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1 Insights on OKVAR model: matrix-valued kernel properties

The matrix-valued function K presented in Eq. (4) is the Hadamard product of two kernels K0 and K1,
each of them satisfying the properties of a matrix-valued kernel introduced by Senkene and Tempel’man,
1973 : (1), ∀(x,x′) ∈ Rp × Rp, K(x,x′) = K(x′,x)T and (2): ∀m ∈ N, ∀ {(xi,yi)}i=1...m ⊆ Rp × Rp,

m∑
i,j=1

⟨K(xi,xj)yi,yj⟩Rp ≥ 0 .

Due to a theorem proven in Caponnetto et al., 2008, as a Hadamard product of two matrix-valued
kernels, it is also a matrix-valued kernel.

2 Estimation of Wm

Empirical partial correlations1 rij ’s are computed for each pair of variables (i, j) conditional on all other
variables from data projected on the subspace defined by Sm. The rij ’s can be computed from the inverse

of Σ̂, the empirical covariance matrix as follows: rij =
−Σ̂−1

ij√
Σ̂−1

ii Σ̂−1
jj

. If we assume that the variables are

distributed according to a multivariate normal distribution, rij is zero if, and only if, states i and j are
conditionally independent given the other variables. We carry out a statistical test based on the null
hypothesis H0 : rij = 0 (no partial correlation between i and j) vs H1 : rij ̸= 0. The test statistic is a

Fisher’s z-transform of the partial correlation : z(rij) =
1
2 ln

(
1+rij
1−rij

)
. The null hypothesis H0 is rejected

with significance level α if :
√
(N − 1)− (k − 2)− 3 · |z(rij)| > Φ−1

(
1− α

2

)
where Φ is the cumulative

distribution function of a standard normal distribution N (0, 1). We define Wm as follows : w
(m)
ij = 1 if

H0 is rejected, 0 otherwise and obtain Bm as the Laplacian of Wm, e.g. as Bm = Dm −Wm where Dm

is the degree matrix of Wm.

3 Jacobian expression for a base model hm

J
(m)
ij (t) =

N−2∑
k=0

p∑
ℓ=1

c
(m)
k,ℓ

∂(K(m)(xk,xt)iℓ)

∂(xt)j

=
N−2∑
k=0

p∑
ℓ=1

c
(m)
k,ℓ

∂

∂(xt)j

(
b
(m)
iℓ exp(−γ0||xk − xt||2) exp

(
−γ1(xki − xtℓ)

2
))

=
N−2∑
k=0

p∑
ℓ=1

b
(m)
iℓ c

(m)
k,ℓ

[
exp(−γ0||xk − xt||2)

∂

∂(xt)j
(exp

(
−γ1(xki − xtℓ)

2
)

+exp
(
−γ1(xki − xtℓ)

2
) ∂

∂(xt)j
(exp(−γ0||xk − xt||2)

]

Finally, we get the expression for the instantaneous Jacobian of hm:

1We omit the index m for the sake of clarity
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J
(m)
ij (t) = 2b

(m)
ij γ1

N−2∑
k=0

c
(m)
k,j exp(−γ0||xk − xt||2)(xki − xtj) exp

(
−γ1(xki − xtj)

2
)

+2γ0

N−2∑
k=0

p∑
ℓ=1

c
(m)
k,ℓ b

(m)
iℓ (xkj − xtj) exp(−γ1(xki − xtℓ)

2) exp(−γ0||xk − xt||2)

Note that when γ0 is close to 0, K(m)(xk,xt)ij ≈ b
(m)
ij exp

(
−γ1(xki − xtj)

2
)
and the Jacobian coefficient

J
(m)
ij (t) ≈ 2b

(m)
ij γ1

∑
k c

(m)
k,j (xki − xtj) exp

(
−γ1(xki − xtj)

2
)
, meaning that the value bij is central to

impose the zero’s to the model. The average Jacobian of hm writes as follows:

J
(m)
ij =

1

N − 1

N−2∑
t=0

J
(m)
ij (t)

4 Block-instability criterion for model selection

The BIS criterion is defined from a given time series and for a choice of λ1 and λ2. It measures the
empirical mean of the difference using the Frobenius norm between the Jacobian matrices J(Hb,1) and
J(Hb,2) computed from a pair of models (Hb,1,Hb,2) built from the bth pair of block-bootstrapped
subsamples.

BIS(λ1, λ2;x
N−1
0 ) =

1

B

B∑
b=1

∥ J(Hb,1)− J(Hb,2) ∥2 (1)

where Hb,1 (resp. Hb,2) is the autoregressive model built from the block sample (b, 1) (resp. (b, 2)) drawn
from a single time series x0, . . . ,xN−1.
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5 Tables

Table S1: Average-degree, density, and modularity for DREAM3 networks.

Size10 Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

Average degree 2.2 3.0 2.0 5.0 4.4
Density 0.244 0.333 0.222 0.556 0.489

Modularity 0.016 (2) 0 (1) 0.260 (3) 0 (1) 0 (1)

Size100 Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

Average degree 2.5 2.38 3.32 7.78 11.02
Density 0.025 0.024 0.033 0.079 0.111

Modularity 0.643 (6) 0.661 (7) 0.681 (8) 0.328 (6) 0.088 (14)

The total degree of a node (gene) is the sum of its in- and out-degrees, while the average across genes
gives the average-degree for the entire network. The density of a network is the ratio of the number
of edges in the network to the maximum possible number of edges. The calculated modularity index
corresponds to the optimal number of modules for that network (numbers given in parentheses).

Table S2: AUROC and AUPR for OKVAR-Boost, run on size-10 Ecoli1 network. Average ± Standard
Deviation values are computed on using combinations of 1 up to 4 time series.

Number of time series 1 2 3 4
AUROC 0.665 0.696 0.715 0.853

± 0.088 ± 0.101 ± 0.041
AUPR 0.272 0.273 0.270 0.583

± 0.081 ± 0.137 ± 0.092

Table S3: AUROC and AUPR for OKVAR-Boost (λ1 = 0.01, λ2 = 0.1 selected by Block-Stability),
LASSO and Äijö’s algorithm run on the IRMA network. All the results are obtained using either the
four switch-off time series or the five switch-on time series. The numbers in boldface are the maximum
values for each column.

Switch-off Switch-on
AUROC AUPR AUROC AUPR

OKVAR-Boost 0.807 0.807 1 1

LASSO 0.500 0.253 0.583 0.474

Äijö 0.875 0.848 0.838 0.836
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6 Figures
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Figure S1: Inferred IRMA network from OKVAR-Boost algorithm using switch-off time series (λ1 =
0.01, λ2 = 0.1). Solid, dotted and red lines correspond respectively to correct, missing and false edges.
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Figure S2: Reconstructed T-cell activation regulatory network using OKVAR-Boost (λ1 = λ2 = 1,
consensus threshold= 0.01).
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