation 

PPIs with domain 

annotation 

Average 

number of 

domains per 

yeast protein in 

the IDBOS set 
Number Percentage Number Percentage 

SET-1 

SET-2 

SET-3 

SET-4 

SET-5 

SET-6 

1,157 

1,217 

1,244 

1,251 

1,262 

1,263 

89.3 

94.0 

96.1 

96.6 

97.5 

97.5 

6,996 

7,766 

8,003 

8,044 

8,122 

8,138 

83.3 

92.4 

95.3 

95.8 

96.7 

96.9 

1.29 

1.63 

1.93 

1.91 

2.94 

2.69 

 
 

 
  



 - 15 - 

Table S3 – Basic statistics of the extracted sets of domain-domain interactions 
using different methods and different protein-domain annotation sets.  

Sets are defined as in Table 2 of the main text. Methods used to extract DDIs: the 

parameter-dependent DDI selection (PADDS), maximum-specificity set cover method 

(MSSC) [7], and the generalized parsimonious explanation (GPE) [8]. “ALL 

POSSIBLE DDIs” represents the set of all DDIs that can mediate a given set of PPIs 

for a given domain annotation scheme. As the underlying set of PPIs, we used a high-

confidence yeast PPI data set created by the Interaction Detection Based On Shuffling 

(IDBOS) procedure at a 5% false discovery rate [20, 21]. 

 

Final 

DDI set 

SET-1 SET-2 SET-3 SET-4 SET-5 SET-6 

Num. 

of 
DDIs 

Num. 

of PPIs 

Num. 

of 
DDIs 

Num.  

of PPIs 

Num. 

of 
DDIs 

Num.  

of PPIs 

Num. 

of 
DDIs 

Num.  

of PPIs 

Num. 

of 
DDIs 

Num.  

of PPIs 

Num. 

of 
DDIs 

Num.  

of PPIs 

PADDS 

α = 0.0 3,995 51,270 3,826 92,196 3,057 300,254 3,071 296,195 3,025 335,638 2,619 420,499 

α = 0.1 4,312 46,597 4,495 76,733 3,824 225,806 3,862 227,534 3,826 242,633 3,700 306,350 

α = 0.2 4,372 46,556 4,598 75,956 3,877 221,263 3,927 224,804 4,018 225,233 3,790 304,560 

α = 0.3 4,410 46,559 4,661 75,295 3,963 227,538 3,984 227,339 4,042 229,429 3,880 326,931 

α = 0.4 4,466 46,544 4,699 76,241 3,988 224,914 3,966 224,986 4,183 221,487 3,940 325,481 

α = 0.5 4,477 46,464 4,704 75,934 3,987 222,942 4,032 230,414 4,199 218,723 3,936 311,479 

α = 0.6 4,494 46,486 4,701 77,593 4,030 226,433 4,025 224,024 4,350 225,464 3,958 311,333 

α = 0.7 4,507 46,532 4,707 77,672 4,049 221,979 4,063 228,308 4,253 221,202 3,975 312,433 

α = 0.8 4,508 46,560 4,716 77,615 4,097 224,943 4,128 214,496 4,287 223,465 3,984 312,390 

α = 0.9 4,509 46,534 4,713 78,152 4,104 224,319 4,174 227,505 4,300 220,913 4,107 306,784 

α = 1.0 4,514 46,486 4,704 77,986 4,050 224,393 4,153 225,682 4,344 216,809 4,084 304,639 

CORE 3,807 43,120 3,319 62,038 2,326 161,394 2,390 154,364 1,932 163,463 1,814 254,342 

MSSC 

MSSC 4,662 46,524 5,005 73,094 5,189 197,838 5,222 202,725 6,000 164,110 5,988 287,918 

GPE 

GPE 8,930 67,198 7,971 130,543 5,681 369,018 5,555 370,689 8,057 408,453 5,908 489,181 

ALL POSSIBLE DDIs 

ALL 8,930 67,198 12,887 147,724 14,078 402,596 13,791 404,366 36,834 466,853 30,527 528,045 
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Table S4 – Additional statistics of the extracted sets of domain-domain 
interactions using different methods and different protein-domain annotation 
sets.  

Sets are defined as in Table 2 of the main text. Methods used to extract DDIs: the 

parameter-dependent DDI selection (PADDS), maximum-specificity set cover method 

(MSSC) [7], and the generalized parsimonious explanation (GPE) [8]. “ALL 

POSSIBLE DDIs” represents the set of all DDIs that can mediate a given set of PPIs 

for a given domain annotation scheme. As the underlying set of PPIs, we used a high-

confidence yeast PPI data set created by the Interaction Detection Based On Shuffling 

(IDBOS) procedure at a 5% false discovery rate [20, 21]. 

 

Final 

DDI set 

SET-1 SET-2 SET-3 SET-4 SET-5 SET-6 
Precision F-

score 

Precision F-

score 

Precision F-

score 

Precision F-

score 

Precision F-

score 

Precision F-

score 

PADDS 

α = 0.0 0.14 0.24 0.08 0.16 0.03 0.05 0.03 0.05 0.02 0.05 0.02 0.04 

α = 0.1 0.15 0.26 0.10 0.18 0.03 0.07 0.04 0.07 0.03 0.07 0.03 0.05 

α = 0.2 0.15 0.26 0.10 0.19 0.04 0.07 0.04 0.07 0.04 0.07 0.03 0.05 

α = 0.3 0.15 0.26 0.10 0.19 0.04 0.07 0.04 0.07 0.04 0.07 0.03 0.05 

α = 0.4 0.15 0.26 0.10 0.19 0.04 0.07 0.04 0.07 0.04 0.07 0.03 0.05 

α = 0.5 0.15 0.26 0.10 0.19 0.04 0.07 0.04 0.07 0.04 0.07 0.03 0.05 

α = 0.6 0.15 0.26 0.10 0.18 0.04 0.07 0.04 0.07 0.04 0.07 0.03 0.05 

α = 0.7 0.15 0.26 0.10 0.18 0.04 0.07 0.04 0.07 0.04 0.07 0.03 0.05 

α = 0.8 0.15 0.26 0.10 0.18 0.04 0.07 0.04 0.07 0.04 0.07 0.03 0.05 

α = 0.9 0.15 0.26 0.10 0.18 0.04 0.07 0.04 0.07 0.04 0.07 0.03 0.05 

α = 1.0 0.15 0.26 0.10 0.18 0.04 0.07 0.04 0.07 0.04 0.07 0.03 0.05 

CORE 0.15 0.26 0.10 0.18 0.04 0.07 0.04 0.07 0.04 0.06 0.02 0.05 

MSSC 

MSSC 0.15 0.26 0.12 0.19 0.04 0.08 0.04 0.08 0.05 0.09 0.03 0.06 

GPE 

GPE 0.10 0.19 0.06 0.11 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.03 

ALL POSSIBLE DDIs 

ALL 0.10 0.19 0.05 0.10 0.02 0.04 0.02 0.04 0.02 0.03 0.02 0.03 
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