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ABSTRACT Nitric oxide (NO) produced by vascular endothelial cells is a potent vasodilator and an antiinflammatory mediator.
Regulating production of endothelial-derived NO is a complex undertaking, involving multiple signaling and genetic pathways
that are activated by diverse humoral and biomechanical stimuli. To gain a thorough understanding of the rich diversity of
responses observed experimentally, it is necessary to account for an ensemble of these pathways acting simultaneously.
In this article, we have assembled four quantitative molecular pathways previously proposed for shear-stress-induced NO pro-
duction. In these pathways, endothelial NO synthase is activated 1), via calcium release, 2), via phosphorylation reactions,
and 3), via enhanced protein expression. To these activation pathways, we have added a fourth, a pathway describing actual
NO production from endothelial NO synthase and its various protein partners. These pathways were combined and simulated
using CytoSolve, a computational environment for combining independent pathway calculations. The integrated model is able
to describe the experimentally observed change in NO production with time after the application of fluid shear stress. This model
can also be used to predict the specific effects on the system after interventional pharmacological or genetic changes. Impor-
tantly, this model reflects the up-to-date understanding of the NO system, providing a platform upon which information can be
aggregated in an additive way.
INTRODUCTION
One of the most important functions of vascular endothelial
cells is to produce nitric oxide (NO). This molecule has a
number of different roles in vascular stasis, including acting
as a potent vasodilator and a mediator of inflammation (1).
Not surprisingly, human vascular endothelial cells have
developed multiple pathways by which production of
NO is regulated by humoral and biomechnical stimuli via
the expression and activation of endothelial nitric oxide
synthase (eNOS). Exploring these different pathways one
at a time is difficult, because the system is not sepa-
rable—multiple pathways contribute to the production rate
under all physiological circumstances. To understand and
model the rich diversity of responses that have been
observed experimentally, it is necessary to account for an
ensemble of these pathways acting simultaneously over an
extensive range of timescales.

The advancements of modern biology and computer sci-
ence have increasingly enabled researchers to build such
multipathway models. In the past two decades, experiments
have been conducted that provide quantitative information
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between molecular species in the cell and their evolution un-
der specific stimuli, facilitating construction of quantitative
biochemical pathways that may be used as predictors of
cellular response under a wider range of physiological or
pathophysiological conditions. This sort of quantitative
analysis of molecular pathways provides a valuable tool
for assessing biological mechanisms and validating hypo-
thetical mechanisms by comparing simulation results with
experimental data.

One of the major hurdles in this process has been the
development of in silico models that are sufficiently detailed
to describe the complex phenomena observed. The current
state of the art is to construct quantitative models based
on selected subpaths within a larger molecular pathway.
This process is time-consuming, requiring in-depth litera-
ture searches, experimentation, and parameter estimation.
These isolated subpath models are invaluable and often
provide insight into specific biochemical mechanisms.
However, these subpathway models are often not indepen-
dent in vivo or in vitro and have cross-sensitivities due to
common species and overlapping reactions. As a result, to
address more complex questions, such as the evolution of
NO under mechanical shear stress, it is necessary to system-
atically integrate these subpaths to provide a more compre-
hensive and accurate purview of cellular mechanisms.

The current process of integrating multiple molecular
pathways involves hand curation of individual models into
a single monolithic model (see Fig. 1 A). Due to the use
of different model coding environments, variable names,
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FIGURE 1 Comparison between the monolithic and CytoSolve approaches in building an integrated model.
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pathway separation methodologies, and solution strategies,
assembly of monolithic models typically requires substantial
rewriting of previously publishedmodels. In this process, the
links to previously published subpaths become difficult to
decipher, and the manual work may be prone to errors, espe-
cially for large networks. The process of including new data
elements to subpath models that more accurately detail
biochemical reaction steps is also nontrivial and often
burdensome. Of most importance scientifically, monolithic
model integration loses much of the history and progression
of pathway determination and development, particularly the
detailed experimental condition on which the original
models and parameters are based (2).

In this article, an alternative approach based on the bind-
ing-expression concept is adapted (see Fig. 1 B) and the
integrated model is viewed as an ontology. Any previously
published subpath model is retained in its entirety, allowing
it to be updated, extracted, replaced, or removed. Subpathway
models are then integrated through bindings that identify
common species in and alterations made to each model due
to their integration. In ourwork, the creation of these bindings
Biophysical Journal 104(10) 2295–2306
has been semiautomated through the use of MIRIAM (3) an-
notations and XML standard formats such as SBML (4) that
support computational parsing and reasoning. In this way,
common species and reaction pathways can be identified
despite variations in nomenclature or number of reactions,
thus lowering the complexity bar for the human curator.
These tools are made publicly available through CytoSolve
(5), a web-accessible interface (http://cytosolve.mit.edu/)
capable of model integration and simulation.

In the case of endothelia-derived NO, many pathway
models governing its production have been previously
established (see Table 1). In this article, we integrate four
of these molecular pathway models (see Fig. 2) that modu-
late the activation of endothelial nitric oxide synthase
(eNOS) by shear stress. Specifically, we focus on the
calcium-stimulated binding of calmodulin to eNOS, AKT-
mediated phosphorylation of eNOS, and upregulation of
eNOS transcription through AP-1 and KLF2. These path-
ways are linked by an additional model describing inter-
action of eNOS with its protein partners. By integrating
these models in CytoSolve, the dynamic regulation and

http://cytosolve.mit.edu/


TABLE 1 List of main mechanisms of shear-stress-regulated eNOS activation

Main mechanisms of shear-stress-regulated eNOS activation

Transcriptional regulation

Key proteins Known pathway Note References Model inclusion

AP-1 Shc / Grb2-Sos / Ras / JNK / AP-1 Transient (17,48) eNOS expression

NFkB Akt / IkK / NFkB Transient (complex) (16,49,50) Not included

KLF2 ? / MEK5 / ERK5 / MEF2 / KLF2 Long term (23) eNOS expression

Posttranslational regulation

Phosphorylation

Key kinases Known pathway Phosphorylation site References Model inclusion

Akt PI3K / AKT Ser-1177 (10) eNOS phosphorylation

PKA ? / [cAMP] / PKA Ser-635 (bovine) (12) Not included

AMPK ? / [AMP] / AMPK Ser-1177 (22) Not included

Protein partners

Key partners Effect on eNOS References Model inclusion

Caveolin-1 Inactivation (51) NO production

CaM Activation, facilitate recruitment of Hsp90 (28,52) Calcium influx, NO production

Hsp90 Activation, facilitate recruitment of Akt (27,53) NO production
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production of NO by eNOS under both shear-stress and
static (no-shear-stress) conditions can be investigated and
tested. This use of the NO model illustrates the potential
of the partitioned model approach and of the CytoSolve
tools, which enable simulation of complex problems
involving many parallel pathways that cannot be readily iso-
lated experimentally.
METHODS

In this section, we discuss the individual well-characterized pathway

models that regulate eNOS and, as a result, NO production. These models

are linked to a new model describing the interactions of eNOS and its bind-

ing partners. The section concludes with a description of the tools used to

bind the individual models together, creating a partitioned NO pathway

model capable of describing the multiple phenomena that regulate NO

production.
Mechanisms of shear-stress-induced NO
production

Several key signaling pathways have been identified that modulate the activ-

ity of eNOS—the primary source of NO production in vascular endothelial

cells. In this section,we introduce three pathwaymodels that alter eNOSacti-

vation or regulate eNOS protein expression. To link these models, an addi-

tional model was constructed that describes the binding of calcium,

calmodulin (CaM), heat-shock protein 90 (Hsp90), eNOS, and phosphory-

lated eNOS, as well as the resulting enzymatic production ofNO. Parameters

of individualmodelswere optimized to fit the experimental observations (de-

tails of themodel schemes, inputs, species, reactions, parameters, and param-

eter optimization steps are described in the Supporting Material).

Shear-stress-induced calcium influx and eNOS activation

In response to increased fluid shear stress, endothelial cells exhibit a tran-

sient increase in cytosolic free calcium (see Fig. 2 A). The influx of calcium

is due to mechanisms such as activation of stress-sensitive calcium channels

and activation of G-protein pathways (6). A calcium channel is directly acti-
vated by fluid shear stress, and this leads to intracellular calcium influx.

G-protein-coupled receptors can also be activated by shear stress (7). Acti-

vated G-protein induces activity of phospholipase C and production of

inositol 1,4,5-trisphosphate (IP3). IP3 binds to its receptor on the surface

of the endoplasmic reticulum and promotes calcium release from this intra-

cellular storage. The increased intracellular Ca2þ then rapidly binds to

CaM, a calcium-binding protein that significantly upregulates the activity

of eNOS. The elevated intracellular calcium level leads to increased cal-

cium export via the sodium-calcium exchanger and reuptake in intracellular

stores, making increase in intracellular Ca2þ a transient (~5-min) event (8).

To describe the calcium dynamics in response to shear stress, a mathe-

matical model published by Wiesner et al. was used (8,9). This model as-

sumes a step change in calcium influx mediated by the stress-sensitive

calcium channel at the onset of shear stress (10 dynes/cm2). The resulting

concentration profile of calcium transient is shown in Fig. 3 A.

Shear-stress-induced AKT and eNOS phosphorylation

In addition to its regulation by calcium-dependent CaM binding, eNOS ac-

tivity can also be regulated by posttranslational modifications, the most

important of these being phosphorylation reactions. Some key phosphory-

lation sites include the activity-inducing serines 1177, 635, and 617, and ac-

tivity inhibitors serine 116 and threonine 495. It is important to note that

phosphorylation of serine 1177 is thought to be a key indicator of eNOS ac-

tivity under shear-stress conditions (10,11). In this model, we focused

solely on the phosphorylation of this particular site. The reaction of serine

1177 phosphorylation is catalyzed by several protein kinases, including

AKT, PKA, and AMPK (1). The mechanism of how shear stress activates

AMPK is still unclear, but shear-stress-induced AKT and PKA activation

has been shown to be phosphoinositide 3-kinase (PI3K)-dependent

(10,12). Phosphorylation of serine 1177 is significantly decreased when

endothelial cells are treated with PI3K inhibitor, Ly294002, or transfected

with dominant-negative AKT (10,13). These data suggest that the PI3K-

AKT pathway plays a critical role in shear-stress-induced eNOS phosphor-

ylation. Based on this experimental observation, it is assumed in our model

that PI3K-dependent AKT activation is the main pathway responsible for

eNOS phosphorylation. PI3K activation leads to production of phosphatidy-

linositol (3–5)-trisphosphate (PIP3). PIP3 then recruits cytosolic free AKT

to the membrane, where it is phosphorylated by both PDK1 and PDK2 (see

Fig. 2 B). Finally, phosphorylated AKT phosphorylates eNOS on serine

1177. It is important to note also that due to the lack of detailed kinetic
Biophysical Journal 104(10) 2295–2306



FIGURE 2 The four models of the shear-stress-induced NO production system. (A) The calcium influx model. (B) The eNOS phosphorylation model.

(C) The eNOS expression model. (D) The NO production model.
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parameters for the phosphorylation reactions for PKA and AMPK on serine

1177 of eNOS, the model focuses only on the AKT-dependent pathway.

The mathematical model used to describe the AKT activation process is

taken from Koh et al. (14), a model originally established to study the cross

talk between AKT and MAPK pathways upon binding of receptors to

growth factors. This model provides a detailed illustration of the PI3K-

AKT pathway, which we assumed to be conserved across different human

cell types. In our model, PI3K activation was assigned to be the input signal

based on a time-dependent function fit from experimental data by Go (15).

Because the mechanism by which shear stress leads to activation of molec-

ular pathways is still poorly understood, time-dependent functions were

used as model inputs throughout the NO system as proxies for the

mechanotransduction process (see Supporting Material for more details

of the generation of time-dependent functions). In this study, laminar shear

stress with a magnitude of 5 dynes/cm2 was used in experiments. In other

works used to generate model inputs for subsequent models, laminar shear

stress or oscillatory shear stress with a mean magnitude of 12 dynes/cm2

was applied. Here, we made a general assumption that eNOS activation

in endothelial cells respond similarly given a shear-stress stimulus in the

range 5–12 dynes/cm2.

Shear-stress-induced eNOS expression

A third mechanism leading to an overall increase in NO production is

upregulation of eNOS expression. Key transcription factors governing
Biophysical Journal 104(10) 2295–2306
shear-stress-induced eNOS promoter activity include AP-1, NFkB, and

KLF2 (11). The role of NFkB on eNOS expression remains controversial,

as recent study indicates that expression of NFkB and eNOS is negatively

correlated under shear stress (16). Therefore, in our model, we focused

on simulating the effects of AP-1 and KLF2 on eNOS transcription

(Fig. 2 C). In this model, it is assumed that there is no interaction between

these two transcription factors and that they have no synergistic effect on

eNOS transcription.

AP-1, a Jun-Jun homodimer or a Jun-Fos heterodimer, is involved in

shear-stress-induced eNOS expression. A qualitative pathway model

describing how shear stress leads to AP-1 nucleus translocation has been es-

tablished previously (17). In the proposed model, shear stress activates the

focal adhesion site and leads to phsophorylation of focal adhesion kinase

(FAK), Src kinase, and the adaptor protein Shc. Activation of these kinases

leads to formation of the first complex, FAK-Shc, then a second complex be-

tween FAK-Shc and Grb2-Sos. The second complex activates Ras protein,

and initiates the MAP kinase cascade through MEKK1, JNKK, and JNK.

JNK phosphorylates Jun and eventually leads to Jun dimer association to

form AP-1, which translocates to nucleus and facilitates eNOS expression.

To quantitatively model the contribution of AP-1 in regulating eNOS

expression, two existing mathematical models were used as the bases.

The first model, excerpted from Hatakeyama et al. (18), describes the acti-

vation pathway from Src, FAK to Ras. However, since the upstream

mechanical activation of Src and FAK molecules is not well understood,

the kinetics of these two molecules (Fig. 3 C) were based on



FIGURE 3 Simulation profiles of model inputs

upon initiation of shear stress. The differential

equations behind these simulation profiles were

calculated based on time-dependent functions fit

from experimental data (see Supporting Material

for a detailed description of how these equations

were generated). (A) Cytosolic Ca2þ. (B) Activated
PI3K. (C) Total activated FAK and activated Src.

(D) KLF2.
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time-dependent experimental measures observed by Li et al. (19) and Jalali

et al. (20). The shear-stress experiments in those two articles used a laminar

shear stress of 12 dynes/cm2. The second model, modified from the Kholo-

denko study (21), illustrates the kinetics of howRas initiates theMAP kinase

cascade. These two models were combined and integrated with reactions

including JNK-mediated Jun phosphorylation/dimerization, AP-1 nuclear

translocation, AP-1-mediated eNOS transcription, eNOS translation, and

eNOSmRNAdegradation. The rates of these reactionswere estimated based

on experimental observation and previously established models. Many pa-

rameters of this model were optimized to fit the experimental observations.

Further details can be found in the Supporting Material.

KLF2, the third transcription factor responsible for eNOS expression, is

characterized as leading to long-term upregulated eNOS transcription.

Compared to the fast and transient nuclear translocation of AP-1 in

response to shear stress, the increase in KLF2 concentration inside the nu-

cleus is relatively slow but sustained (22). The upstream mechanosensors

for KLF2 expression are still poorly understood, but its expression is known

to be dependent on MEK5, ERK5, and MEF2 (23). Due to the limited

amount of experimental data available to construct a complete model,

KLF2 dynamics is simulated based on data from a time-course shear-stress

experiment (1 Hz oscillatory shear stress of 12 5 4 dynes/cm2) by Young

et al. (22) (Fig. 3 D).

Shear-stress-induced NO production

The previously described models establish the concentration profile of cyto-

solic free calcium, phosphorylated eNOS, and total eNOS expression in

response to shear stress. However, to integrate these pathways and under-

stand NO production, one additional model was necessary to characterize

the interactions of eNOS and its binding partners (Fig. 2 D).

The biphasic binding of Ca2þ to CaM is well-documented in the litera-

ture by Bayley et al. (24) and others (25). This has been shown to occur

due to the very rapid dissociation of Ca2þ from the N-ter EF-hand pair

compared to its dissociation from the C-ter EF-hand pair, although some

evidence suggests cooperative binding of Ca2þ to CaM (25). Black et al.

have shown that a number of sequential kinetic models can predict binding

response (26). Based on their results, Ca2þ binding to CaM was modeled

using a four-step process, with two fast and two slow steps. In our model,

we assumed that the fast steps are much faster than the slow steps and that
therefore CaM(Ca2þ)2 and CaM(Ca2þ)4 are the only stable CaM- Ca2þ

forms. Both species were assumed to bind to eNOS.

Besides CaM, another key regulator for eNOS activation under shear

stress is Hsp90. Hsp90 does not bind to eNOS under static conditions,

but significant binding was detected just 15 min after initiation of shear

stress (27). CaM-bound eNOS has been shown to significantly increase

the efficiency of Hsp90 recruitment (28). Studies have also shown that for-

mation of the eNOS-CaM-Hsp90 complex is required for Akt-mediated

eNOS phosphorylation on serine 1177 (29). Once phosphorylated, eNOS

is stable in the active state, with enhanced NO production efficiency, until

the phosphate group is removed. A quantitative model is created based on

this scheme. All rate constants were either derived from existing models or

optimized based on experimental data (see Supporting Material).
Model integration

All individual models were built using CellDesigner 4.1 (http://www.

CellDesigner.org), a visual design tool for cell models and molecular

pathways. Each model was coded in SBML, an XML-based format that

is widely used to encode biomolecular pathways. SBML (4) was selected

due to its open standard, the available programming interface, the

LibSBML library (31), and its wide usage in the molecular modeling com-

munity and model repositories (such as http://www.Biomodels.net (30)).

All models were encoded using the MIRIAM (minimum information re-

quested in annotation of biochemical models) guidelines (3), which

provide a rigorous set of information that mathematical models should

include so that they can be reused.

An attractive feature of the SBML standard, combined with MIRIAM, is

the ability to include the resource description framework (RDF) statements.

These enable the unique identification of biomolecular components across

multiple models irrespective of an individual model’s notation. This is

achieved by labeling elements (i.e., species, reactions, etc.) in external re-

sources (ontologies or databases) that provide a mechanism for identifying

common species and reactions across models. For a generic SBML- and

MIRIAM-compliant model, it is possible to associate RDF statements to

species, to reactions, and to the model itself, providing a means for perform-

ing more advanced processing and model merging. For example, a digital

object identifier number or PubMed article identification provides a unique
Biophysical Journal 104(10) 2295–2306

http://www.CellDesigner.org
http://www.CellDesigner.org
http://www.Biomodels.net


2300 Koo et al.
link to a published article with the model details, and the universal resource

identifier links to elements in the Systems Biology Ontology (32) or

Chemical Entities of Biological Interest ontology (33) provide extensive

information on individual biochemical species used within the model.

Writing each SBMLmodel to be MIRIAM-compliant requires additional

effort, but the RDF annotations enable models to be parsed and merged by a

suitable logical reasoner. For this work, we used the ontology reasoning en-

gine for molecular pathways (OREMP) computational code (34), which can

automatically identify duplicate species across models. Moreover, OREMP

can detect potential redundant reactions or reaction series that are shared

across models. Identification of overlapping reactions is critical, because

a hidden synergistic action of two or more separate mathematical state-

ments of the same reaction leads to erroneous simulation results. The use

of both species and reaction annotations becomes very useful in this

process, as they enable the automatic match of cross-model components,

minimizing user input. Using an ontological approach, the properties of

each model discovered by the OREMP software can be appended to the

description of the submodels, thus archiving these steps for future use.

The duplicate species and reactions between submodels provide the rele-

vant information for model integration. They act as bindings that provide

the map between individual model species and reactions within a single

model and their interactions in the entire merged model. As newer models

become available, they can also be integrated, either augmenting the current

model or replacing redundant paths. This process differs significantly from

the monolithic process, where each individual model is incorporated into a

single model, requiring significantly more user effort.
Solving the model pathway

The partitioned models and their bindings provide the necessary informa-

tion to simulate the global behavior of all interacting models. Models are

aligned using CytoSolve and OREMP in combination, as outlined above,

providing the detected duplicates as an editable list to the user. Once the

bindings between models have been constructed, the user may then set

up the necessary initial conditions, measured experimentally or estimated

from computer optimization, for simulating the molecular pathway.

Simulation is handled using libSBML to parse the original SBML models
Biophysical Journal 104(10) 2295–2306
and SOSLib with SUNDIALS (35) to compute the evolution of submodels

through time. CytoSolve solves the joint model not as a monolithic model

but as a separated system of models. The merging of concentrations of

individual model species is handled via a mass-balance controller, which

ensures both that aligned bound species maintain the same concentration

throughout the simulation and that the time steps taken are small enough

to guarantee convergence of the separable solution to the true (monolithic)

solution (see Ayyadurai and Dewey (5) and Nordsletten et al. (36) for

further details).
RESULTS

A simulation of the integrated shear-stress-
induced NO production model

When endothelial cells are exposed to shear stress, one of
the first events is influx of calcium from extracellular space
and intracellular storage. Fig. 3 A illustrates the concentra-
tion profile of intracellular calcium governed by the calcium
influx model. The calcium level increases within the first
3 min after onset of shear stress; this transient response lasts
for 10 min and quickly goes back to the resting-state level.

Another early event observed after onset of shear stress is
activation of PI3K. The concentration profile (Fig. 3 B) of
PI3K is simulated based on a time-dependent function gener-
ated from experimental data. Activation of PI3K is short and
transient, but accumulation of PIP3 results in downstream
Akt phosphorylation (Fig. 4 A). This result is consistent
with experimental observations, where fully active AKT rea-
ches the peak level within 30 min after onset of shear stress
and gradually decays back to the initial state in hours (12,37).

A third early event after initiation of shear stress is acti-
vation of the focal adhesion complex, including
FIGURE 4 Simulation profiles of intermediate

species upon initiation of shear stress. (A) Phos-

phorylated Akt (pp-Akt). (B) Ras/GTP. (C) Acti-

vated MAP kinase pathway species (p-MEKK1,

pp-JNKK, and pp-JNK). (D) Activated AP-1.
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phosphorylation of both focal adhesion kinase (FAK) and
Src kinase (Fig. 3 C). Phosphorylation of the two proteins
leads to downstream activation of Ras (Fig. 4 B) and the
MAP kinase pathway proteins (Fig. 4 C) and subsequent
AP-1 formation and nuclear translocation (Fig. 4 D). This
process is transient, with a time span of a few hours, and
is responsible for the fast-responding upregulation of
eNOS mRNA and proteins after the cells experience a
change in hemodynamic environment. Besides AP-1, the
concentration profile for KLF2, another important transcrip-
tion factor for eNOS, is shown in Fig. 3 D. KLF2 is respon-
sible for long-term upregulation of eNOS mRNA and
protein.

The above data describe the simulation results of individ-
ual pathways. These pathways interact with each other to
control the dynamics of various eNOS species. Under the
static (no-shear-stress) condition, eNOS primarily binds to
Cav-1. After the onset of shear stress, calcium is transported
to the cell and bound to CaM. Four calcium ions bind to
each CaM to make the active form of CaM, which associates
with eNOS to enhance its catalytic activity to produce
NO (Fig. 5 A). In the meantime, the CaM-eNOS complex
recruits Hsp90, which stabilizes the complex and facilitates
Akt-mediated eNOS phosphorylation. The simulated con-
centration profile of eNOS phosphorylated on Ser-1177
(Fig. 5 B) is consistent with existing experimental observa-
tions (12) and depicts a biphasic pattern. In the first 10 min,
when the phosphorylated Akt (enzyme) concentration is low
but the CaM-eNOS-Hsp90 (substrate) concentration is high,
there is rapid eNOS phosphorylation due to high substrate
concentration. From 10 to 40 min, even though the substrate
availability becomes low due to lower calcium concentra-
tion, the phosphorylated eNOS level stays high as a result
of increasing phosphorylated Akt.

To maintain long-term NO production, a third mechanism
employed by cells is increasing eNOS protein expression.
Fig. 5, C and D, demonstrates the increase in eNOS
mRNA and protein as catalyzed by the two transcription
factors AP-1 and KLF2. The simulated expression of
eNOS mRNA and protein under shear stress is shown with
the experimental data from our lab and that of Li et al.
(38), respectively. The concentration profile of eNOS
mRNA also reveals a biphasic pattern as a result of early
transcription by AP-1 and later transcription by KLF2.
This biphasic effect is smoothed out after the eNOS transla-
tion process (Fig. 5 D).

Finally, the total NO production from eNOS is simulated
under both static and shear-stress conditions. Fig. 6 shows
the accumulated NO production over time from the inte-
grated model. We used relative units for NO, since its
experimentally observed concentration varies depending
on the cell confluency and media volume of individual
experimental setup. The simulated NO production profile
resembles the experimental data measured by Florian
et al. (39). Under static conditions, there is low NO produc-
tion from background level of CaM-activated eNOS and
phosphorylated eNOS. Under the shear-stress condition,
calcium influx in the first few minutes leads to a quick burst
FIGURE 5 Simulation profiles of eNOS species.

(A) Total Ca2þ/CaM-activated eNOS. (B) Total

phosphorylated eNOS (Ser-1177). The simulated

data are compared with experimental observations

from Boo et al. (12). (C) eNOS mRNA. The simu-

lated data are compared with our experimental ob-

servations. (D) Total eNOS protein. The simulated

data are compared with experimental observations

from Li et al. (38).

Biophysical Journal 104(10) 2295–2306



FIGURE 6 Comparison of the simulation results regarding cumulative

NO production with experimental data (39) under static (no-shear-stress)

and shear-stress conditions.
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of NO production from CaM-activated eNOS. As calcium
goes back to the basal level, phosphorylated eNOS kicks
in to support NO production in the first few hours. The effect
Biophysical Journal 104(10) 2295–2306
of eNOS expression does not come in until a few hours later
(described in more detail in the next section).
The model integration approach provides insight
into the system that could not be easily gathered
experimentally

Having established a system model that allows us to simu-
late shear-stress-induced NO production comparable to
that observed experimentally, we next explored several
aspects of the system that can be simulated easily but
are difficult to test experimentally. First, we analyzed the
contribution of individual pathways to the overall NO
production. The integrated modeling approach allows inves-
tigation of the relative importance of individual pathways
instantaneously. Fig. 7 A demonstrates the cumulative
NO production contributed by different eNOS species.
The data show that almost all of the NO produced in the first
10 min comes from Ca2þ/CaM-activated eNOS, with later
production of NO mostly contributed by phosphorylated
eNOS. In contrast, the NO produced by the intermediate
species, Ca2þ/CaM-activated phosphorylated eNOS, is not
significant.
FIGURE 7 The integrated model allows us to

easily assess the contribution of individual eNOS

species or simulate the condition where one

pathway is modified. (A) Contribution of NO pro-

duction by different eNOS species. (B) eNOS

protein expression with individual transcription-

factor activation silenced. Concentrations of the

specific transcription factor are fixed at the static

level. (C) Normalized concentration of total phos-

phorylated eNOS with addition of Akt siRNA (left)

or dominant-negative Akt (right) 1 h after onset of

shear stress. In the Akt siRNA simulation, total Akt

concentration was reduced based on the specific

silencing efficiency. In the dominant-negative Akt

(DN-Akt) simulation, DN-Akt follows the exact

kinetics of wild-type Akt except that it loses its

catalytic ability to phosphorylate eNOS. The

amount of wild-type Akt remains constant,

whereas the amount of DN-Akt is 1�, 2�, 5�,

and 10� the amount of wild-type Akt.
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Second, we simulate the small-interfering RNA (siRNA)
gene-silencing approaches by selectively silencing shear-
stress-induced activation of individual pathways. This
process can be easily illustrated by removing or modifying
species in the system, giving reasonable predictions while
saving tremendous resources. In the NO system, we assess
the effect of modifying individual pathways on overall NO
production. To research how an individual transcription
factor affects overall eNOS protein expression, AP-1 and
KLF2 activation were blocked (Fig. 7 B). Blocking AP-1
activation yields a delayed response in eNOS expression
under shear stress, whereas blocking KLF2 activation leads
to no shear-stress-induced eNOS expression after 24 h.

Finally, we attempt to predict the effect of transfecting
endothelial cells with Akt siRNA or dominant-negative
Akt on eNOS phosphorylation (Fig. 7 C) under 1 h of shear
stress. Our simulation data suggest that the relationship
between silencing efficiency and the resulting decrease in
eNOS phosphorylation is not linear. An Akt knockdown
efficiency of 25% has little effect on eNOS phosphorya-
tion, a 50% efficiency still retains >60% of phosphorylated
eNOS; it is not until a 75% silencing efficiency is achieved
that we observe <40% eNOS phosphorylation. A similar
effect of decreasing eNOS phosphorylation can be
achieved with an alternative approach. Fisslthaler et al.
have demonstrated that transfecting the cells with domi-
nant-negative Akt (DN-Akt) decreases shear-stress-induced
eNOS phosphorylation (13). Here, we simulate the condi-
tion in which there are various amounts of DN-Akt (1�,
2�, 5�, and 10� relative to wild-type) in the system in
addition to wild-type eNOS. DN-Akt competes with the
wild-type Akt for the binding site on the plasma membrane
and significantly reduces shear-stress-activated eNOS
phosphorylation.

It is important to note that when a known pathway is
knocked down, which, for a given pathway, would yield
no shear-stress-induced NO production, the integrated
model shows robustness to the knockdown of that specific
pathway (e.g., Akt) but fails to take into account alternative
ones (e.g., PKA, AMPK). This result emphasizes the impor-
tance of systems biology for achieving a quantitative under-
standing of macroscopic cellular response processes, as well
as the power of such analyses for more comprehensive
pathway assessment. However, this result also highlights a
major limitation of the approach, which is the absolute
dependence of previously reported and characterized data
on defined signaling pathways that can be incorporated
into a model (e.g., Akt versus PKA versus AMPK).
DISCUSSION

The power of automatic model integration

Quantitative modeling of molecular pathways provides a
powerful tool for simulating and predicting function.
With more and more comprehensive experimental data,
it is rapidly becoming possible to construct more com-
plete models of molecular pathways. A major bottleneck
in this process, however, is the current model paradigm
where models are manually integrated into a single com-
plex model, obscuring the link to previously published
pathways. In this article, we introduced an alternative
model-binding approach in which individual models are
written and retained as is standard in MIRIAM-compliant
SBML format. The alterations, duplicate species, and
duplicate reactions are then detailed within the model
bindings, providing clarity on how past models are incor-
porated into the current model. The tools for this merger
process, as well as the simulation of merged models,
have been made available, as part of our continued work,
by CytoSolve.

In this study, we considered four primary pathways that
govern the activation and transcription/translation of
eNOS, the NO catalyst. All these paths have been shown
to work in tandem to govern the transient NO response
of cells to shear stress. Indeed, we show that the NO
response consists of three primary phases that act on vary-
ing timescales. The transient response is thus governed by
the ensemble of molecular pathways and cannot be accu-
rately modeled by considering any component individually.
In addition to illustrating the need for model integration,
the introduced pathways demonstrate the power of the
model-binding approach. As the system is composed of
individual models, additional pathway models based on
new experimental data can be quickly incorporated into
the system without rewriting the existing model. It also
allows us to easily investigate the relative contribution of
each pathway and conduct in silico experiments as demon-
strated in Fig. 7.

Utilizing MIRIAM standards and references to web-
accessible ontologies, this study also introduced an
approach for automating model integration. This strategy
is the opposite of the monolithic approach in which many
models are manually assembled to compose a single new
model that is more difficult to further edit, generally result-
ing in valued work with limited reusability. In contrast to
this approach, the partitioned approach introduced in this
work provides an additive model-creation paradigm, where
previous knowledge, data, and effort can easily be managed,
curated, and used by the wider scientific community. This
is accomplished by the model-binding approach, where in-
dividual models retain their original identity. The bindings
between individual models provide the necessary interface
for both defining how an original model is used and altered,
preserving the original model and its lineage and making the
modeling process more straightforward. In addition, the
integration of models via the partitioned approach makes
much more straightforward the process of updating the
model while at the same time preserving the extant bindings
and models.
Biophysical Journal 104(10) 2295–2306
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Limitations in shear-stress-induced NO pathway
modeling

In this article, we collect the relevant pathways, species, and
reactions to reflect the state-of-the-art understanding of NO
production. Although the NO system provides a quantitative
link between shear stress and NO production through
activation and transcription pathways that match well with
published experimental data, further work is required to
improve and enhance the model. Due to limitations in
available data, some model components were based on
experiments using different endothelial cell types, as well
as different experimental conditions (variations in culture
conditions and mechanisms for applying shear). Although
these issues are not unique to this model, but are common
to a number of cellular models, they warrant further exper-
imental investigation and validation. These weaknesses can
be annotated in the model and made transparent for future
improvement. Despite these limitations, the model does
demonstrate the general dynamics of multiple pathways
acting in concert to upregulate NO production.

To further improve the integrated NO model, incorpora-
tion of other mechanotransduction pathways is necessary.
For example, the endothelial glycocalyx has been shown
to be an important mechanosensor for shear-stress-induced
NO production. Treating the endothelial surface with
heparanase to remove heparan sulfate, one major glycos-
aminoglycan of the glycocalyx layer, significantly reduces
NO production resulting from shear stress (39,40). The
specific signaling pathways that trigger the models used
here are still not known. Moreover, we have used a simple
heuristic model based on experimental data to represent
the upregulation of KLF2 by shear stress. KLF2, a key
regulator for eNOS expression, is also a shear-responding
transcription factor leading to antiinflammatory and antith-
rombotic phenotypes (41). KLF2 expression is known to
follow the MEK5-ERK5-MEF2 pathway, but the mechano-
sensors that lead to the activation of this pathway are still
unclear (23). These additions are currently limited by
incomplete knowledge of pathway mechanisms and lack
of critical kinetic data. However, the current integrated
model creates a platform to identify deficiencies in our
current understanding, provide more suitable parameters,
and embed additional pathways or information in an
additive way. This process acts as a communal way of
documenting what is understood about cellular mechanisms
of NO production in endothelial cells.
Future model integration tools and development

This article outlines the use of CytoSolve in facilitating
model integration. Although this tool automates the model
integration process with minimal input from the user, further
development could dramatically improve the effectiveness
of the integration process, store relevant changes at various
Biophysical Journal 104(10) 2295–2306
stages in development, and provide tools for incorporating
input from the wider scientific community.

One of the major aims of this work was to demonstrate
that the combination of separate biological models to
generate a new, larger predictive model is difficult but
becomes tractable with the right tools. Because a model
that exists completely independently of other models is
of limited use to the research community, it behooves the
community to define processes by which existing and new
models can be augmented, combined, and increased in
complexity so that existing work is properly assimilated.

It is also important to recognize that different models
have different aims and often operate at different timescales,
spatial scales, and initial conditions; most of the models
have species exchanges on the order of mM/min or nM/min,
but this is not universally suitable for every objective.
Because SBML makes it possible to define arbitrary units
by composing IS units, it is among CytoSolve’s goals
to resolve and normalize differing units in a transparent
manner. A new algorithm will extend the current mass-
balance, introducing a unit-conversion routine that will be
called at run time, keeping the merged solution independent
of any individual model’s representation.

Another future addition will be the extension of the actual
cross-model information-sharing process to show users
other reactions that may be of interest to them. This will
provide an autocompletion for models to include reactions
seen in other models. The goal of this functionality is to
accelerate the information-sharing and model-composition
process even more: building models on top of others,
reducing unnecessary duplicates, and informing researchers
of known existing pathways that may be relevant to their
study.
CONCLUSION

In this study, we simulated the process of shear-stress-
induced NO production in endothelial cells by combining
a number of existing published pathway models to describe
and predict the complex interactions that occur between
them at multiple timescales. The program we used, Cyto-
Solve, is specifically designed to facilitate the federation
of individual biological pathways in a manner that allows
them to run as a combined monolithic model without losing
their individuality and the metadata attached to them. The
integrated model reflects the state-of-the-art understanding
of the NO system, and the simulation data are able to
describe experimental observations resulting from complex
interactions between multiple pathways. The system-level
simulation approach can also provide researchers with
useful insights into the system that have traditionally only
been achieved with challenging and time-consuming ex-
periments. It is important to note that this approach to
biological pathway integration is not only helpful for our
understanding of biological system, but it also provides a
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platform to aggregate information in an additive way, which
eventually could allow us to predict biology.
SUPPORTING MATERIAL
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SUPPORTING MATERIAL 
 
 
Model Reactions and Parameters 
 
Model 1: Shear-stress-induced calcium influx 
 
Model Diagram (Figure legends at the end of appendix): 

 
List of species: 
 
Species Name Initial Amount Ref. 
Ca2+ (b) Calcium complexed to intracellular 

binding proteins 
3870 nM (1) 

Ca2+ (ex) Extracellular calcium 1.5 * 106 nM (1) 
Ca2+ (s) Calcium in intracellular storage 2.83 * 106 nM (1) 
Ca2+ (c) Cytosolic calcium 117.2 nM Steady state value for the integrated 

model under “no flow” condition 
IP3 Inositol 1,4,5-triphosphate 0 nM (1) 
 
 
 
 
 



	 2

List of reactions: 
 
# Description Rate equation Ref. 
1 [Ca2+ (b)]  [Ca2+ (c)] k7[Ca2 (b)]  k6[Ca2 (c)] (BT  [Ca2 (b)])  (1) 
2 [Ca2+ (ex)]  [Ca2+ (s)] 

kCCE  (
fracK Ca0

2

K3Ca0
2  [Ca2(s)]) ([Ca2(ex)] [Ca2(s)])  (1) 

3   [IP3] 
k1 (RT 

RT

2
 (e t / I  e t / II ) 

I  II

I II









 (e t / I  e t / II ))  

[Ca2(c)]

K1  [Ca2(c)]









 

(1) 

4 [IP3]   k2[IP3] (1) 
5 [Ca2+ (s)]  [Ca2+ (c)] 

k3

kCICR[Ca2(c)]

KCICR [Ca2(c)]


[IP3]

K2 [IP3]











3

 [Ca2(s)] 

k4

[Ca2(c)]

K3 [Ca2(c)]











2

 k5 [Ca2(s)] 2  

(1) 

6 [Ca2+ (c)]  [Ca2+ (ex)] 
V


ex
[Ca2(c)]

K5  [Ca2(c)]
 (1) 

7 [Ca2+ (c)]  [Ca2+ (ex)] 
V


p

[Ca2(c)] 2

K4
2  [Ca2(c)] 2

V


hi

[Ca2(c)] 4

Khi
4  [Ca2(c)] 4

 
(1) 

8 [Ca2+ (ex)]  [Ca2+ (c)] Q


shear 
(2) 

 
List of parameters: 
 
 Units Ref. Ref. value Model value 
RT # / cell (1) 4.4 * 104 4.4 * 104 
k1 nM  s-1 (1)	 1.2 * 10-3 6.0 * 10-4 
k2 s-1 (1)	 2 1  
k3 s-1 (1)	 6.64 3.32 
k4 nM  s-1 (1)	 5000 2500 
k5 nM-1  s-1 (1)	 1.0 * 10-10 5.0 * 10-11 
k6 nM-1  s-1 (1)	 0.1 0.05 
k7 s-1 (1)	 300 150 
K1 nM (1)	 0 0 
K2 nM (1)	 200 200 
K3 nM (1)	 150 150 
K4 nM (1)	 80 80 
K5 nM (1)	 321 321 
Khi nM (1)	 380 380 
kCICR dimensionless (1)	 1 1 
KCICR nM (1)	 0 0 
kCCE nM-1  s-1 (1)	 0 0 
BT nM (1)	 1.2 * 105 1.2 * 105 
Ca0

2  nM (1)	 100 100 

Q


shear 
nM-1  s-1 (2), based on 10 dynes/cm2 6000 3000 

V


p  nM-1  s-1 (1)	 1630 815 

V


ex  nM-1  s-1 (1)	 18330 9165 

V


hi nM-1  s-1 (1)	 4760 2380 
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I  s (1)	 33 66 
II  s (1)	 0.005 0.01 
fracK dimensionless (1)	 7.1 * 106 7.1 * 106 
 
 
References for model 1: 
(1, 2) 
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Model 2: Shear-stress-induced AKT phosphorylation 
 
Model Diagram: 

 
List of species: 
 
Species Name *Initial Amount Ref. 
PI3K PI 3-kinases 99.97 nM Total PI3K concentration 100 nM (3) 
p-PI3K Phosphorylated PI 3-kinases 0.03 nM --- 
PIP2 Phosphatidylinositol-4,5-

biphosphate 
6967.27 nM Total PIP2 concentration 7000 nM 

(3) 
PI3P Phosphatidylinositol-3,4,5-

triphosphate 
0.35 nM --- 

PTEN Phosphatase and tensin 
homolog 

0.1 nM Constant (3) 

Akt Akt, or Protein Kinase B 167.62 nM Total Akt concentration 200 nM (3) 
Akt: PI3P Membrane bound Akt 29.2 nM --- 
p-Akt:PI3P Monophosphorylated Akt 1.46 nM --- 
pp-Akt:PI3P Biphosphorylated Akt 1.72 nM --- 
PDK1 (cyto) Cytosolic phosphoinositide-

dependent kinase-1 
999.75 nM Total PDK1 concentration 1000 nM 

(3) 
PDK1 Phosphoinositide-dependent 

kinase-1 
0.25 nM --- 

PDK2 Phosphoinositide-dependent 
kinase-2 

3 nM Constant (3) 

PP2A Protein phosphatase 2 150 nM Constant (3) 
* Initial amounts were obtained by simulating the model under “no flow” condition, with the 
reference value as initial concentrations, for a sufficient amount of time to reach steady state. 
 
List of reactions: 
 
# Description Rate equation Ref. 
*1 [PI3K]  [p-PI3K] 

exp(1
t

15









1.8

) 0.907 t 0.8  (1
t

15









1.8

)  
(4) 

2 [PIP2]  [PI3P] k2

[p  PI3K][PIP2]

Km2  [PIP2]
 (3) 

3 [PI3P]  [PIP2] k3

[PTEN][PI3P]

Km3  [PI3P]
 (3)

4 [Akt] + [PI3P]  [Akt:PI3P] k4[PI3P][Akt] kr4[Akt : PI3P] (3)
5 [PDK1 (cyto)]  [PDK1] k5[PI3P][PDK1] (3)
6 [PDK1]  [PDK1 (cyto)] k6[PDK1] (3)
7 [p-Akt:PI3P]  [Akt:PI3P] k7

[PP2A][p  Akt : PI3P]

Km7  [p  Akt : PI3P]
 (3)
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8 [Akt:PI3P]  [p-Akt:PI3P] k8

[PDK1][Akt : PI3P]

Km8  [Akt : PI3P]
 (3)

9 [pp-Akt:PI3P]  [p-Akt:PI3P] k9

[PP2A][pp  Akt : PI3P]

Km9  [pp  Akt : PI3P]
 (3)

10 [p-Akt:PI3P]  [pp-Akt:PI3P] k10

[PDK2][Akt : PI3P]

Km10  [Akt : PI3P]
 (3)

11 [pp-Akt:PI3P]  [Akt] + [PI3P] k11

[PP2A][pp  Akt : PI3P]

Km11  [pp  Akt : PI3P]
 (3)

* Time-dependent function describing PI3K activation was generated from the experimental data in 
[4]. The shear stress waveform used in this paper is a laminar flow of 5 dynes/cm2. 
 
 
List of parameters: 
 
 Units Ref. Ref. value Model value 
k2 s-1 (3)	 0.05 0.2 
Km2 nM (3)	 6170 6170 
k3 s-1 (3)	 5.5 7.5 
Km3 nM (3)	 80.9 80.9 
k4 nM-1  s-1 (3)	 0.045 0.045 
kr4 s-1 (3)	 0.089 0.089 
k5 nM-1  s-1 (3)	 0.0007 0.0007 
k6 s-1 (3)	 0.98 0.98 
k7 s-1 (3)	 0.037 0.037 
Km7 nM (3)	 8800 8800 
k8 s-1 (3)	 20 20 
Km8 nM (3)	 80000 80000 
k9 s-1 (3)	 0.04 0.04 
Km9 nM (3)	 48000 48000 
k10 s-1 (3)	 20 20 
Km10 nM (3)	 80000 80000 
k11 s-1 (3)	 0.163 0.163 
Km11 nM (3)	 48000 48000 

	
 
References for model 2: 
(3, 4) 
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Model 3: Shear-stress-induced eNOS expression 
 
Model Diagram: 

 
List of species: 
 
Species Name *Initial 

Amount 
Ref. 

FAK Focal adhesion kinase 57 nM Total FAK concentration 80 nM (7) 
p-FAK Phosphorylated FAK 0.605 nM --- 
Src Src kinase 72 nM Total Src concentration 90 nM (7) 
p-Src Phosphorylated Src 18 nM --- 
Shc Shc adaptor protein 819.25 nM Total Shc concentration 1000 nM (8) 
p-FAK:Shc Protein complex 0.857 nM --- 
p-FAK:p-Shc Protein complex 15.962 nM --- 
Grb2:Sos Grb2:Sos adaptor protein 3.23 nM Total Grb2:Sos concentration 10 nM (8) 
p-FAK:p-
Shc:Grb2:Sos 

Protein complex 5.577 nM --- 

p-Shc:Grb2:Sos Protein complex 1.193 nM --- 
p-Shc Phosphorylated Shc 157.162 nM --- 
Ras:GDP Ras protein (GDP state) 119.384 nM Total Ras concentration 120 nM (8) 
Ras:GTP Ras protein (GTP state) 0.616 nM --- 
MEKK1 MEKK1 kinase 98.514 nM Total MEKK1 concentration 100 nM 

(10) 
p-MEKK1 Phosphorylated MEKK1 1.486 nM --- 
JNKK JNK-activated kinase 299.706 nM Total JNKK concentration 300 nM (10) 
p-JNKK Monophosphorylated JNKK 0.288 nM --- 
pp-JNKK Biphosphorylated JNKK 0.006 nM --- 
JNK c-Jun N-terminal kinases 299.997 nM Total JNK concentration 300 nM (10) 
p-JNK Monophosphorylated JNK 0.003 nM --- 
pp-JNK Biphosphorylated JNK 0 nM --- 
eNOS 
(mRNAn) 

Nuclear eNOS mRNA 0.09 nM Estimate 

eNOS 
(mRNAc) 

Cytosolic eNOS mRNA 3.214 nM Estimate 

eNOS: Cav-1 eNOS (inactive due to Cav-
1 binding) 

34.98 nM See model 4 
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AP-1 (inactive) Activator Protein-1 
(inactive) 

50 nM Total AP-1 concentration 50 nM 
(estimate) 

AP-1 (active) Activator Protein-1 (active) 0 nM --- 
KLF2 (protein) Krueppel-like factor 2 10 nM Estimate 
* Initial amounts were obtained by simulating the model under “no flow” condition, with the 
reference value as initial concentrations, for a sufficient amount of time to reach steady state. 
	
List of reactions: 
 
# Description Rate equation Ref. 
*1 [FAK]  [p-FAK]  

 

(5) 

*2 [Src]  [p-Src] 
exp(1

t

540









1.3

) 0.026 t 0.3  (1
t

540









1.3

)  
(6) 

3 [p-FAK] + [Shc]  [p-
FAK:Shc] 

k3[p FAK][Shc] kr3[p FAK : Shc] (8) 

4 [p-FAK:Shc]  [p-FAK:p-
Shc] 

k4[p  Src][p FAK : Shc] kr4[p FAK : p  Shc] (7, 8) 

5 [p-FAK:Shc] + [Grb2:Sos]  
[p-FAK:Shc:Grb2:Sos] 

k5[p FAK : Shc][Grb2 : Sos] 
kr5[p FAK : p  Shc :Grb2 : Sos] 

(8)

6 [p-FAK:p-Shc:Grb2:Sos]  
[p-FAK] + [p-Shc:Grb2:Sos] 

k6[p FAK : p  Shc :Grb2 : Sos] 
kr6[p FAK][p  Shc :Grb2 : Sos] 

(8)

7 [p-Shc:Grb2:Sos]  [p-Shc] + 
[Grb2:Sos] 

k7[p  Shc :Grb2 : Sos] (8)

8 [p-Shc]  [Shc] V8[p  Shc]

Km8  [p  Shc]
 (8)

9 [Ras:GDP]  [Ras:GTP] k9

[p  Shc : Grb2 : Sos][Ras : GTP]

Km9  [Ras : GTP]
 (8)

10 [Ras:GTP]  [Ras:GDP] V10[Ras : GTP]

Km10 [Ras : GTP]
 (8)

11 [MEKK1]  [p-MEKK1] k11

[Ras : GTP][MEKK1]

Km11  [MEKK1]
 (10) 

12 [p-MEKK1]  [MEKK1] V12[p  MEKK1]

Km12  [p  MEKK1]
 (10)

13 [JNKK]  [p-JNKK] k13

[p  MEKK1][JNKK]

Km13  [JNKK]
 (10)

14 [p-JNKK]  [JNKK] V14[p  JNKK]

Km14  [p  JNKK]
 (10)

15 [p-JNKK]  [pp-JNKK] k15

[p  MEKK1][p  JNKK]

Km15  [p  JNKK]
 (10)

16 [pp-JNKK]  [p-JNKK] V16[pp  JNKK]

Km16  [pp  JNKK]
 (10)

17 [JNK]  [p-JNK] k17

[pp  JNKK][JNK]

Km17  [JNK]
 (10)

18 [p-JNK]  [JNK] V18[p  JNK]

Km18 [p  JNK]
 (10)

19 [p-JNK]  [pp-JNK] k19

[pp  JNKK][p  JNK]

Km19  [p  JNK]
 (10)

exp(1 
t

60









0.35

) 4 t 0.65  (1 
t

60









0.35

)
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20 [pp-JNK]  [p-JNK] V20[pp  JNK]

Km20 [pp  JNK]
 (10)

21 [AP-1 (inactive)]  [AP-1 
(active)] k21

[pp JNK][AP 1(inactive)]

Km21 [AP 1(inactive)]
 

Assum. 

22 [AP-1 (active)]  [AP-1 
(inactive)] 

V22[AP 1(active)]

Km22 [AP 1(active)]
 

Assum. 

*23   [KLF2] exp(0.55 5  t
3600 ) /(3600 29.256)

(12 exp(0.55 5  t
3600 ) exp(1.1 5  t

3600 ))
 

(12) 

24   [eNOS (mRNAn)] k24t1[AP1(active)] k24t2[KLF2] Assum. 
25 [eNOS (mRNAn)]  [eNOS 

(mRNAc)] 
k25[eNOSmRNAn] (9) 

26 [eNOS (mRNAc)]   k26[eNOSmRNAc] (11) 
27   [eNOS:Cav-1] V27[eNOSmRNAc]

Km27  [eNOSmRNAc]
 Assum. 

* Time-dependent functions describing FAK, Src activation, and KLF2 expression were generated 
from the experimental data in (5, 6, 12). The shear stress waveform used in (5, 6) is a laminar flow of 
12 dynes/cm2, the shear stress waveform used in (12) is an oscillatory (1 Hz) flow of 124 dynes/cm2. 
	
List of parameters: 
 
 Units Ref. Ref. value Model value 
k3 nM-1  s-1 (8) 0.1 0.1 
kr3 s-1 (8) 1.0 1.0 
k4 nM-1  s-1 (7) 8.33 8.33 
kr4 s-1 (8)	 5.0 5.0 
k5 nM-1  s-1 (8)	 60 60 
kr5 s-1 (8)	 546 546 
k6 s-1 (8)	 2040 2040 
kr6 nM-1  s-1 (8)	 15700 15700 
k7 s-1 (8)	 40.8 40.8 
V8 nM s-1 (8)	 0.0154 154 
Km8 nM (8)	 340 340 
k9 s-1 (8)	 0.222 0.222 
Km9 nM (8)	 0.181 0.181 
V10 nM s-1 (8)	 0.289 0.289 
Km10 nM (8)	 0.0571 0.0571 
k11 s-1 Estimated from (10) --- 0.035 
Km11 nM (10) 10 10 
V12 nM s-1 (10)	 0.25 0.125 
Km12 nM (10)	 8.0 8.0 
k13 s-1 (10)	 0.025 0.005 
Km13 nM (10)	 15.0 15.0 
V14 nM s-1 (10)	 0.75 0.375 
Km14 nM (10)	 15.0 15.0 
k15 s-1 (10)	 0.025 0.005 
Km15 nM (10)	 15.0 15.0 
V16 nM s-1 (10)	 0.75 0.375 
Km16 nM (10)	 15.0 15.0 
k17 s-1 (10)	 0.025 0.002 
Km17 nM (10)	 15.0 30.0 
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V18 nM s-1 (10)	 0.5 0.05 
Km18 nM (10)	 15.0 15.0 
k19 s-1 (10)	 0.025 0.002 
Km19 nM (10)	 15.0 30.0 
V20 nM s-1 (10)	 0.5 0.05 
Km20 nM (10)	 15.0 15.0 
k21 s-1 Estimated from fitting exp. data --- 4.0 * 10-5 
Km21 nM Estimated from fitting exp. data --- 25.0 
V22 nM s-1 Estimated from fitting exp. data --- 0.002 
Km22 nM Estimated from fitting exp. data --- 5 
k24t1 s-1 Estimated from fitting exp. data --- 1.2 * 10-4 
k24t2 s-1 Estimated from fitting exp. data --- 9.0 * 10-6 
k25 s-1 (9) 0.001 0.001 
k26 s-1 Estimated from (11) 1.1 * 10-5 2.8 * 10-5 
V27 nM s-1 Estimated from fitting exp. data --- 0.02824 
Km27 nM Estimated from fitting exp. data --- 16 

	
	
References for model 3:  
(5-12) 
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Model 4: Shear-stress-induced NO production 
 
Model Diagram: 

 
List of species: 
 
Species Name *Initial 

Amount 
Ref. 

Ca2+ (c) Cytosolic calcium 117.2 nM See Model 1 
pp-Akt:PI3P Biphosphorylated Akt 1.72 nM See Model 2 
CaM Calmodulin 7635.36 nM Total CaM concentration 8000 nM 

(estimate) 
CaM:2Ca2+ 2 calcium bound calmodulin 347.52 nM --- 
CaM:4Ca2+ 4 calcium bound calmodulin 2.83 nM --- 
eNOS: Cav-1 eNOS (inactive due to Cav-1 

binding) 
34.98 nM Total eNOS concentration 50 nM 

(estimate) 
eNOS:CaM:2Ca2+ eNOS protein complex 2.12 nM --- 
eNOS:CaM:4Ca2+ eNOS protein complex with 

calcium/calmodulin-induced 
activation 

0.04 nM --- 

Hsp90 Heat shock protein 90 199987 nM Total Hsp90 concentration 200000 nM 
(estimate) 

Hsp90:eNOS: 
CaM:2Ca2+ 

eNOS protein complex 10.98 nM --- 

Hsp90:p-eNOS: 
CaM:2Ca2+ 

Phosphorylated eNOS 
protein complex 

0.11 nM --- 

Hsp90:eNOS: 
CaM:4Ca2+ 

eNOS protein complex with 
calcium/calmodulin-induced 
activation 

1.04 nM --- 

Hsp90:p-eNOS: 
CaM:4Ca2+ 

Phosphorylated eNOS 
protein complex with 
calcium/calmodulin-induced 
activation 

0.01 nM --- 

Hsp90:eNOS eNOS protein complex 0.08 nM --- 
Hsp90:p-eNOS Phosphorylated eNOS 

protein complex 
0.64 nM --- 

NO Nitric Oxide 0 (relative --- 
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scale) 
* Initial amounts were obtained by simulating the model under “no flow” condition, with the 
reference value as initial concentrations, for a sufficient amount of time to reach steady state. 
 
List of reactions: 
 
# Description Rate equation *Ref. 
1 [CaM]  [CaM:2Ca2+] k1 [CaM][Ca2] k1r  [CaM : 2Ca2] Assum. 
2 [CaM:2Ca2+]  [CaM:4Ca2+] k2  [CaM : 2Ca2][Ca2] k2r  [CaM : 4Ca2] Assum. 
3 [CaM:2Ca2+] + [eNOS:Cav-1]  

[eNOS:CaM:2Ca2+] 
k3 [CaM : 2Ca2][eNOS : Cav 1]
k3r  [eNOS : CaM : 2Ca2]

Assum. 

4 [CaM:4Ca2+] + [eNOS:Cav-1]  
[eNOS:CaM:4Ca2+] 

k4  [CaM : 4Ca2][eNOS : Cav 1] Assum. 

5 [eNOS:CaM:4Ca2+]  
[eNOS:CaM:2Ca2+] 

k5 [eNOS : CaM : 4Ca2]  
k5r  [eNOS : CaM : 2Ca2][Ca2] 

Assum. 

6 [eNOS:CaM:4Ca2+] + [Hsp90] 
 [Hsp90:eNOS:CaM:4Ca2+] 

k6  [eNOS : CaM : 4Ca2][Hsp90] Assum. 

7 [Hsp90:eNOS:CaM:2Ca2+]  
[eNOS:CaM:2Ca2+] + [Hsp90] 

k7 [Hsp90 : eNOS : CaM : 2Ca2] Assum. 

8 [Hsp90:eNOS:CaM:4Ca2+]  
[Hsp90:eNOS:CaM:2Ca2+]  

k8  [Hsp90 : eNOS : CaM : 4Ca2]  
k8r  [Hsp90 : eNOS : CaM : 2Ca2][Ca2] 

Assum. 

9 [Hsp90:p-eNOS:CaM:4Ca2+]  
[Hsp90:p-eNOS:CaM:2Ca2+] 

k9  [Hsp90 : p  eNOS : CaM : 4Ca2] 
k9r  [Hsp90 : p  eNOS : CaM : 2Ca2][Ca2] 

Assum. 

10 [Hsp90:eNOS:CaM:4Ca2+]  
[Hsp90:p-eNOS:CaM:4Ca2+] 

k10[pp  AKT : PI3P][Hsp90 : eNOS : CaM : 4Ca2]

Km10  [Hsp90 : eNOS : CaM : 4Ca2 ]
  

V10r[Hsp90 : p  eNOS : CaM : 4Ca2 ]

Km10r  [Hsp90 : p  eNOS : CaM : 4Ca2 ]
 

Assum. 

11 [Hsp90:eNOS:CaM:2Ca2+]  
[Hsp90:p-eNOS:CaM:2Ca2+] 

k11[pp  AKT : PI3P][Hsp90 : eNOS : CaM : 2Ca2]

Km11  [Hsp90 : eNOS : CaM : 2Ca2]
  

V11r[Hsp90 : p  eNOS : CaM : 2Ca2 ]

Km11r  [Hsp90 : p  eNOS : CaM : 2Ca2]
 

Assum. 

12 [Hsp90:p-eNOS:CaM:2Ca2+]  
[Hsp90:p-eNOS] + [CaM:2Ca2+] 

k12 [Hsp90 : p  eNOS : CaM : 2Ca2]  
k12r  [Hsp90 : p  eNOS][CaM : 2Ca2] 

Assum. 

13 [Hsp90:p-eNOS]  [Hsp90: 
eNOS] 

V13[Hsp90 : p  eNOS]

Km13  [Hsp90 : p  eNOS]
 Assum. 

14 [Hsp90:eNOS]  [Hsp90] + 
[eNOS:Cav-1] 

k14  [Hsp90 : eNOS] Assum. 

15 [eNOS:Cav-1]   kD  [eNOS : Cav 1] Assum. 
16 [eNOS:CaM:2Ca2+]   + 

[CaM:2Ca2+] 
kD  [eNOS : CaM : 2Ca2] Assum. 

17 [eNOS:CaM:4Ca2+]   + 
[CaM:4Ca2+] 

kD  [eNOS : CaM : 4Ca2] Assum. 

18 [Hsp90:eNOS:CaM:2Ca2+]   
+ [CaM:2Ca2+] + [Hsp90] 

kD  [Hsp90 : eNOS : CaM : 2Ca2] Assum. 

19 [Hsp90:eNOS:CaM:4Ca2+]   
+ [CaM:4Ca2+] + [Hsp90] 

kD  [Hsp90 : eNOS : CaM : 4Ca2] Assum. 

20 [Hsp90:p-eNOS:CaM:2Ca2+]  
 + [CaM:2Ca2+] + [Hsp90] 

kD  [Hsp90 : p  eNOS : CaM : 2Ca2] Assum. 

21 [Hsp90:p-eNOS:CaM:4Ca2+]  
 + [CaM:4Ca2+] + [Hsp90] 

kD  [Hsp90 : p  eNOS : CaM : 4Ca2] Assum. 

22 [Hsp90:p-eNOS]   + [Hsp90] kD  [Hsp90 : p  eNOS] Assum. 
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* All reactions from this model were generated based on our assumptions. 
	
List of parameters: 
 
 Units Ref. Ref. value Model value 
k1 nM-1  s-1 Estimated from (13) --- 0.004 
k1r s-1 Estimated from (13) --- 10.3 
k2 nM-1  s-1 Estimated from (13) --- 0.08 
k2r s-1 Estimated from (13) --- 1152 
k3 nM-1  s-1 Initial estimate --- 1.5 * 10-4 
k3r s-1 Initial estimate --- 1.5 
k4 nM-1  s-1 Initial estimate --- 0.015 
k5 s-1 Estimated from (13) --- 115.2 
k5r nM-1  s-1 Estimated from (13) --- 0.08 
k6 nM-1  s-1 Estimated from (15) --- 0.002 
k7 s-1 Estimated from (15) --- 1.5 
k8 s-1 Estimated from (13) --- 115.2 
k8r nM-1  s-1 Estimated from (13) --- 0.08 
k9 s-1 Estimated from (13) --- 115.2 
k9r nM-1  s-1 Estimated from (13) --- 0.08 
k10 s-1 Estimated from fitting exp. data --- 0.1 
Km10 nM Estimated from fitting exp. data --- 5 
V10r nM  s-1 Estimated from fitting exp. data --- 4 
Km10r nM Estimated from fitting exp. data --- 20 
k11 s-1 Estimated from fitting exp. data --- 0.1 
Km11 nM Estimated from fitting exp. data --- 5 
V11r nM  s-1 Estimated from fitting exp. data --- 4 
Km11r nM Estimated from fitting exp. data --- 20 
k12 s-1 Initial estimate --- 1.5  
k12r nM-1  s-1 Initial estimate --- 1.5 * 10-4 
V13 nM  s-1 Estimated from fitting exp. data --- 4 
Km13 nM Estimated from fitting exp. data --- 20 
k14 s-1 Estimated from (15) --- 1.5 
kD s-1 Estimated from half life (16) 1.13 * 10-5 9.45 * 10-5 
kCaM s-1 Estimated from (14) --- 17 
kp s-1 Estimated from (14) --- 5 
 
References for model 4:  
(13-16) 
 

23 [Hsp90:eNOS]   + [Hsp90] kD  [Hsp90 : eNOS] Assum. 
24   [NO] kCaM  [Hsp90 : eNOS : CaM : 4Ca2]  

kCaM  [Hsp90 : p  eNOS : CaM : 4Ca2] 
kCaM  [eNOS : CaM : 4Ca2] 
kp  [Hsp90 : p  eNOS : CaM : 2Ca2]  
kp  [Hsp90 : p  eNOS] 

Assum. 



Time-dependent functions as model inputs 
 
As described in the manuscript, time-dependent functions were used as model inputs throughout the NO 
systems as proxies for the mechanotransduction process. These time-dependent functions were either taken 
directly from existing models or fit from experimental data. The details of the five time-dependent 
functions are described below: 
 
1) Production of IP3 (Model 1: Reaction 3)  
 

d[IP3]

dt
 k1 (RT 

RT

2
 (e t / I  e t / II )

I II

I II









 (et / I  et / II ))

[Ca2(c)]

K1  [Ca2(c)]









 

 
This equation was taken directly from the calcium dynamics model created by Wiesner et al. (1) through 
combining Eq. 11 and Eq. 16 of the original paper. This theoretical model was based on experimental 
measurement of human umbilical vein endothelial cells (HUVECs) assuming a laminar shear stress of 10 
dynes/cm2. 
 
2) PI3K Activation (Model 2: Reaction 1) 
 
 The equation describing PI3K activation was generated by fitting the experimental data of Go et al. (4) 
(Figure 2B of the paper) to the following equation: 
 

[p  PI3K]t 1 a
t

b








c

 exp(1
t

b








c

) 

 
Parameter values of a, b, c were optimized by curve-fitting using MATLAB. We then calculated the time-
derivative of the above equation to obtain the time-dependent differential equation of PI3K activation (as 
shown in Model 2: Reaction 1): 
 

d[p  PI3K]

dt
 exp(1

t

15









1.8

) 0.907 t 0.8  (1
t

15









1.8

)  

 
In the Go et al. study, bovine aortic endothelial cells (BAECs) were exposed to a laminar shear stress of 5 
dynes/cm2. PI3K in the time-course experiments was isolated through immunoprecipitation and the PI3K 
activity was measured by a radioactive assay. Total PI3K concentration was assumed to be 100 nM based 
on the model of Koh et al. (3). 
 
3) FAK Activation (Model 3: Reaction 1) 
 
Similarly, the equation describing FAK activation was generated by fitting the experimental data of Li et al. 
(5) (Figure 2A of the paper) to the following equation: 
 

[p  FAK]t 1 a
t

b








c

 exp(1
t

b








c

)  

 
Parameter values of a, b, c were optimized by curve-fitting using MATLAB. We then calculated the time-
derivative of the above equation to obtain the time-dependent differential equation of FAK activation (as 
shown in Model 3: Reaction 1): 
 

d[p  FAK]

dt
 exp(1

t

60









0.35

) 4 t0.65  (1
t

60









0.35

) 
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In the Li et al. study, BAECs were exposed to a laminar shear stress of 12 dynes/cm2. FAK in the time-
course experiments was isolated through immunoprecipitation and FAK activation was measured using a 
phophotyrosine-specific antibody. Total FAK concentration was assumed to be 80 nM based on the model 
of Yee et al. (7). 
 
4) Src Activation (Model 3: Reaction 2) 
 
Again, the equation describing Src activation was generated by fitting the experimental data of Jalali et al. 
(6) (Figure 1 of the paper) to the following equation: 
 

[p  Src]t 1 a
t

b








c

 exp(1
t

b








c

)  

 
Parameter values of a, b, c were optimized by curve-fitting using MATLAB. We then calculated the time-
derivative of the above equation to obtain the time-dependent differential equation of Src activation (as 
shown in Model 3: Reaction 2): 
 

d[p  Src]

dt
 exp(1

t

540









1.3

) 0.026 t 0.3  (1
t

540









1.3

)  

 
In the Jalali et al. study, BAECs were exposed to a laminar shear stress of 12 dynes/cm2. Src in the time-
course experiment was isolated through immunoprecipitation and the Src activity was measured by a 
radioactive assay. Total Src concentration was assumed to be 90 nM based on the model of Yee et al. (7). 
 
 
5) KLF2 Activation (Model 3: Reaction 23) 
 
The equation describing KLF2 activation was generated by fitting the experimental data of Young et al. 
(12) (Figure 1B of the paper, assuming the translational process is fast and KLF2 protein expression 
corresponds well with mRNA expression) to the following equation (t/3600 to adjust the time from hours to 
seconds): 
 

[KLF2]t 1
a

1 exp(b (c 
t

3600
))

 

 
Parameter values of a, b, c were optimized by curve-fitting using MATLAB. We then calculated the time-
derivative of the above equation to obtain the time-dependent differential equation of KLF2 activation (as 
shown in Model 3: Reaction 23): 
 

d[KLF2]

dt


exp(0.55(5 
t

3600







) /(3600*29.256)

(12 exp(0.55(5 
t

3600







) exp(1.1(5 

t

3600







))

 

 
In the Young et al. study, HUVECs were exposed to an oscillatory (1 Hz) shear stress of 124 dynes/cm2. 
mRNA from endothelial cells was isolated in the time-course experiments and relative mRNA expression 
was measured through qPCR. Initial KLF2 concentration was assumed to be 10 nM based on our 
experimental observation of low quantity presence in endothelial cells. 
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Parameter Optimization 
 
The parameters of individual models were optimized in CellDesigner based on the following general 
iterative steps: 
 

1. Conduct parameter sensitivity analysis to search for the high sensitive parameters (Simulation -> 
Control Panel -> Interactive Simulation -> Parameter Value). 

2. Optimize the set of most sensitive parameters to fit the experimental observed values. 
 

Model 1: Shear stress-induced calcium influx 
 
It is observed through parameter scan that most kinetic parameters that govern reaction rates in this model 
(k1, k2, k3, k4, k5, k6, k7, Qshear, VP, Vex, Vhi, I, II) need to be adjusted simultaneously in order to achieve 
sensible simulation outcome. The experimental data used to optimize the parameters is from the study of 
Schwarz et al. (17). 
 
Model 2: Shear stress-induced AKT phosphorylation 
 
The parameters k2 and k3 were found to be the most sensitive parameters. These parameters were 
moderately optimized within the same order of magnitude to better fit the experimental data of Boo et al. 
(18). 
 
Model 3: Shear stress-induced eNOS expression 
 
There was a big shift in V8 due to modification of model structure compared to the reference model. Other 
parameters (including the eNOS degradation parameter kD listed in the 4th model) were estimated or 
moderately optimized within the same order of magnitude to better fit the experimental data of our lab 
(eNOS mRNA time course) and the study of Li et al. (19) (eNOS protein time course). 
 
Model 4: Shear stress-induced NO production 
 
Most of the parameters in this model are direct estimation from experimental data without further 
optimization. The parameters governing eNOS phosphorylation (reaction 10 and 11) and 
dephosphorylation (reaction 13) were optimized according to eNOS phosphorylation time course data from 
Boo et al. (18). The two NO production parameters, kCaM and kp, were optimized to better fit the 
experimental observation of Florian et al. (20) under both static and shear stress conditions.  
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Model diagram legends: 
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