Fig. S1: Electron microscope images of $A\beta_{1-40}$ fibrils prepared as described in "Methods" section. a) the batch used to prepare frozen solution A β -VF fibrils; b) batch used to prepare frozen solution A β -VF fibrils.

Fig. S2: DNP build-up curves measured using proton signals and ¹³C-CP signals, monoexponential fitting curves are shown in red. a) A β -VF fibrils in frozen solution, b) A β -VF peptide in frozen solution, c)A β -VG fibrils in frozen solution, d) transverse relaxation curves for samples in frozen solution.

Fig. S3: Schematic representation of relative orientation of CSA tensors in the molecular frame and with respect to each other.

Fig. S4: Series of simulated 2D patterns for a wide range of various (ϕ, ψ) angles. Spectral broadening is set to match the one found in room temperature measurements, exchange time 2.5 s

Fig. S5: $\tau_{exchange}$ plots for the best fits to individual 2D exchange spectra of A β -VF fibrils with various $\tau_{exchange}$. (data are shown in Fig. 6), a) $\tau_{exchange}$.=0.1 s, b) $\tau_{exchange}$.=0.5 s, c) $\tau_{exchange}$.=1.0 s, d) $\tau_{exchange}$.=2.5 s, e) $\tau_{exchange}$.=10 s.

ACCEPTED MANUSCRIPT

Fig. S6: RMSD plot for simulated data. The RMSD calculated is as $RMSD(\phi,\psi) = \sum_{i} (\lambda S_i(\phi,\psi) - \lambda S_i(\phi_0,\psi_0))^{\alpha}$, where a spectrum S_i simulated for specific $(\phi_1 \phi_1 \psi_1 \phi)$ angles is compared to all other simulations, the optimal scaling factor l is calculated $\Sigma_{f}^{N}S_{f}(\phi_{0},\psi_{0})S_{f}$ $\Sigma S_t(\phi_0, \psi_0) S_t$ a) $(\phi_1 0, \psi_1 0) = (-50^\circ, -60^\circ)$; b) $(\phi_1 0, \psi_1 0) = (-120^\circ, 120^\circ)$; c) as $(\phi_1 0, \psi_1 0) = (-150^\circ, 150^\circ); d) (\phi_1 0, \psi_1 0) = (-75^\circ, -150^\circ)$