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Additional Text

Validation of extracted core DDIs
We used the DOMINE database as a comprehensive source of known and predicted

domain-domain interactions (DDIs) derived from multiple sources [1, 2]. In the sets
of DDIs extracted by the parameter-dependent DDI selection (PADDS) method for
protein-protein interactions (PPIs) from the Riley dataset, 12,725 DDIs were
conserved across all values of a and represented a core set of DDIs for this PPI set.
We ranked the DDIs extracted by PADDS based on their corresponding benefit values
and evaluated the k top-ranked DDIs. For each threshold k, k = 500, 1,500, 3,000,
5,000, 10,000, 15,000, we identified a set of core DDIs, i.e., DDIs that did not depend
on ¢, that appeared in the top k DDIs in all extracted sets. We compared the core
DDils to those from the DOMINE database [1, 2] and identified the fractions that had
already been 1) extracted/predicted solely by other computational methods, 2) derived
from a crystal structure and extracted/predicted by other computational methods, or 3)
derived from a crystal structure and extracted by PADDS but not by any other

computational method.

Figure S1 below shows the types and fractions of DOMINE-validated core DDIs for
each set extracted at different thresholds of top-ranked DDIs inferred by PADDS. As
expected, increasing the threshold for selecting top-scoring DDIs decreased the
overall percentage of validated DDIs in the core sets. However, even for the complete
core set of recovered DDIs, we were still able to validate approximately 40% of the

core DDIs in the DOMINE database.

Among the top-ranked DDIs for thresholds <1,500, the extracted core sets were
enriched with interactions derived from known structures (shown in red and green in

Figure S1). Out of the 220 top core DDIs, 122 were inferred from Protein Data Bank
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entries [3-5]. Five of these 122 DDIs had not been detected by any other
computational method, namely interactions between: 1) helicase conserved C-
terminal domain (annotation label: HELICASE_C) and type Il restriction enzyme
(RESIII), 2) protein kinase domain (PKINASE) and immunoglobulin I-set domain (I-
SET), 3) pyrroline-5-carboxylate reductase domains (P5CR), 4) bZIP Maf
transcription factors (BZIP MAF), and 5) Src homology 3 domains SH3_1 and SH3_2.
Thus, the PADDS algorithm was capable of providing parameter-independent and
unique DDI predictions not derivable from high-confidence results of other

computational procedures.



Additional Figures

Figure S1 — Enrichment in DOMINE domain-domain interactions
For each threshold k, the number of core domain-domain interactions (DDIs)

identified by the parameter-dependent DDI selection (PADDS) method is shown on
the x-axis and the corresponding k-value given underneath in parenthesis. We
compared the core DDIs to those from the DOMINE database [1, 2] and identified the
fractions that had already been 1) extracted/predicted solely by other computational
methods (yellow), 2) derived from a crystal structure and extracted/predicted by other
computational methods (red), or 3) derived from a crystal structure and extracted by

PADDS but not by any other computational method (green).
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Figure S2 — Relationship between the amount of domain annotation data, the
number of extracted domain-domain interactions, and the number of predicted
protein-protein interactions for yeast

Three different reconstitution methods {the maximum-specificity set cover method
(MSSC) [7], the generalized parsimonious explanation (GPE) [8], and the parameter-
dependent DDI selection (PADDS)} extracted domain-domain interaction (DDI) sets
of different sizes, when we used six domain annotation sets containing data from
different sources. Database sets were defined as in Table 2 of the main text. The
reported PADDS values correspond to the average values over all extracted sets, i.e.,
sets for all values of parameter a used, for the particular domain annotation set.
PADDS consistently produced the smallest sets of extracted DDIs needed to account
for a given set of protein-protein interactions (PPIs) and the size of these sets
decreased with additional annotation data. The MSSC method extracted smaller sets
of DDIs than GPE, for the first five sets of domain annotations. However, for the
annotation set that contained domain annotation data from the six databases, MSSC
extracted slightly larger sets of DDIs than GPE. All three methods yielded much
larger numbers of possible PPIs for a given set of DDIs than the total estimated true
number of yeast PPIs [16-19]. The marker size and the number corresponds to the
number of merged databases, e.g., 1 corresponds to SET-1, 2 corresponds to SET-2,
etc. As the underlying set of PPIs, we used a high-confidence yeast PP data set
created by the Interaction Detection Based On Shuffling (IDBOS) procedure at a 5%

false discovery rate [20, 21].
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Figure S3 — Evaluation of reconstitution methods using receiver operating
characteristic curve analysis

Comparison of the ability of each reconstitution method to extract domain-domain
interactions (DDIs) that account for the underlying protein-protein interactions (PPIs)
and novel PPIs. The true positive rate (true positive PPIs/(true positive PPIs + false
negative PPIs) and the false positive rate (false positive PPIs/(false positive PPIs +
true negative PPIs) for each extracted set of DDIs are represented as corresponding
receiver operating characteristic curves. To estimate true/false negatives, we assumed
that the set of negatives included all possible PPIs that were not in a given set of PPIs.
We ranked DDlIs based on benefit [the parameter-dependent DDI selection method
(PADDS)], association score {the maximum-specificity set cover method (MSSC)
[71}, and LC score {the generalized parsimonious explanation (GPE) [8]}. We only
plotted PADDS results for three values of a: 0.0, 0.1, and 1.0. Results for « ¢ [0.2,
0.9] were equally distributed between the results for « = 0.1 and o = 1.0. PADDS for
a > 0.0 outperformed the MSSC and GPE methods. Although all methods (and
parameters) produced very similar results, with increasing amounts of annotation data
the differentiation between extracted DDIs and, hence, the methods and the
parameters became more distinct. Database sets were defined as in Table 2 of the
main text. For the complete data representation, see Figure S3. As the underlying set
of PPIs, we used a high-confidence yeast PPI data set created by the Interaction

Detection Based On Shuffling (IDBOS) procedure at a 5% false discovery rate [20,

21].
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Figure S4 — Evaluation of reconstitution methods using receiver operating
characteristic curve analysis: complete data

Comparison of the ability of each reconstitution method to extract domain-domain
interactions (DDIs) that account for the underlying protein-protein interactions (PPIs)
and novel PPIs. The true positive rate (true positive PPIs/(true positive PPIs + false
negative PPIs) and the false positive rate (false positive PPIs/(false positive PPIs +
true negative PPIs) for each extracted set of DDIs are represented as corresponding
receiver operating characteristic curves. To estimate true/false negatives, we assumed
that the set of negatives included all possible PPIs that were not in a given set of PPIs.
We ranked DDlIs based on benefit [the parameter-dependent DDI selection method
(PADDS)], association score {the maximum-specificity set cover method (MSSC)
[71}, and LC score {the generalized parsimonious explanation (GPE) [8]}. We only
plotted PADDS results for three values of a: 0.0, 0.1, and 1.0. Results for « ¢ [0.2,
0.9] were equally distributed between the results for « = 0.1 and o = 1.0. PADDS for
a > 0.0 outperformed the MSSC and GPE methods. Although all methods (and
parameters) produced very similar results, with increasing amounts of annotation data
the differentiation between extracted DDIs and, hence, the methods and the
parameters became more distinct. Database sets were defined as in Table 2 of the
main text. As the underlying set of PPIs, we used a high-confidence yeast PPI data set

created by the Interaction Detection Based On Shuffling (IDBOS) procedure at a 5%

false discovery rate [20, 21].
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Tables

Table S1 — Enrichment of “known” (iPFAM) domain-domain interactions.
Comparison of the fraction of retrieved iPFAM DDIs using PADDS and GPE as a

function of top-ranked DDI sets. For the GPE sets, we used the DDI rank information
provided with the published data that includes their designated high-confidence (GPE-
HC) and low-confidence (GPE-LC) sets [8]. We have also indicated the best results
achievable with any « value, typically achieved for (a = 0.1). Data presented in this

table correspond to the data from the Figure 2 of the main text. o, standard deviation.

Non-
DDI set size | PADDS-best | extreme a | GPE-HC | GPE-LC
values (o)
10 1.01 0.77 (0.10) 1.45 0.72
50 3.62 3.28 (0.22) 2.30 2.60
100 7.53 6.82 (0.68) 5.21 4.78
Known 250 16.35 15.82 (0.49) 13.89 8.54
DDls 500 27.21 25.74 (0.95) 22.14 15.63
retrieved 1,000 40.23 36.18 (1.75) 31.84 25.76
(%) 1,399 43.56 38.75 (1.36) 34.59 30.97
2,000 46.16 45.01 (0.69) - 38.93
3,000 51.66 51.15 (0.36) - 46.02
5,000 58.90 58.37 (0.31) - 54.55
10 0.70 0.53 (0.07) 1.00 0.50
50 0.50 0.45 (0.03) 0.32 0.36
100 0.52 0.47 (0.05) 0.36 0.33
250 0.45 0.44 (0.01) 0.38 0.24
Precision 500 0.38 0.36 (0.01) 0.31 0.22
1,000 0.28 0.25 (0.01) 0.22 0.18
1,399 0.22 0.20 (0.01) 0.17 0.15
2,000 0.16 0.16 (0.00) - 0.13
3,000 0.12 0.12 (0.00) - 0.11
5,000 0.08 0.08 (0.00) - 0.08
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Table S2 — Protein-domain annotation data for the IDBOS set of protein-protein

interactions.

Domain annotation sets include merged domain annotation data from multiple

databases and are defined as in Table 2 of the main text. The IDBOS data consisted of

1,295 proteins and 8,401 protein-protein interactions (PPIs) [20, 21]. The number and

percentage of PPIs in which both interacting proteins have domain annotations are

shown in columns 4 and 5, respectively [20, 21].

Yeast proteins in . . Average
. IDBOS set with PPIs with d_omaln number of
Domain . . annotation .
. domain annotation domains per
annotation set yeast protein in
Number | Percentage | Number | Percentage the IDBOS set
SET-1 1,157 89.3 6,996 83.3 1.29
SET-2 1,217 94.0 7,766 92.4 1.63
SET-3 1,244 96.1 8,003 95.3 1.93
SET-4 1,251 96.6 8,044 95.8 191
SET-5 1,262 97.5 8,122 96.7 2.94
SET-6 1,263 97.5 8,138 96.9 2.69
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Table S3 — Basic statistics of the extracted sets of domain-domain interactions
using different methods and different protein-domain annotation sets.

Sets are defined as in Table 2 of the main text. Methods used to extract DDIs: the
parameter-dependent DDI selection (PADDS), maximum-specificity set cover method
(MSSC) [7], and the generalized parsimonious explanation (GPE) [8]. “ALL
POSSIBLE DDIs” represents the set of all DDIs that can mediate a given set of PPIs
for a given domain annotation scheme. As the underlying set of PPIs, we used a high-

confidence yeast PPI data set created by the Interaction Detection Based On Shuffling

(IDBOS) procedure at a 5% false discovery rate [20, 21].

SET-1 SET-2 SET-3 SET-4 SET-5 SET-6
Final
DDI set Ng;n. Num. Ng;n. Num. Ng;n. Num. ng’l. Num. Ng;n. Num. Ng;n. Num.
DDIs of PPIs DDIs of PPIs DDIs of PPIs DDIs of PPIs DDIs of PPIs DDIs of PPIs
PADDS

a=0.0| 399 | 51270 | 3826 | 92,196 | 3,057 | 300,254 | 3,071 | 296,195 | 3,025 | 335,638 | 2,619 | 420,499

a=0.1| 4312 | 46,597 | 4,495 | 76,733 | 3,824 | 225,806 | 3,862 | 227,534 | 3,826 | 242,633 | 3,700 | 306,350

a=0.2 | 4372 | 46,556 | 4,598 | 75,956 | 3,877 | 221,263 | 3,927 | 224,804 | 4,018 | 225,233 | 3,790 | 304,560

a=0.3| 4410 | 46,559 | 4,661 | 75295 | 3,963 | 227,538 | 3,984 | 227,339 | 4,042 | 229,429 | 3,880 | 326,931

a=0.4 | 4466 | 46544 | 4,699 | 76,241 | 3,988 | 224,914 | 3,966 | 224,986 | 4,183 | 221,487 | 3,940 | 325,481

a=0.5| 4477 | 46,464 | 4,704 | 75934 | 3,987 | 222,942 | 4,032 | 230,414 | 4,199 | 218,723 | 3,936 | 311,479

a=0.6 | 4494 | 46,486 | 4,701 | 77,593 | 4,030 | 226,433 | 4,025 | 224,024 | 4,350 | 225,464 | 3,958 | 311,333

a=0.7 | 4507 | 46,532 | 4,707 | 77,672 | 4,049 | 221,979 | 4,063 | 228,308 | 4,253 | 221,202 | 3,975 | 312,433

a=0.8 | 4508 | 46,560 | 4,716 | 77,615 | 4,097 | 224,943 | 4,128 | 214,496 | 4,287 | 223,465 | 3,984 | 312,390

a=0.9 | 4509 | 46534 | 4,713 | 78,152 | 4,104 | 224,319 | 4,174 | 227,505 | 4,300 | 220,913 | 4,107 | 306,784

a=1.0| 4514 | 46,486 | 4,704 | 77,986 | 4,050 | 224,393 | 4,153 | 225,682 | 4,344 | 216,809 | 4,084 | 304,639

CORE | 3,807 | 43,120 | 3,319 | 62,038 | 2,326 | 161,394 | 2,390 | 154,364 | 1,932 | 163,463 | 1,814 | 254,342

MSSC

MSSC ‘ 4,662 ‘46,524‘ 5,005 ‘ 73,004 ‘ 5,189 ‘ 197,838‘ 5,222 ‘ 202,725‘ 6,000 ‘ 164,110 ‘ 5,988 ‘287,918

GPE

GPE ‘ 8,930 ‘ 67,198‘ 7,971 ‘ 130,543‘ 5,681 ‘369,018‘ 5,555 ‘370,689‘ 8,057 ‘408,453 ‘ 5,908 ‘489,181

ALL POSSIBLE DDIs

ALL ‘ 8,930 ‘ 67,198 ‘ 12,887 ‘ 147,724 ‘ 14,078 ‘ 402,596 ‘ 13,791 ’ 404,366 ’ 36,834 ’ 466,853 ‘ 30,527 ‘ 528,045
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Table S4 — Additional statistics of the extracted sets of domain-domain
interactions using different methods and different protein-domain annotation
sets.

Sets are defined as in Table 2 of the main text. Methods used to extract DDIs: the
parameter-dependent DDI selection (PADDS), maximum-specificity set cover method
(MSSC) [7], and the generalized parsimonious explanation (GPE) [8]. “ALL
POSSIBLE DDIs” represents the set of all DDIs that can mediate a given set of PPIs
for a given domain annotation scheme. As the underlying set of PPIs, we used a high-
confidence yeast PPI data set created by the Interaction Detection Based On Shuffling

(IDBOS) procedure at a 5% false discovery rate [20, 21].

cinal | SET-1 SET-2 SET-3 SET-4 SET-5 SET-6
DDI set Precision F- Precision | F- |Precision| F- |[Precision| F- |Precision| F- |Precision| F-
score score score score score score

PADDS

a=0.0 0.14 0.24 008 |016| 003 |[005| 003 |005| 0.02 |005| 002 |0.04

a=0.1 0.15 0.26 010 |0.18| 003 |007| 004 |0.07| 0.03 |007| 003 |O0.05

a=0.2 0.15 0.26 0.10 0.19 | 0.04 | 0.07 0.04 | 0.07 0.04 | 0.07 0.03 0.05

a=03 0.15 0.26 010 |019| 004 |0.07| 004 |007| 0.04 |007| 003 |0.05

a=104 0.15 0.26 0.10 0.19 | 0.04 | 0.07 0.04 | 0.07 0.04 | 0.07 0.03 0.05

a=05 0.15 0.26 010 |019| 004 |0.07| 004 |007| 0.04 |007| 003 |0.05

a=10.6 0.15 0.26 0.10 0.18 | 0.04 | 0.07 0.04 | 0.07 0.04 | 0.07 0.03 0.05

a=0.7 0.15 0.26 010 |0.18| 004 |0.07| 004 |007| 0.04 |007| 003 |O0.05

a=08 0.15 0.26 010 |018| 004 |0.07| 004 |007| 0.04 |007| 003 |O0.05

a=10.9 0.15 0.26 0.10 0.18 | 0.04 | 0.07 0.04 | 0.07 0.04 | 0.07 0.03 0.05

a=10 0.15 0.26 010 |018| 004 |0.07| 004 |007| 0.04 |007| 003 |0.05

CORE 0.15 0.26 0.10 0.18 | 0.04 | 0.07 0.04 | 0.07 0.04 | 0.06 0.02 0.05

MSSC

mssc | 015 | 026 | 012 [0.19| 004 [008| 004 [008| 005 [009| 003 [o006

GPE

GPE | 010 [019 | 006 [011] 002 [0.04| 002 [0.04] 002 [0.04] 002 |o0.03

ALL POSSIBLE DDIs

ALL | 010 |019] 005 | 010 |002]004| 002 |0.04] 002 [003] 0.02 [o003
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