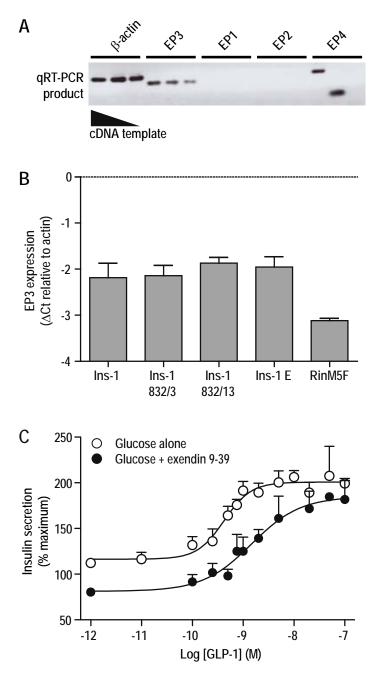
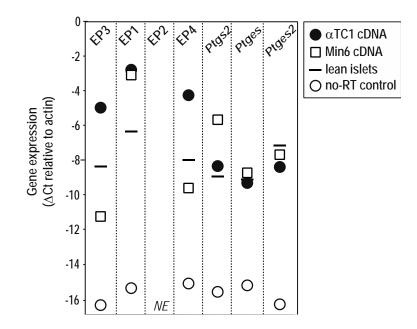

SUPPLEMENTARY DATA

Sample name	BMI	Age	Sex	Race	Cold Ischemia (min)	Time to shipment (hours)	Purity	Viability	Batch Type	Type Of Islets	Institution	Shipped	Delivered
ND1	34.4	48	м	White		69	80%	99%	Most Pure	Cultured	University of Minnesota	11/3/10	11/4/10
ND2	30	64			841	118	85%	95%	Most Pure	Cultured	The Scharp/Lacy Institute	11/17/10	11/18/10
ND3	33.1	49	F	White	258	26	92%	99%	Most Pure	Cultured	University of Minnesota	12/10/10	12/11/10
ND4	27.4	39	м	White			98%	99%	Most Pure	Cultured	Massachusetts General Hospital	2/22/11	2/23/11
ND5-xylitol	28.8	20	м	White	308	24.5	90%	95%	Most Pure	Cultured	The Scharp/Lacy Institute	3/1/11	3/2/11
ND6-xylitol	31.6	51	F	White	308	95	90%	96%	Most Pure	Cultured	University of Pennsylvania	3/7/11	3/8/11
ND7-xylitol	23.2	61				36	90%	97%	Most Pure	Cultured	University of Illinois	3/10/11	3/11/11
T2D1	38	54	м				80%	95%	Most Pure	Cultured Confirmed Type II Diabetic Donor	The Scharp/Lacy Institute	1/14/11	1/15/11
T2D2	50	52	м	White			80%	92%	Most Pure	Cultured Confirmed Type II Diabetic Donor	The Scharp/Lacy Institute	2/14/11	2/15/11
T2D3	34	66	м	White			95%	99%	Most Pure	Cultured Confirmed Type II Diabetic Donor	Massachusetts General Hospital	2/14/11	2/15/11
T2D4	33.5	44	м	Hispanic			80%	95%	Most Pure	Cultured Confirmed Type II Diabetic Donor	The Scharp/Lacy Institute	5/10/11	5/11/11
t-test					52 5								
(ND vs T2D):	0.03	0.44											
Mean ND:	30	47											
Mean T2D:	39	54											


Supplementary Table 1. Donor Demographics for human islet samples used in GSIS assays in Figure 3. If a value is missing, it was not known.

Supplementary Figure 1. The EP3 antagonist, L-798,106, causes a dose-dependent increase in GSIS in islets isolated from diabetic BTBR mice. Increasing the concentration of L-798,106 100-fold, from 100 nM to 10 μ M, elicits a significant potentiation of GSIS. The 10 μ M or 20 μ M concentration was chosen for all further experiments. (n=3; *, p<0.05).


SUPPLEMENTARY DATA

Supplementary Figure 2. The EP3 receptor is expressed in Ins-1 832/3 cells, which are highly responsive to cAMP stimulation. (A) EP3 qRT-PCR product is expressed in all PCR reactions in a 100X cDNA dilution series, from 20 ng to 0.2 ng input cDNA. The $G\alpha_s$ -coupled EP4 is also expressed in these reactions, but only at the highest concentration of cDNA, whereas the PCR product in the 2 ng reaction is primer dimer. (B) EP3 mRNA is expressed at similar levels in all Ins-1-derived rat insulinoma cell lines, being slightly reduced in the RinM5F rat insulinoma cell line. (C) The Ins-1 (832/3) cell line is highly responsive to cAMP agonists like GLP-1 to promote GSIS. GSIS assays were performed in the presence of 11 mM glucose with increasing concentrations of GLP-1. The GSIS effect in 11 mM glucose alone was set at 100 percent; GLP-1 potentiated the effect of glucose by another 100%. In this experiment, the ability of GLP-1 to compete with 70 nM Exendin 9-39, an inverse agonist of the GLP-1 receptor, was also tested. Exendin 9-39 acts as a competitive antagonist by shifting the EC50 to the right, while having little effect on the maximal effect of GLP-1.

SUPPLEMENTARY DATA

Supplementary Figure 3. The expression patterns of the EP receptor family and PGE2 synthetic enzymes are similar in the mouse α -cell-derived line, α TC1, and β -cell-derived line, Min6, as compared to isolated mouse islets. Copy DNA was generated from RNA samples derived from the indicated cell lines and subjected to qRT-PCR analysis with primers specific for β -actin or the indicated genes. Ct values were normalized to β -actin and to a control RNA sample that had not been subjected to cDNA synthesis (no-RT control). All primer sets except those for EP2 elicited a significant amplification above control in all samples. The Δ Ct values for isolated lean mouse islets is shown in black bars as a comparison. The gene expression patterns are all similar for lean islets, Min6 cells, and α TC1 cells. Technical replicates were performed in duplicate, and the values for each primer set were averaged before subtracting from the average of the β -actin values for that sample.

