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at 8 K, spectrum accumulation time ~6 hr with DNP enhancement; d) dry Aβ-VF fibrils at room 
temperature, spectrum accumulation time ~ 4 days. ; e),f),g),h) represent slices made at specified 
values of chemical shifts  in 2D plots a),b),c),d) respectively. 
Fig. 4: Transverse relaxation decay and overlap integral determined for a sample of dry Aβ-VF 
fibrils at room temperature. a) Transverse relaxation measurement as a function of pulse delay 
recorded using the echo sequence shown in Fig. 1b; b) Overlap integral  determined from 
transverse relaxation experiment on dry Aβ-VF fibrils at room temperature; 

, where (1,2) are indices for spin packets with frequencies (ν1,ν2) 
 
Fig. 5: a)  plot for the spectrum of dry Aβ-VF fibrils; b) the best fit 2D pattern with 

=(-110º,120º) (in blue), overlaid onto experimental spectrum (in red), asterisks mark the 
features which could not be reproduced by simulations with a single set of ; c) slices made 
through experimental and best fit 2D patterns at various chemical shifts 221, 177, 125, 100 ppm. 
 
Fig. 6: Dependence of 2D exchange pattern on the exchange time for Aβ-VF fibrils in frozen 
solution. a) exchange time τexchange=0.1 s ; b) τexchange =0.5 s; c) τexchange =1.0 s; d) τexchange =2.5 s; 
e) τexchange =10 s. Blue contours – experimental data, red contours – simulations using τexchange = 
2.5 s. 
 
Fig. 7:  plots for three cases a) Aβ-VF fibrils in frozen solution at 8 K obtained by 
fitting exchange spectra with various τexchange altogether; b) Aβ-VG fibrils in frozen solution at 8 
K obtained by fitting exchange spectra with τexchange =2.5 s ; c) Aβ-VF peptide in frozen solution 
at 8 K obtained by fitting exchange spectra with τexchange =2.5 s. Scattered markers in plot (a) and 
(b) denote  angles obtained from various structural models for F19 and G25 respectively: 
red- three-fold symmetric positive stagger 2LMP, green – three-fold symmetric negative stagger 
2LMQ. Black rectangle in plot (a) marks the range of  angles for Phe19 in Aβ-fibrils as 
predicted by TALOS+ program. 
 
Fig. S1: Electron microscope images of Aβ1-40 fibrils prepared as described in “Methods” 
section. a) the batch used to prepare frozen solution Aβ-VF fibrils; b) batch used to prepare 
frozen solution Aβ-VG fibrils. 
Fig. S2: DNP build-up curves measured using proton signals and 13C-CP signals, 
monoexponential fitting curves are shown in red. a) Aβ-VF fibrils in frozen solution, b) Aβ-VF 
peptide in frozen solution, c)Aβ-VG fibrils in frozen solution, d) transverse relaxation curves for  
samples in frozen solution. 
Fig. S3: Schematic representation of relative orientation of CSA tensors in the molecular frame 
and with respect to each other. 
Fig. S4: Series of simulated 2D patterns for a wide range of various (φ,ψ) angles. Spectral 
broadening is set to match the one found in room temperature measurements, exchange time 2.5 
s 
Fig. S5:   plots for the best fits to individual 2D exchange spectra of Aβ-VF fibrils 
with various τexchange. (data are shown in Fig. 6), a) τexchange.=0.1 s, b) τexchange.=0.5 s, c) 
τexchange.=1.0 s, d) τexchange.=2.5 s, e) τexchange.=10 s.  
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Fig. S6: RMSD plot for simulated data. The RMSD is calculated as  

, where a spectrum  simulated for specific 
(  angles is compared to all other simulations, the optimal scaling factor l is calculated 

as   a) ( =(-50º,-60º) ; b)  ( =(-120º,120º); c) 
( =(-150º,150º); d) ( =(-75º,-150º) 
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