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ABSTRACT G-quadruplex (GQ) is a noncanonical nucleic acid structure that is formed by guanine rich sequences. Unless it is
destabilized by proteins such as replication protein A (RPA), GQ could interfere with DNA metabolic functions, such as replica-
tion or repair. We studied RPA-mediated GQ unfolding using single-molecule FRET on two groups of GQ structures that have
different loop lengths and different numbers of G-tetrad layers. We observed a linear increase in the steady-state stability of the
GQ against RPA-mediated unfolding with increasing number of layers or decreasing loop length. The stability demonstrated by
different GQ structures varied by at least three orders of magnitude. Those with shorter loops (less than three nucleotides long)
or a greater number of layers (more than three layers) maintained a significant folded population even at physiological RPA con-
centration (=1 uM), raising the possibility of physiological viability of such GQ structures. Finally, we measured the transition
time between the start and end of the RPA-mediated GQ unfolding process to be 0.35 + 0.10 s for all GQ constructs we studied,
despite significant differences in their steady-state stabilities. We propose a two-step RPA-mediated GQ unfolding mechanism

that is consistent with our observations.

INTRODUCTION

Nucleic acid sequences rich in guanosine are capable of
adopting four-stranded noncanonical structures called
G-quadruplex (GQ) (1-4). GQ structures consist of an
arrangement in which each guanosine occupies a corner of
a G-tetrad and the G-tetrad layers stack together to form
the GQ structure. GQ structures are stabilized by several
mechanisms, including Hoogsteen hydrogen bonding be-
tween the four guanosines of each G-tetrad, stacking of
the G-tetrad layers, shielding of repulsions between guano-
sines (due to negative charges on the O6 molecules) by
monovalent cations that intercalate in or between the tetrad
layers, and hydration (5-8). Genome-wide computational
analysis has identified several hundred thousand potential
GQ-forming sites (PQS) in the human genome, and
in vitro assays have demonstrated GQ formation by these
PQSs (9-11). In particular, PQSs are overrepresented in or
near the promoter regions of numerous genes and at the
ends of chromosomes (telomeres) (11-15). The telomeric
GQ and capping proteins associated with telomeres are
considered to protect the chromosome ends (17), whereas
the roles of the nontelomeric GQ sequences have not been
well characterized. Over-representation of these nontelo-
meric sequences in or near promoter sites suggests that
they might be involved in transcription-level gene-expres-
sion regulation. RNA sequences can also form GQ struc-
tures. In particular, it has been demonstrated that RNA
GQs located in the 5'-UTR play a role in translational level
gene-expression regulation (18-21). The unique structure
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of GQ has motivated studies in which GQ has been used
as a specific drug target (22,23).

Despite the abundance of PQSs in the genome, particu-
larly nontelomeric GQ, and various in vitro demonstrations
of GQ formation, it has been more challenging to unambig-
uously prove the existence and relevance of GQ structures
in vivo. Most recently, GQs were visualized in human cells
at both telomeric and nontelomeric locations, and their for-
mation was shown to be modulated during the cell cycle
(24). In addition, recent genome-wide studies have provided
significant evidence on the formation and function of nonte-
lomeric GQ structures in vivo. These studies demonstrate
that eliminating certain helicases that are known to have
GQ unfolding activity, such as Pifl or BLM, results in
increased DNA breaks in regions of the genome containing
PQSs and severe retardation of DNA replication (9,25,26).
Hence, in the absence of proteins that unfold them, GQ struc-
tures form and act as blocks to the replication system. These
results are important indicators of the significance of protein-
GQ interactions and their effects on genomic stability.
Generic sequence constraints and in vitro thermal stability
measurements have traditionally been used to characterize
stability of GQ structures. However, within the context of
cellular environment, the main factors that destabilize nonte-
lomeric GQ are the proteins interacting with them and
competition with the C-rich complementary strand. In
particular, stability against GQ-unfolding proteins does not
necessarily correlate with thermal stability (27). Thermal
stability measurements provide a measure of the free energy
difference between the folded GQ and the unfolded confor-
mation, which has to be overcome by the protein while it is
unfolding the GQ. However, these measurements are not
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necessarily sensitive to structural complexities that could be
very important in the context of protein-GQ interactions. For
example, the footprint of one of the DNA-binding domains
of replication protein A (RPA) is about three nucleotides
long. Therefore, having a loop size of two or four nucleotides
would affect the efficiency of establishing an initial contact
in a way that may not be adequately described by the thermal
stability of the GQ. After an initial contact is established, the
thermal stability of the GQ would then determine the stabil-
ity of the GQ against protein-mediated unfolding. Therefore,
it is essential to measure the stability of GQ structures
against destabilizing proteins for better estimates of their
physiological viability. The abundance of proteins with
GQ unfolding activity presents a considerable challenge
for in vivo viability of these structures. With an emerging in-
terest in GQ structures as potential drug targets and their role
in gene-expression regulation (22,23), it is essential to probe
protein-GQ interactions in systematic studies of GQ con-
structs with different structural properties.

In this study, we probed protein-GQ interactions by
studying the unfolding of systematically varied GQ struc-
tures by RPA. The sequences under study were selected
with the aim of quantifying the influence of layer and loop
structures on the stability of GQ against protein-mediated
unfolding. Such variations in the structure are particularly
important in the case of nontelomeric GQ, which could be
formed by a broad class of different sequences. RPA was
selected as the model protein because it is the most abundant
single-strand DNA (ssDNA)-binding protein in eukaryotes
(~1 uM concentration in vivo (28)) and plays important
roles in DNA metabolism, including DNA replication and
repair (29-31). In particular, RPA protects the ssDNA
created during replication or repair from enzymatic attack
and prevents Watson-Crick pairing with the complementary
strand before the completion of the process. In addition,
RPA is involved in resolving certain secondary DNA struc-
tures that are formed during replication or repair, either by
directly unfolding them or by initially binding to such struc-
tures and recruiting other proteins for unfolding (32,33).
Unless resolved, such structures, including GQ, might act
as roadblocks against the normal progression of replication
or repair. RPA has very high affinity for ssDNA and GQ,
with a dissociation constant, kp, on the order of 1 nM,
and its affinity for dsDNA is approximately three orders
of magnitude lower (32). Previous bulk studies have shown
that RPA can unfold several different telomeric and nontelo-
meric GQs (32,34,35); however, no study has systematically
compared this unfolding activity in various GQ structures.
The number of G-tetrad layers, loop and tail length (over-
hang sequences at the end of GQs) and their sequence,
and folding conformation are some of the potentially impor-
tant parameters that could determine the stability of GQ
against protein-mediated unfolding.

In this study, we concentrated on the effects of two vari-
ables on the stability of GQs against RPA-mediated unfold-
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ing: the number of tetrad layers and the length of the loops.
Four different constructs that have the same loop length and
sequence (TTT) but different numbers of G-tetrad layers—
two, three, four, and five—were used to determine the effect
of number of layers on GQ stability against RPA-mediated
unfolding. These GQ structures are named L2-L5 and
have sequences of the form TT(G,T3);G,TT, where 2 <
n < 5. In addition, five GQ constructs with a fixed number
of G-tetrad layers (three) but with loop lengths varying
between one and five nucleotides (T to TTTTT) were used
to determine the effect of loop length on GQ stability. These
GQ structures are named O1-O5 and have sequences of
the form TT(G3T,);G3TT where 1 < n < 5. We employed
single-molecule Forster resonance energy transfer
(smFRET) in these studies (36). Our experiments were per-
formed at room temperature, near physiological pH (pH 7.5)
and ionic strength (150 mM KCI and 2 mM MgCl,),
whereas RPA was titrated to its physiological concentration.
Our results show that GQ steady-state stability against RPA-
mediated unfolding systematically increases with increasing
number of tetrad layers or decreasing loop length. We also
monitored real-time unfolding of GQ by RPA and measured
the unfolding time. Interestingly, all GQ constructs, L2-L5
and O1-05, were unfolded within very similar times by
RPA once an initial binding was established. Finally, we
propose a two step model for RPA-mediated GQ unfolding
that is consistent with these results.

MATERIAL AND METHODS
DNA constructs

The following DNA constructs were purchased from Integrated DNA Tech-
nologies (Coralville, IA) and used for FRET studies:

Stem: 5'-biotin-GCCTCGCTGCCGTCGCCA-Cy5-3'

L2: 5-Cy3-TTGGTTTGGTTTGGTTTGGTTTGGCGACGGCAGC
GAGGC-3/,

L3: 5'-Cy3-TTGGGTTTGGGTTTGGGTTTGGGTTTGGCGACGG
CAGCGAGGC-3,

L4: 5'-Cy3-TTGGGGTTTGGGGTTTGGGGTTTGGGGTTTGGC
GACGGCAGCGAGGC-3,

L5: 5'-Cy3-TTGGGGGTTTGGGGGTTTGGGGGTTTGGGGGTT
TGGCGACGGCAGCGAGGC-3/,

0Ol: 5-Cy3-TTGGGTGGGTGGGTGGGTTTGGCGACGGCAGCG
AGGC-3,

02: 5-Cy3-TTIGGGTTGGGTTGGGTTGGGTTTGGCGACGGCA
GCGAGGC-3,

03: 5-Cy3-TTGGGTTTGGGTTTGGGTTTGGGTTTGGCGACG
GCAGCGAGGC-3,

04: 5'-Cy3-TTIGGGTTTTGGGTTTTGGGTTTTGGGTTITGGCGA
CGGCAGCGAGGC-3,

05: 5'-Cy3-TTGGGTTTTTGGGTTTITTGGGTTTTTGGGTTITGG
CGACGGCAGCGAGGC-3/,

The DNA sequences shown in bold letters are the GQ-forming segment.
Note that L3 and O3 are the same constructs. The underlined thymines are
used as spacers to minimize the interaction between the GQ structures and
the nearby fluorophore. The stem strand was annealed to L2-L5 and O1-O5
and a partial duplex DNA with an 18-basepair (bp) duplex stem was formed
(see Fig. 2). The two DNA oligonucleotides were mixed at 2.0 uM
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concentration in 10 mM Tris buffer, pH 7.5, and 50 mM NaCl. The mixture
was heated and maintained at 95°C for 5 min and cooled down gradually by
placing a heated block at room temperature until the sample reached room
temperature.

smFRET assay

Cleaned optical quartz slides and glass coverslips were used for preparing
the imaging chambers. Surfaces were coated with a mixture of polyeth-
ylene-glycol and biotinylated polyethylene-glycol (m-PEG-5000 and
biotin-PEG-5000, respectively; Laysan Bio, Arab, AL) to prevent nonspe-
cific binding of DNA and RPA to the surface. Biotinylated DNA, at 15 pM
concentration, was immobilized onto the biotin-PEG surface via neutravi-
din at 0.05 mg/ml concentration. For RPA titration studies, the GQ struc-
tures were first formed by incubating the surface-immobilized DNA
constructs in 150 mM KClI for 15 min. RPA was then added to the chamber
in an imaging solution (50 mM Tris, pH 7.5, 0.8 mg/ml glucose, 0.1 mg/ml
bovine serum albumin, 140 mM @-mercaptoethanol, 0.1 mg/ml glucose
oxidase, 0.02 mg/ml catalase, Trolox at saturating concentration, 2 mM
MgCl,, and 150 mM KCI). Images were acquired after 15 min of
incubation.

Imaging and data analysis

A prism-type total internal reflection fluorescence microscope built around
an Olympus IX-71 microscope was used for these measurements. Movies
1000-2000 frames long were collected using an Andor Ixon electron-multi-
plying CCD camera (iXon DV 887-BI, Andor Technology, South Windsor,
CT). An integration time of 100 ms was used for RPA titration experiments,
and an integration time of 35 ms was used for flow experiments. Control
flow experiments were also performed at 18-ms acquisition time. FRET
time traces for individual molecules were analyzed to generate FRET histo-
grams using a custom analysis program, and Origin Pro 8 was used for sta-
tistical analysis and curve fitting of FRET histograms.

Circular dichroism assay

Circular dichroism (CD) measurements were performed at room tempera-
ture using a Jasco J-810 spectrophotometer and a cuvette with a 0.1-cm
pathlength. The measurements were performed at 150 mM K™ and 2 mM
Mg?*. In addition, control measurements were performed at 150 mM Li*
and 2 mM Mg>" to demonstrate effective GQ folding in the presence of
K" but not Li*. The DNA concentration was kept at 4 uM in all
measurements.

RPA preparation

The RPA purification procedure was adapted from previous works (37,38).
Briefly, Escherichia coli cells were transformed with a p11d-tRPA construct
containing the coding sequences of RPA 70, RPA 14, and RPA 32. Upon
reaching an ODgq of 0.6, protein expression was induced by adding isopro-
pylthio-3-galactoside to a final concentration of 0.4 mM. Cells were lysed
by pelleting and sonication. Cellular debris was pelleted by centrifugation
at 12,000 rpm for 30 min. The supernatant was loaded onto an Affi-Gel
Blue column (Bio-Rad, Hercules, CA). Protein was eluted using 1.5 M
NaSCN in Hepes-Inositol buffer, pH 7.8. Eluted fractions containing pro-
tein were loaded onto a hydroxyapatite column to further concentrate the
protein and eluted with Hepes-Inositol-80 mM phosphate buffer, pH 7.5.
RPA purity was assayed by sodium dodecyl sulfate polyacrylamide gel
electrophoresis. RPA functionality was confirmed in the context of its
role in a DNA checkpoint complex using the assay described by Choi
et al. (39).
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RESULTS AND DISCUSSION
Circular dichroism measurements

We performed CD measurements to confirm GQ formation
by L2-L5 and O1-05. Fig. 1 shows the results of these mea-
surements, which were performed under physiologically
germane ionic-strength and pH conditions (150 mM K™,
2 mM Mg>", pH 7.5). A peak at 260 nm and a trough at
240 nm in the ellipticity measured by CD is consistent
with parallel GQ conformation, whereas a peak at 290 nm
and a trough at 260 nm is consistent with antiparallel GQ
conformation (40). On the other hand, an ellipticity that
has a peak around 290 nm and a shoulder around 260 nm
has been interpreted as the hybrid conformation or a mixture
of GQ molecules possessing parallel or antiparallel confor-
mations (41,42). Given these interpretations, L2, O4, and
O5 have antiparallel GQ conformation, whereas O1 and
02 have parallel conformation. On the other hand L3-L5
data are consistent with the hybrid conformation (a mixture
of parallel and antiparallel conformations). The data on

A L2
2 L3
3
~ 1 L5
> 1
K]
2N _A
- \/
% 2 2 B w3
Wave Length (in nm)
B 3 o1
02
E 4 03
2 1]
S (013
g
m 0 —
14
200 220 240 260 280 300 320
Wave Length (in nm)

FIGURE 1 CD measurements on all the GQ constructs studied at
150 mM K" and 2 mM Mg2+. (A) L2-L5 constructs. (B) O1-05 constructs.
Data on O1 and O2 are consistent with parallel GQs, whereas that on L2,
04, and OS5 are consistent with antiparallel GQ conformations. Data on
L3-L5 have signatures of both parallel and antiparallel GQ (the hybrid
conformation).
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O1-05 show an interesting trend in which the short loop
constructs (O1 and O2) are consistent with the parallel
GQ conformation, whereas the longer loop constructs (04
and O5) are consistent with the antiparallel conformation.
The O3 construct, with intermediate loop length, is the inter-
mediate state between these two conformations and has an
ellipticity consistent with that of the hybrid conformation.
Control CD measurements in the absence of salt or in the
presence of 150 mM Li™ were performed for all constructs
(see Fig. S1 in the Supporting Material). These measure-
ments show no signature of GQ formation for some
constructs or a significantly weaker signal for others,
compared to incubation at 150 mM K. Therefore, these re-
sults are consistent with K™ being a more efficient stabilizer
of the GQ structure than Li*. The CD data are merely used
here to confirm GQ formation. Studying all the folding con-
formations independently is beyond the resolution of the
methods used in this work, both CD and smFRET. For
example, NMR measurements have shown as many as five
different folding conformations for a construct similar to
L3 (43). In particular, smFRET is sensitive to distance be-
tween donor and acceptor fluorophores that are placed at
the ends of the GQ-forming sequence so as to cause minimal
disturbance to the structure. However, different folding con-
formations typically result from different arrangements of
the loops without a significant change in the end-to-end dis-
tance of GQ. All the results presented for a given GQ
construct should be considered as the average of all possible
conformations of that GQ construct. For demonstration pur-
poses, we illustrate one of the possible folding conforma-
tions for all the GQ constructs (Fig. S2, B and C).

Steady-sate smFRET measurements of RPA-
mediated GQ unfolding

Prism-type total internal reflection fluorescence (TIRF) mi-
croscopy was used to perform smFRET measurements, as
schematically shown in Fig. S2 A. The DNA constructs
are in the form of a partial duplex with a double-stranded
stem and a single-stranded overhang that folds into a GQ
structure. The donor fluorophore (Cy3) is placed at the 5’
end of the single-stranded extension and the acceptor fluoro-
phore (Cy5) is placed at the 3’ end of the double-stranded
stem. When structured as GQ, the construct brings the
donor-acceptor pair into close proximity, resulting in high
FRET efficiency. On the other hand, unfolding of the GQ
by RPA increases the distance between the donor-acceptor
pair, resulting in low FRET efficiency. This low FRET effi-
ciency peak is clearly distinguishable from the donor-only
peak that is due to leakage through the dichroic (see
Fig. S3 for an example). The duplex stem sequence is
used to reduce the interaction of the GQ-forming sequence
with the surface. As affinity of RPA to dsDNA is about three
orders of magnitude smaller than its affinity to ssDNA or
GQ structures, the interaction between RPA and the duplex
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stem is negligible (32,44,45). A control measurement was
performed to demonstrate that RPA does not bind or modify
this 18-bp duplex DNA (Fig. S4). A similar single-molecule
assay has been used to study GQ formation of human telo-
meric repeats (27,46,47).

Proper folding of the oligonucleotides into G-quadruplex
structure was established by monitoring the increase in
FRET signal between the donor and acceptor fluorophores
with increasing K ion concentration. As the GQ structure
is stabilized with increasing K* concentration, the donor
and acceptor molecules move closer to each other, resulting
in higher FRET. With a gradual increase in K* concentra-
tion, various secondary structures form, which are mani-
fested as different FRET peaks. All of these peaks
eventually converge to a specific high-FRET state as K"
concentration is increased to 150 mM. We established for-
mation of a stable structure by monitoring this progressive
folding for all the constructs we studied. As shown in the
example in Fig. S5, various structures are stabilized at
different ionic strengths before the GQ becomes the domi-
nant stable structure at 150 mM K.

In the steady-state SmFRET experiments, the constructs
were incubated at 150 mM K" and 2 mM Mg for
15 min to attain a stable GQ conformation, except in the
case of the OS5 construct, which was incubated for 1 h. After
proper folding of the GQ, different concentrations of RPA
were introduced to the sample chamber while maintaining
the same ionic strength and pH. Data were collected after
15 min of RPA incubation to attain a steady-state unfolding
of GQ and binding of RPA to the unfolded DNA. Incubation
times of RPA with DNA were varied between 5 and 30 min
to determine the time necessary for attaining the steady
state. Incubation times beyond 15 min did not make a differ-
ence in the fraction of GQ unfolded and bound by RPA.

Fig. 2 summarizes RPA-mediated GQ unfolding for L.2—
L5 constructs at different RPA concentrations. The high-
FRET peaks (Ergrer = 0.7-0.8) in these data (Fig. 2 A)
represent folded GQ structures, whereas the low-FRET
peaks (Egrer = 0.1-0.2) represent the RPA-bound unfolded
conformations. The unfolded DNA that is bound by RPA
demonstrates a significantly lower FRET efficiency
compared to the unfolded DNA that is not bound by RPA
(Egrer = 0.3-0.6 depending on the length of the DNA
construct) (48). The two states are distinguishable, as shown
in the example in Fig. S6. Therefore, the low FRET peak we
observe in Fig. 2 A represents the RPA-bound unfolded
DNA. Larger fractions of GQ structures were unfolded
and bound by RPA as the RPA concentration was increased,
and eventually a saturating fraction was reached at a certain
RPA concentration. We observed large variations among
different GQ constructs in terms of their stability against
RPA-mediated unfolding. As shown in Fig. 2 A, all of the
L2 molecules were unfolded by <20 nM RPA, whereas a
certain fraction of molecules in L3—L5 remain stably folded
even at 1 uM RPA concentration. To quantify the unfolding
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FIGURE 2 (A) smFRET data on unfolding of L2-L5 GQ constructs by varying concentrations of RPA. The concentration quoted on each histogram rep-
resents the concentration of RPA used for that measurement. High-FRET peaks represent the folded structure and low-FRET peaks the RPA-bound unfolded
DNA. Each histogram represents RPA-mediated GQ unfolding at a particular RPA concentration. (B) Percentage of GQ molecules unfolded and bound by
RPA as a function of RPA concentration for L2-L5. The red line shows a Langmuir binding isotherm fit to the data. The stability of GQ structures system-
atically increases as the number of G-tetrad layers is increased. L3-L5 molecules maintain a certain fraction of folded GQ molecules at RPA concentrations

as high as 1 uM, whereas all L2 molecules are unfolded by 10 nM of RPA.

phenomena, we plotted the percentage of GQ molecules
unfolded and bound by RPA as a function of RPA concentra-
tion (Fig. 2 B). These curves were analyzed using a Lang-
muir binding isotherm of the form y = «[RPA]/([RPA] +
Keq), where y describes the percentage of GQs unfolded
and bound by RPA, [RPA] is the RPA concentration, K.q
is the equilibrium constant, and « represents the percentage
of unfolded and RPA-bound DNA at saturating RPA con-
centration. The « parameter accounts for the incomplete
unfolding of L3, L4, and L5 at saturating RPA concentra-
tion. A summary of the fitting parameters for different con-

structs is given in Table 1. The steady-state stability of the
GQ structures systematically increases as the number of
G-tetrad layers is increased. In addition, the percentage
of GQ molecules unfolded and bound by RPA at saturation
(« parameter) systematically decreases as the number of
G-tetrad layers is increased (see Fig. 4 A). The slope of
the linear fit (see Fig. 4 A) suggests that each additional
G-tetrad layer decreases the « parameter by 27%.

The O1-O5 constructs were analyzed using methods
similar to those presented for the L2-L5 constructs, as
shown in Fig. 3. All of the O4 and O5 molecules were

Biophysical Journal 104(10) 2235-2245
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TABLE1 Summary of Langmuir binding isotherm analysis for
all GQ constructs studied

Fitting equation: y = «[RPAJ/([RPA] + K.q)

Construct a (%) Keq (nM)
L2 100 0.8 = 0.1
L3 (03) 78.1 = 3.5 11,5 £ 22
L4 447 + 2.6 23.1 = 7.8
L5 18.6 = 1.0 22.1 =175
0Ol 16.0 = 0.9 81.2 + 19.7
02 56.9 = 2.9 7.1 £23
04 100 1.0 £ 0.1
05 100 0.6 = 0.1

unfolded by 20 nM RPA, whereas some O1-O3 molecules
remained folded even at 1 uM RPA (Fig. 3 A). Langmuir
binding isotherm analysis was performed on these data
and the results (a and K.,) are summarized in Table 1.
The steady-state stability of the GQ structures systemati-
cally increases as the length of the loops is decreased and
the « parameter systematically decreases as the length of
the loops is decreased, as shown in Fig. 4 B. A linear fit to
« parameters of O1-0O4 constructs demonstrates a 26% in-
crease with one nucleotide added to each loop (Fig. 4 B).
05 data were not included in the fitting, as 100% of O4
molecules were already unfolded and bound by RPA. Inter-
estingly, for the GQ structures we studied, the effect on
steady-state stability of reducing the length of each loop
by one nucleotide is similar to that of adding a G-tetrad layer
(26% vs. 27% change in «). Determining whether this is a
coincidence due to the structures studied or a general feature
of a broader class of GQ constructs would require system-
atic studies on a larger number of GQ constructs.

Several control measurements were performed to assure
the validity of the analysis, and conclusions presented in
Figs. 2 and 3. In one of these measurements, we confirmed
that all secondary DNA structures were removed in the
RPA-bound unfolded state (see Fig. S7). A GQ-forming
DNA (the L4 construct) and a polythymine DNA of very
similar length (30 vs. 29 nucleotides long, respectively)
were used for this study. The polythymine DNA was
selected because it does not form any secondary structure.
We demonstrated that the FRET peak representing the
unfolded and RPA-bound state of L4 is identical to that of
the RPA-bound polythymine DNA, suggesting that all sec-
ondary structures have been removed from the L4 construct.
In another measurement, of the y parameter for the Cy3-
Cy5 pair before and after introducing RPA, we confirmed
that the lower FRET peak observed upon introduction of
RPA is not due to interactions of the fluorophores with
RPA or the GQ structure (see Fig. S8).

An interesting aspect of the steady-state smFRET mea-
surements is that a certain fraction of L3-L5 and O1-03
molecules remain stably folded even at the highest RPA
concentration studied. For all these constructs, a steady state
is reached at ~100 nM RPA, and adding more RPA to the
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environment does not give rise to any further significant un-
folding of GQ. This suggests a dynamic binding/unbinding
of RPA, although such was not observed in our 2- to 3-min-
long single-molecule time traces. In particular, RPA binding
to the unfolded DNA is very stable and essentially irrevers-
ible within our 2- to 3-min observation time. It is possible
that RPA would dissociate and GQ would refold over longer
time periods. To test this idea, movies 10-20 min long with
0.5-s integration time and very low laser power were ac-
quired. Back-and-forth transitions between the folded,
unfolded, and RPA-bound states were rarely observed
even in these long movies. Examples of these rare transi-
tions and stability of RPA binding are shown in Fig. S9.

A related issue is the stoichiometry of RPA binding. The
length of our DNA constructs varies between 19 and 33 nu-
cleotides, all of which lengths support stable binding of a sin-
gle RPA, which can bind to 8- to 30-nucleotide-long ssDNA
(as discussed in more detail below). The only possible excep-
tion to this is the L5 construct, which is 33 nucleotides long
and therefore might possibly accommodate stable binding of
one RPA and binding of one of the DNA-binding domains of
a second RPA. In the smFRET histograms in Fig. 2 A, a sin-
gle peak is observed for the RPA-bound and unfolded state of
L5, suggesting that binding of a second RPA either does not
take place or is a very rare event.

Dynamics of the RPA-mediated GQ unfolding
process

Finally, single-molecule buffer-exchange measurements
(called RPA flow) were performed to measure transition
time from the folded GQ state to the RPA-bound unfolded
state. In RPA flow experiments, the DNA constructs were
incubated in a buffer that contains 150 mM K™ (in the
absence of RPA) for 15 min to ensure proper folding of
GQ, with the exception of O5, which was incubated for
1 h. A buffer containing 100 nM RPA and 150 mM K"
was flowed into the chamber by a microfluidic syringe
pump while the folded GQ construct was being imaged,
enabling us to monitor RPA-mediated GQ unfolding in
real time. A representative single-molecule time trace of
this unfolding process is shown in Fig. 5 A. The initial
high-FRET state represents the folded GQ conformation,
and the low-FRET state that follows corresponds to the
RPA-bound unfolded state. The duration of time between
these two states is called the unfolding time for brevity.
The low-FRET state matches with the RPA-bound state ob-
tained in the steady-state experiments, and it is different
from the donor-only level (the FRET level after acceptor
photobleaching takes place (Fig. 5 A)).

The unfolding time, shown as At in Fig. 5, A-C, is
measured from the start of FRET decrease. The unfolding
is considered to be complete when the FRET signal stabi-
lizes at a low-FRET state representing the RPA-bound
DNA structure. As shown in Fig. 5, A-C, several different
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resents the concentration of RPA used for that measurement. (B) Percentage of GQ molecules unfolded and bound by RPA as a function of RPA concentration
for O1-05. The red line shows a Langmuir binding isotherm fit to the data. The stability of GQ structures systematically decreases as the loop length is
increased. O1-O3 molecules maintain a certain fraction of folded GQ molecules at RPA concentrations as high as 1 uM, whereas all of the O4 and O5

molecules are unfolded by <20 nM of RPA.

types of unfolding patterns are observed in these measure-
ments. In some cases, a clear intermediate FRET state is
observed (Fig. 5 A, lower), whereas in other cases, the
FRET signal transitions back and forth between the folded
and unfolded states before stabilizing at the unfolded state
(Fig. 5 B). Finally, in some cases, the FRET signal gradually
reduces from the folded state to the unfolded state without
an obvious intermediate state, as shown in Fig. 5 C. These
intermediate states might be giving rise to the FRET
populations between the folded and RPA-bound unfolded
states in the steady-state histograms in Figs. 2 and 3.
Regardless of the details of the unfolding process, the un-

folding time is determined as the time between the stable
high-FRET state and the stable low-FRET state, as shown
in Fig. 5, A-C.

The movies for these measurements were acquired at a
rate of 0.035 s/frame. However, the uncertainty in deter-
mining the beginning and end of the transition reduces our
time resolution to 0.10 s for these measurements. Fig. 5 D
shows the unfolding-time histograms for the constructs
L2-L5, and Fig. 5 E shows similar histograms for O1-05.
The unfolding time represents a multistep process including
GQ unfolding and RPA binding. The histograms in Fig. 5 D
were fit by Gaussian curves, and the peak values were as
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FIGURE 4 (A) The « parameter, the percentage of GQ molecules
unfolded and bound by RPA at saturating RPA concentration, is plotted
for L2-L5, which have two to five G-tetrad layers, respectively. (B) The
« parameter for O1-O5 constructs, which have two to five nucleotides,
respectively, in each loop. The « parameter is obtained from the Langmuir
binding isotherm analysis, as shown in Figs. 2 B and 3 B. The red lines are
linear fits to the data, which are consistent with both data sets. The O5 data
are not included in the fit, as 100% unfolding is already attained at the O4
construct.

follows: 0.24 = 0.10s, 0.27 = 0.10s, 0.27 = 0.10 s, and
0.33 = 0.10 s for L2-L5, respectively. Gaussian fits to his-
tograms in Fig. 5 E resulted in peaks of 0.39 = 0.10 s,
0.33 = 0.105,0.27 = 0.10s,0.27 £ 0.10 s, and 0.42 =
0.10 s for O1-05, respectively. Given the uncertainty in
determining the transition time, all constructs are essentially
unfolded by RPA within very similar times of ~0.35 =+
0.10 s. To ascertain whether the observed unfolding time
was due to a limitation of the image acquisition time used
for these measurements, we used half the CCD screen for
image acquisition and reduced the image acquisition time
to 0.018 s. The RPA flow experiment for L2 was repeated
using this improved time resolution, and an unfolding
time of 0.27 *+ 0.05 s was found, which is consistent with
the measurements at longer image-acquisition time (see
Fig. S10 for a histogram and a sample trace). An example
of a trace at this higher time resolution is shown in Fig. 5 C.

A model of RPA-mediated GQ unfolding

Unfolding of all the GQ constructs within very similar times
is an interesting result, especially considering the orders-of-
magnitude difference in their steady-state stabilities. It is
important to consider the specifics of the RPA structure to
better interpret these results. RPA is a heterotrimeric protein
with subunits RPA1 (70 kDa), RPA2 (32 kDa), and RPA3
(14 kDa), and it has six ssSDNA-binding domains (DBDs).
Four of these DBDs (DBD-A, DBD-B, DBD-C, and
DBD-D) are active and can bind to 8- to 30-nucleotide-
long ssDNAs depending on the number of DBDs involved
(49-52). For a recent review of the structure, DNA binding
properties, and role in replication of RPA, see Prakash and
Borgstahl (53). It is widely accepted that initial binding of
RPA to ssDNA is achieved via binding of DBD-A and
DBD-B, both in RPA1, and this initial interaction is further
stabilized by successive binding of DBD-C and DBD-D.
DBD-A and DBD-B each have a footprint of three nucleo-
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tides, and these three-nucleotide stretches are separated by
a two-nucleotide stretch (52). This binding mode effectively
enables RPA to stably bind to ssDNAs as short as eight nu-
cleotides. However, three nucleotides may be enough for
achieving an initial binding of DBD-A or DBD-B to ssDNA.
In the rest of the discussion, we assume that DBD-A binds
first and DBD-B binds second to make the description of
our model easier to follow.

Based on the variation of stabilities we observed for
different GQ constructs, and taking into account the struc-
ture of RPA, we propose a two-step model for RPA-mediated
GQ unfolding (Fig. 6). The first step starts with RPA estab-
lishing contact with the GQ structure via binding of DBD-A
to the available single-stranded regions, e.g., either the loops
or the overhangs. The longer the loops or the overhangs, the
easier it is to establish this initial contact. After this initial
contact is achieved, RPA interacts with the folded GQ struc-
ture, which eventually leads to destabilization of the GQ and
binding of DBD-B. The thermal stability of the GQ is an
important parameter to consider here, as it would be more
difficult for RPA to destabilize a GQ with higher thermal sta-
bility, e.g., more layers or shorter loops. The other important
parameter is the affinity of DBD-B for ssDNA, which deter-
mines the level of the interactions between RPA and GQ.
The second step of this model starts with destabilization of
the GQ and is followed by binding of DBD-C and DBD-D
to ssDNA as the GQ unfolds. Destabilization of the GQ is
the onset of the FRET change we observe in RPA flow mea-
surements. This model is consistent with the findings of SE-
LEX studies suggesting that binding of either DBD-A or
DBD-B results in a weakly bound state that would then
enable RPA to invade longer stretches of DNA and destabi-
lize the GQ (35). GQ structures that have four or five nucle-
otide loops (04 and OS5) are efficiently and completely
unfolded by RPA, whereas those that have three or fewer
nucleotide loops (O1-03) are unfolded less efficiently and
cannot attain complete unfolding of all molecules. For the
cases of 1- to 2-nucleotide-long loops or overhangs, transient
melting of the hydrogen bonds between the guanines that
form the G-tetrad would be necessary before DBD-A or
DBD-B can bind to the GQ. Such a melting event could
take place due to thermal fluctuations or possibly due to
RPA-GQ interactions. For the case of L2-L5 constructs,
which all have three nucleotide loops, the stability of the
GQ structure against thermal fluctuations or RPA-induced
destabilization would increase with each additional layer.
This would result in an increased stability against RPA-
mediated GQ unfolding, as demonstrated in Fig. 2.

The observed dynamics of RPA-mediated GQ unfolding
and unfolding of all the GQ constructs within very similar
times can also be understood in the context of the two-
step model proposed in Fig. 6. The unfolding time we mea-
sure in these measurements is essentially a measure of the
second step of this interaction (Fig. 6, right). This step starts
with measurable destabilization of GQ followed by binding
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of DBD-C and DBD-D as more ssDNA becomes available.
The first step is not detected, as the GQ is still folded and
FRET efficiency does not change significantly. As we do

not observe any variation in the duration of the second
step of the unfolding mechanism, we conclude that the first
step determines the stability of GQ against RPA-mediated

Step-1: Initial binding of RPA: Rate Limiting Step

Step -2: Unfolding of GQ : Observed in the RPA Flow Assay

Initial Binding
— Ve — T e e
DBD-A binds to 3 nt ssDNA and DBD-A & DBD-B bind to GQ Unfolds
RPA and GQ RPA interacts with folded GQ 8-nt ssDNA

All DBDs bind to
24-30 nt ssDNA

Transition from Step-1 to Step-2 depends on thermal stability of GQ

FIGURE 6 Cartoon of a model describing RPA-mediated GQ unfolding as a two-step process.
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unfolding. The stability of GQ that is described in the first
step of this model depends on both the thermal stability of
the GQ and the length of available ssDNA in the loops or
overhangs, which enable RPA to position in the vicinity of
GQ and interact with it.

CONCLUSION

In conclusion, this study provides a systematic way to char-
acterize the stability of GQs in terms of protein-mediated
unfolding. RPA, the most abundant ssDNA-binding protein
in eukaryotes, is expected to frequently interact with nonte-
lomeric PQSs. Our data identify the effects of number of
tetrad layers and loop lengths on the stability of GQ against
RPA-mediated unfolding. Clearly, live-cell environment is
significantly more complicated than the environment in
in vitro assays, and there are various other factors that are
known to destabilize GQ structures, e.g., helicases or
competition with the complementary DNA strand. It is
also possible that there might be direct or indirect mecha-
nisms or factors that could stabilize the GQ in the context
of chromatin. Nevertheless, this study provides what we
believe to be a new perspective on the interactions of an
abundant and very important protein with systematically
varied GQ structures. Our results impose strict constraints
on physiologically viable GQ structures. For example,
GQs with four- or five-nucleotide-long loops are completely
unfolded by RPA, suggesting that GQ structures with such
long loops are not viable in a physiological setting. Finally,
we propose a two-step model of RPA-GQ interactions that is
consistent with our data. The quantitative data we present
would be particularly important in providing guidelines
for computational work on modeling the interaction of an
arbitrary GQ structure with RPA. Extension of these studies
to a broader class of GQs with systematically varied struc-
tures or with inclusion of multiprotein complexes would
have the potential to make better estimates for the physio-
logical viability of GQ structures.
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Circular Dichroism
Samples were heated at 95°C for 10 minutes and then were allowed to gradually cool down to room

temperature over 2-3 hours by placing the heating block at ambient temperature. CD samples contained
4 uM DNA and either no salt (Fig. S1-A and Fig. S1-B), 150 mM LiCl (Fig. S1-C and Fig. S1-D), or 150 mM
KCI (Fig.1). 10 mM Tris at pH 7.5 was used as buffer in all measurements, and 2 mM MgCl, was added to
the Li* and K" measurements to simulate physiological conditions. All measurements were performed at
room temperature on a Jasco 810 Spectrapolarimeter (Easton, MD), using a quartz cuvette with a Imm
optical path length. The spectra obtained are averages of three scans taken over a range of 200nm to
320nm excitation wavelength with a measurement taken every 0.5 nm at a scanning rate of
50nm/minute. Representative spectra have been baseline subtracted from a buffer-only sample, and
smoothed using a Savitzky-Golay function. It is clear from the spectra shown in Fig. S1-A and Fig. S1-B
that most constructs do not demonstrate a signature of GQ formation in the absence of salt. Exception
to this are constructs such as L5 and O1. These constructs show a weak signature of GQ formation
suggesting that they form GQ even in the absence of salts. Incubating the constructs in 150 mM Li*
stabilizes the GQ structure for some constructs, such as L4 and L5, but most constructs do not show a
signature of GQ (Fig. S1-C and Fig. S1-D).
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Fig. S1: CD spectra for (A) L2-L5 constructs (B) O1-O5 constructs in absence of salt. CD spectrain 150
mM Li* for (C) L2-L5 constructs (D) O1-O5 constructs.



smFRET Assay and Possible Folding conformations

Prism-type total internal reflection microscopy was used to perform the single molecule measurements.
A schematic of the assay is shown in Fig. S2-A. The folded, unfolded, and RPA-bound unfolded states of
the ssDNA tail have different FRET efficiencies, and can be distinguished from each other. The sequence
of the ssDNA tail is varied for different GQ structures. The duplex stem and the donor-acceptor
fluorophores (Cy3-Cy5) are kept the same for all studied constructs. Fig. S2-B shows one of the possible
folding conformations for each GQ constructs based on the circular dichroism data presented in Fig. 1.
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Fig. S2. (A) A schematic of the smFRET assay. (B) One of the possible folding conformations for each GQ
constructs L2-L5. (C) One of the possible folding conformations for each GQ constructs 01-05.



smFRET Data Analysis
Background subtraction was done manually for each molecule, by subtracting both donor and acceptor

intensities after donor photobleaching. Overlap between donor and acceptor emission spectra gives rise
to leakage of the donor signal into the acceptor channel, resulting in a non-zero FRET value for
molecules that had a donor but not an acceptor fluorophore (donor only (DO) molecules). The dichroic
we use to split the emissions of Cy3-Cy5 pair results in a donor only peak at 0.12 before manual
subtraction of background, which reduces to 0.06 after manual subtraction. For all the data presented in
Fig.2 and Fig. 3 background has been manually subtracted by inspecting each time trace. This DO peak is
then subtracted from the FRET histograms and histograms rescaled to compensate for the leakage into
acceptor channel. Fig. S3 is a representative histogram, showing the position of the DO peak, RPA bound
unfolded peak and folded GQ peak before correction for the leakage factor. It also shows that the DO
peak is distinctly different from the RPA bound unfolded peak, allowing us to subtract the DO peak
without affecting any other population.

14 14
12 121 RPA Bound
RPA Bound
10 rded 10 -
g, < Folded  DonorOnly £
= ) = :
8 ¢ Correction ? ]
Donor Only —) o
4- \A 4-
24 2
ol T T T T Ll T T 0 ) T T T T L) L]
02 00 02 04 06 08 10 12 02 00 02 04 06 08 10 12
EFRET EFRET

Fig. S3: Representative FRET histogram, showing the position of different peaks.



RPA does not bind to the double stranded DNA Stem

RPA has at least three orders of magnitude lower affinity for dsDNA compared to ssDNA. This is
important as we have an 18 bp duplex stem in all our DNA constructs, and modification of this stem by
RPA would cause complications in our analysis. In order to experimentally verify that RPA does not
interact with dsDNA under our experimental conditions, we prepared a double stranded DNA construct
that is internally labeled with a Cy3 fluorophore in one strand and a Cy5 fluorophore at the 3' end of the
other strand. The sequences of the oligos we used for these measurements are:

5'-TGG CGA CG/Cy3/G CAG CGA GGC

5'-biotin-GCC TCG CTG CCG TCG CCA-Cy5

These oligos form an identical duplex DNA as that used for all our other measurements. The data shown
below in Fig. S4 demonstrates that RPA does not bind to this duplex stem even at the highest protein
concentration used in our studies (1 uM RPA).
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Fig. S4. RPA does not bind to the 18 bp long dsDNA stem . smFRET measurements on a 18 bp duplex
internally labeled with Cy3 and end labeled with Cy5. (Left)smFRET data on duplex DNA before RPA is
introduced into the chamber. (Middle) 0.5 M RPA is introduced to the chamber but no change is
observed in the FRET efficiency. (Right) 1 uM RPA is introduced to the chamber but no change is
observed in the FRET efficiency. This is the highest RPA concentration we used in our measurements.



Folding of GQ as a function of increasing K" ion:

Fig. S5 shows progressive folding of L3 construct with the increase of K" concentration. smFRET is
capable of detecting various folding conformations adopted by DNA at different K* concentrations.
However, for the current study we are only concerned with the conformation attained by the GQ
structures at 150 mM K' concentration.
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Fig. S5. Different folding conformation adopted by L3 construct as K* concentration is titrated to 150
mM.



Comparison of FRET Peaks for Different States
There are several different states involving RPA and DNA that need to be resolved in our

measurements. Folded GQ, unfolded DNA, and RPA bound unfolded DNA are some of these states. We
performed control measurements to ensure that these different states can be distinguished based on
the FRET peaks that represent them.

The first of these measurements aimed distinguishing between the unfolded state and RPA
bound unfolded state. Clearly identifying the unfolded state (coiled ssDNA) at 150 mM K" using the GQ
forming constructs we used for these studies is not possible as they fold into GQ structure at such ionic
strength. Even under 150 mM Li*, which is a weaker stabilizer of GQ structure compared to K*, a
significant proportion of folding occurs. Therefore, we used a partial duplex DNA that has an overhang
of 21 thymines (called pdT21) which do not form any secondary structure. This DNA has a length similar
to the 02 construct which has an overhang of 22 nucleotides. We compared the FRET peak of pdT21
observed at 150 mM K* concentration before and after adding 0.1 nM RPA (Fig. S6A-B). For reference we
also show the folded peak and the RPA bound unfolded peak of the 02 construct (Fig. S6C-D). As
expected, the RPA bound unfolded peak of 02 and that of pdT21 match and they are both close 0.20
FRET efficiency. The unfolded DNA peak of pdT21 is significantly different from this peak and occurs at
0.55 FRET efficiency. The folded GQ peak is significantly different from both of these peaks and occurs at
0.85 FRET efficiency. Therefore, all three states can be distinguished from each other based on the
corresponding FRET peak that represents them. In general, the RPA bound unfolded peak for the eight
GQ forming constructs we studied are in the 0.10-0.20 FRET efficiency range. On the other hand, the
unfolded DNA peaks for these constructs are in the 0.35-0.55 FRET efficiency range. Finally, the folded
GQ states have FRET efficiencies are in the 0.70-0.85 range.
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Another related question, is whether RPA binding removes all the secondary structure of the
folded conformation. This might particularly be an issue with longer constructs such as L4 or L5. In order
to check if the RPA bound peak still has some secondary structure associated with it, we performed
control measurements on partial duplex DNA with 30 nucleotide long poly-thymine tail (will be called
pdT30). The duplex stem and the position of the dyes in pdT30 are identical to those in the GQ
constructs and the only difference is in the single stranded tail which is composed of 30 thymines rather
than a GQ forming sequence. pdT30 is not expected to have any secondary structure and therefore the
FRET value for the RPA bound state of this construct can be taken as a reference. The histogram for this
construct is shown in Fig. S7-A which has an RPA bound FRET peak at 0.11, consistent with our GQ
constructs that are around 30 nucleotides long. For comparison we also show the data on the GQ
construct L4 which has 29 nucleotides at the single stranded tail (Fig. S7-B). The RPA bound peak for L4
is at 0.13 FRET, similar to that for pdT30. Hence, we do not think any secondary structure remains folded
once RPA binds to the unfolded GQ constructs. As RPA binds to about 30 nucleotides of ssDNA, it might
be expected that the FRET efficiency of the RPA bound state would be lower than 0.13 FRET if the DNA
was stretched in a linear fashion. However, the geometry of the complex RPA forms with ssDNA is not
linear but more like an L-shape. Fig. S7-C demonstrates this geometry (adapted from Figure 5 of Ref.

(1)).
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Fig. S7. (A) RPA bound peak for a pdDNA with 30 nucleotide long polythymine ssDNA tail. (B) RPA bound
peak for GQ forming construct L4 which has an ssDNA tail of 29 nucleodies long. (C) Structure of RPA-
bound DNA. DNA is not linearly stretched by RPA but forms an L-shape. Fig. S7-C is adapted from Figure
5 of Ref. (1).




Influence of RPA binding and GQ Folding on the Fluorescence Properties of Fluorophores

To quantify the influence of RPA binding and GQ folding on the fluorescence properties of the
fluorophores we measured the gamma parameter of L3 (0O3) molecules at FRET levels corresponding to

Pall A

Pollo
are the donor and acceptor intensities, respectively, and 77, and 775 are the sensitivities of sensor to the
donor and acceptor emissions, respectively (2). Fig. S8-A shows an example trace demonstrating how
the gamma parameter is determined experimentally. It is essentially the ratio of the change in the donor
intensity to the change in the donor intensity upon photobleaching of the acceptor:

folded GQ and RPA-bound unfolded GQ. Gamma parameter is defined as: y = , where ¢, and ¢p

| pre—photobleach | post— photobleach
__A A

V= post— photobleach pre—photobleach *
I -1
D D

In order to determine the gamma parameter for the Cy3-Cy5 pair when they are attached to a partial
duplex DNA similar to that we used in our experiments, we performed measurements on a partial
duplex DNA with the same duplex stem as that used in all our GQ constructs and a polythymine tail of 21
nucleotides (pdT21). The inset in the top panel of Fig. S8B shows a schematic of the construct. Similar to
the GQ constructs we studied, the Cy5 was placed at the ssDNA/dsDNA junction and Cy3 was placed at
the end of the ssDNA tail. Gamma measurements for this construct were performed under 150 mM KCl
and pH 7.4, as in our measurements for the GQ constructs. The FRET measurements for this constructs
showed a peak at 0.54 FRET before performing any gamma correction, in agreement with reported
measurements in literature (3). Fig. S8-B shows a 2D histogram of gamma measurements on 164 single
molecule FRET traces. The x-axis of the histogram represents the FRET efficiency, with the gamma
correction taken into account [Ee=14/(Ia+ yIp)], and the y-axis represents the gamma parameter. These
measurements yield y=1.610.5. Performing this gamma correction shifts the FRET peak to significantly
lower level (peak at 0.30 FRET) as shown in Fig. S8-B. The shift in the FRET peaks are much smaller at
lower or higher FRET levels, as we have in our case, due to the nature of the correction. To our
knowledge, the gamma parameter for Cy3-Cy5 pair for a partial duplex DNA construct has not been
reported before. The gamma parameter for the Cy3-Cy5 pair attached to double stranded DNA has been
measured to be in the 0.6-1.3 range for the same EMCCD camera used in this study depending on the
details of the fluorophore positions on DNA and the type of dichroics and filters used in the detection
path (4). Gamma is typically assumed to be 1.0 in the literature for the Cy3-Cy5 pair (5).

We next measured the gamma parameter of Cy3-Cy5 for folded GQ and RPA-bound DNA cases. We
obtained a gamma value of y=0.6+0.2 for the folded GQ state and y=1.2+0.3 for the RPA-bound
unfolded state. These gamma value for the RPA-bound DNA case is very similar to the pdT21 case, which
suggests that RPA does not have strong interactions with the fluorophores. The gamma value for the
folded GQ case is significantly different from the pdDNA case, which suggests that the folded GQ
interacts with the fluorophores despite the two thymine spacer placed between the GQ and Cy3
fluorophore. However, these interactions are not significantly different from those observed when these
fluorophores are attached at the ends of duplex DNA, in which gamma in the 0.6-1.3 range have been
observed.

The spread of the gamma values in the RPA case is significantly larger than that of the folded GQ case,
but not different from the pdT21 case. This variation is partially due to the difficulty in determining the
gamma at low FRET values when the acceptor signal is weak. The gamma values demonstrated in Fig. S8
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were obtained from the photobleaching steps of acceptor fluorophores. Up on acceptor photobleaching,
the acceptor intensity reduces to the donor only level (leakage from the donor emission into the
acceptor channel) and the donor intensity increases correspondingly (see Fig. S8-A). The ratio of the
decrease in acceptor intensity to the increase in donor intensity determines the gamma parameter. At
high FRET states where the acceptor signal is strong, the gamma parameter is accurately measured as
the acceptor photobleaching gives rise to large intensity changes in both donor and acceptor signals. On
the other hand photobleaching of the acceptor gives rise to only small decrease in the acceptor signal
and a small increase in the donor signal at low FRET states where the acceptor signal is naturally weak.
As the RPA-bound unfolded DNA state has an uncorrected FRET efficiency of ~0.1, the changes in
acceptor and donor intensities are small and the measured gamma parameters have a larger errors
associated with them. Correcting for the different gamma parameters shifts the folded GQ FRET level to
a slightly higher level (0.78 to 0.86 assuming y=0.6) and the FRET level of the RPA bound unfolded state
to a slightly lower level (0.10 to 0.085 assuming y=1.2). Due to the large difference between these two
FRET states, these corrections would not affect any of the equilibrium constants or the unfolding times
reported in the manuscript.
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Fig. S8. Gamma parameter for RPA-bound unfolded DNA and folded GQ structures. (A) A single molecule
FRET trace demonstrating how gamma is determined. (B) (Top Panel) FRET Histograms for a partial
duplex DNA with a tail of 21 thymines (pdT21) before and after the gamma correction. The DNA

construct is shown as an inset. (Bottom Panel) Histogram of gamma values for pdT21. (C)Histogram of

gamma values for RPA bound unfolded DNA and folded GQ molecules. The numbers in the scale bar
represent the number of molecules.
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Monitoring RPA Mediated GQ Unfolding for Extended Time Periods.

For all steady state RPA mediated GQ unfolding measurements, we observed that RPA binds to the
unfolded DNA very stably. Once GQ is unfolded and RPA binds to the unfolded ssDNA, as evidenced by a
transition to the low FRET state, the GQ does not refold and transition to the high FRET state in the time
frame of our measurements (120 sec). In order to study the conformational changes over longer times,
we took longer movies (1200 sec) with an integration time of 500ms. These data were taken with L4
construct after 15 minutes of incubation with 50 nM RPA. We reduced the laser intensity to increase
the fluorophore lifetime, and increased the integration time in order to collect enough photons per
frame. Majority of the traces we collected showed either high (folded GQ-top panel of Fig. S9-A) or low
FRET state (unfolded and RPA bound GQ-bottom panel of Fig. $9-A), with no transitions between the
two states. Fig. S9-B shows an rare example of a molecule that transitions back and forth between the
folded and RPA bound unfolded state.
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Fig. S9: Steady state measurements that were taken over longer times than those presented in the
manuscript. (A)Example FRET traces showing stable folded or RPA bound states with no dynamics
between the two states. Top panel shows a stably folded GQ that is not unfolded by RPA for about 900
seconds . Bottom panel shows an unfolded DNA that is bound by RPA for about 1100 seconds. The dip in
the FRET level around 780 seconds is due to donor blinking. (B) An rare example trace of a molecule
showing back and forth transitions between the folded and RPA bound states.
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Unfolding time of GQ : 18 ms acquisition time:

The data presented in Fig. 5, on the time it takes for RPA to unfold GQ structures, were acquired at 35
millisecond image acquisition time. This limits the accuracy of the method to #0.10 sec. In order to
confirm our results with a higher time resolution, we used half of the CCD sensor on the camera for
image acquisition and were able to reduce the image acquisition time to 18 ms. This method improved
the time resolution by a factor of two, but the smaller area of imaging made it twice as difficult to collect
statistically significant number of molecules. We performed this control measurement on the L2
construct and obtained the data presented in Fig. S10. Fig. S10-A shows a sample trace that
demonstrates the clear transition from the folded to unfolded state despite the lower photon count (y-
axis of top panel is a measure of the photon count). Fig. S10-B shows a histogram of unfolding times.
The average unfolding times were consistent for the 18 ms and 35 ms image acquisition times within the
uncertainties of the methods: 0.2440.10 sec for 35 msec image acquisition and 0.27+0.05 sec for 18
msec image acquisition.
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Fig. S10: (A) 18 ms Time resolution stopped-flow type experiment, showing unfolding of a GQ by RPA in
real time. (B) Histogram of unfolding time for L3/03 construct (18 ms data).
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